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There are three kinds of lies:
small lies, big lies and statistics.



Basic theoretical notions



Formal syntax of a cryptosystem I

Various domains associated with the cryptosystem:

M – a set of plausible messages (plaintexts);

C – a set of possible cryptograms (ciphertexts);

R – random coins used by the encryption algorithm.

Parameters used by the encryption and decryption algorithms:

pk – a public key (public knowledge needed to generate valid encryptions);

sk – a secret key (knowledge that allows to efficiently decrypt ciphertexts).
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Formal syntax of a cryptosystem II

Algorithms that define a cryptosystem:

G – a randomised key generation algorithm;

Epk – a randomised encryption algorithm;

Dsk – a deterministic decryption algorithm.

The key generation algorithm G outputs a random key pair (pk, sk).

The encryption algorithm is an efficient mapping Epk :M×R→ C.
The decryption algorithm is an efficient mapping Dsk : C →M.

A cryptosystem must be functional

∀(pk, sk)← G, ∀m ∈M, ∀r ∈ R : Dsk(Epk(m; r)) = m.
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When is a cryptosystem secure?

It is rather hard to tell when a cryptosystem is secure. Instead people often
specify when a cryptosystem is broken:

• Complete key recovery. Given pk and Epk(m1), . . . ,Epk(mn), the
adversary deduces sk in a feasible time with a reasonable probability.

• Complete plaintext recovery. Given pk and Epk(m1), . . . , Epk(mn), the
adversary is able to recover mi in a feasible time with a reasonable
probability.

• Partial plaintext recovery. Given pk and Epk(m1), . . . , Epk(mn), the
adversary is able to recover a part of mi in a feasible time with a
reasonable probability.

The list is not complete and neither can never be completed!
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Semantic security

Shaft Goldwasser and Silvio Micali, Probabilistic Encryption & How To
Play Mental Poker Keeping Secret All Partial Information, 1982.

A Public Key Cryptosystem is ε secure if an adversary does not have an
ε advantage in evaluating, given the ciphertext, any easy to compute
predicate relative to the cleartext.

Contemporary treatment of semantic security:

• Mihir Bellare, Anand Desai, E. Jokipii and Phillip Rogaway, A Concrete
Security Treatment of Symmetric Encryption, 1997.

• Mihir Bellare, Anand Desai, David Pointcheval and Phillip Rogaway,
Relations among Notions of Security for Public-Key Encryption Schemes,
1998.
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IND-CPA security

Malice is good in breaking security of a cryptosystem (G, E,D) if Malice
can distinguish two experiments (hypothesis testing):

Experiment Exp0 Experiment Exp1

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk)

3. guess← Malice(σ, Epk(m0))

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk)

3. guess← Malice(σ,Epk(m1))

with a non-negligible∗ advantage

Adv(Malice) =
1
2
·
∣∣∣Pr [guess = 0|Exp0]︸ ︷︷ ︸

True positives

−Pr [guess = 0|Exp1]︸ ︷︷ ︸
False positives

∣∣∣
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Bit-guessing game with a fair coin

Consider Protocol 14.1 in Mao’s book:

1. (pk, sk)← G

2. (m0, m1, σ)← Malice(pk) where σ denotes advice, e.g. pk.

3. Oracle O flips a fair coin b← {0, 1} and sets c← Epk(mb).

4. guess← Malice(σ, c)

Pr [guess = b] = Pr [b = 0] Pr [guess = 0|b = 0] + Pr [b = 1] Pr [guess = 1|b = 1]

=
1

2
· Pr [guess = 0|Exp0] +

1

2
· (1 − Pr [guess = 0|Exp1])

=
1

2
± Adv(Malice)
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Bit-guessing game with a biased coin∗

Consider the bit-guessing game when the coin is biased Pr [b = 1] = 3
4.

Show that the probability of correct answer is in the range

1
4
− 1

2
· Adv(Malice) ≤ Pr [guess = b] ≤ 3

4
+

1
2
· Adv(Malice)

Give an interpretation to the formula.

Is there any way to “cleverly” use subroutine Malice so that

Pr [guess = b] =
3
4

+
1
2
· Adv(Malice)?
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IND-CPA =⇒ Semantic security

Let π :M→ {0, 1} be a predicate such that Pr [m←M : π(m) = 1] = 1
2.

If Charlie can efficiently and correctly guess π(m) given only pk and Epk(m):

Advguess(Charlie) = Pr

[
(pk, sk)← G, m←M :

Charlie(pk,Epk(m)) = π(m)

]
− 1

2
≥ 0

then we can construct Malice:

1. Malice chooses m0,m1←M randomly.

2. Given c = Epk(mb), Malice runs Charlie:

• If Charlie(pk, c) = π(m0) return 0
• Else return 1.
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How well does Malice perform?

Evidently, we can write

Pr [guess = 0|Exp0] = Pr

[
(pk, sk)← G, m0,m1 ←M :

Charlie(pk, Epk(m0)) = π(m0)

]

Pr [guess = 0|Exp1] = Pr

[
(pk, sk)← G, m0,m1 ←M :

Charlie(pk, Epk(m1)) = π(m0)

]

and thus

2Adv(Malice) =
∣∣∣∣12 + Advguess(Charlie)− Pr [Charlie(pk,Epk(m1)) = π(m0)]

∣∣∣∣
= Advguess(Charlie)

since for fixed m1, we have always Pr [Charlie(pk,Epk(m1)) = π(m0)] = 1
2.
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IND-CPA =⇒ Semantic security

Why does IND-CPA security imply semantic security w.r.t. π?

Why π must be efficiently computable?

Extend the proof for the general case where π is not a balanced predicate∗.

What if Charlie can predict a function f :M→ N from pk and Epk(m)?

Extend the proof for the general case where Charlie predicts f∗.
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How much time can Malice spend?

Usually, it is assumed that Malice uses a probabilistic polynomial time
algorithm to launch the attack. What does it mean?

Example
1994 – 426 bit RSA challenge broken.
2003 – 576 bit RSA challenge broken.
2005 – 640 bit RSA challenge broken.

Instead of a concrete encryption scheme RSA is a family of cryptosystems
and Malice can run algorithm polynomial in the length k of RSA modulus.

Negligible advantage means that the advantage decreases faster than k−c

for any c > 0.
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A concrete example

For simplicity, imagine that Malice runs algorithms that finish in time k5.
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Uniform vs non-uniform security

For each polynomial-time algorithm Ai the advantage was negligible:
=⇒ scheme is secure against polynomial uniform adversaries.

If Malice chooses a good algorithm for each k separately
=⇒ she breaks the scheme with advantage 1

2;
=⇒ scheme is insecure against polynomial non-uniform adversaries.

In practice, each adversary has limited resources
=⇒ Given time t, Malice should not achieve Adv(Malice) ≥ εcritical.

If scheme is secure against non-uniform adversaries then for large k:
=⇒ Adv(Malice) ≤ εcritical for all t time algorithms;
=⇒ the scheme is still efficiently implementable.
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Is non-uniform security model adequate in practice∗?

Consider the case of browser certificates:

• Several Verisign certificates have been issued in 1996–1998.

• As a potential adversary knows pk, he can design a special crack algorithm
for that pk only. He does not care about other values of pk.

• Maybe a special bit pattern of N = pq allows more efficient factorisation?

Why can’t we fix pk in the non-uniform model?

Is there a model that describes reality without problems∗?

Does security against (non-)uniform adversaries heuristically imply security
in real applications∗?
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Concrete examples



Commutative cryptosystems

A cryptosystem (G, E,D) is commutative if for any valid public keys pkA, pkB

∀m ∈M : EpkA
(EpkB

(m)) = EpkB
(EpkA

(m)).

In particular it implies

m = DskA
(DskB

(EpkA
(EpkB

(m)))) = DskB
(DskA

(EpkB
(EpkA

(m)))).

The latter allows to swap the order of encryption and decryption operations.
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Mental poker protocol

1. Alice sends randomly shuffled encryptions EpkA
(♠2), . . . ,EpkA

(♥A).

2. Bob chooses randomly cA, cB and sends cA,EpkB
(cB) to Alice.

3. Alice sends DskA
(EpkB

(cB)) to Bob and locally outputs DskA
(cA).

4. Bob outputs locally DskB
(DskA

(EpkB
(cB))) = DskA

(cB).

5. Alice sends her pkA to Bob. Bob sends his pkB to Alice.

RSA with shared modulus N = pq, and keys (pkA, skA) = (eA, dA) and
(pkB, skB) = (eB, dB) such that

eAdA = 1 mod φ(N) eBdB = 1 mod φ(N)

is insecure after Step 5. Why?
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Attacks against mental poker game

Recall that RSA encryption preserves quadratic residuocity and both parties
can compute it. Leaking residuocity can give an edge to Bob.

Brute force attack. Let ♠2, . . . ,♥A be encoded as 1, . . . , 52. Then
corresponding encryptions are 1, 2eA, . . . , 56eA modulo N . Obviously,

2eA · 2eA = 4eA mod N, . . . , 7eA · 7eA = 49eA mod N

and Bob can with high probability separate encryptions of 2, . . . , 7.

Similar connections allow Bob to reveal most of the cards.

There are completely insecure encodings for the cards
=⇒ vanilla RSA is not applicable for secure encryption;
=⇒ vanilla RSA is not IND-CPA secure;
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Goldwasser-Micali cryptosystem

Famous conjecture. Let N be a large RSA modulus. Then without
factorisation of N it is infeasible to determine whether a random c ∈ JN(1)
is a quadratic residue or not.

Key generation. Generate safe primes p, q ∈ P and choose quadratic
non-residue y ∈ JN(1) modulo N = pq. Set pk = (n, y), sk = (p, q).

Encryption. First choose a random x← Z
∗
N and then compute

Epk(0) = x2 mod N and Epk(1) = yx2 mod N.

Decryption. Given c, compute c1 mod p and c2 mod q and use Euler’s
criterion to test whether c is a quadratic residue or not.
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ElGamal cryptosystem

Combine the Diffie-Hellman key exchange protocol

Alice Bob

x← Z|G|
y=gx

−−−→ k ← Z|G|

gk

←−−
gxk = (gk)x gxk = (gx)k

with one-time pad using multiplication in G = 〈g〉 as encoding rule

Epk(m) = (gk, m · gxk) = (gk,m · yk) for all elements m ∈ G

with a public key pk = y = gx and a secret key sk = x.

T-79.5502 Advanced Course in Cryptology, IND-CPA security, April 4, 2006 21



Decisional Diffie-Hellman Assumption (DDH)

DDH Assumption. For a fixed group G, Charlie can distinguish
experiments

Exp0 Exp1

1. x, k ← Zq, q = |G|
2. guess← Charlie(g, gx, gk, gxk)

1. x, k, c← Zq, q = |G|
2. guess← Charlie(g, gx, gk, gc)

with a negligible advantage Adv(Charlie).

Obviously, the Diffie-Hellman key exchange protocol is secure under the
DDH ⇐= we can change gxk with gc and Charlie cannot tell the difference.

If the Diffie-Hellman key exchange protocol is secure
=⇒ ElGamal is secure, as the one-time pad is unbreakable.
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DDH =⇒ ElGamal is IND-CPA

Let Malice be good in IND-CPA game. Now Charlie given (g, gx, gk, z):

1. Set pk = gx and (m0,m1, σ)← Malice(pk).

2. Toss a fair coin b← {0, 1} and set c = (gk,mbz).

3. Get guess← Malice(σ, c).

4. If guess = b return 0 else output 1.

We argue that this is a good strategy to win DDH game.
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Charlie’s advantage in DDH game

Observe

Pr [Charlie = 0|Exp0] = Pr [Success in bit guessing game] =
1
2
± Adv(Malice)

Pr [Charlie = 0|Exp1] = Pr [Guess b given a random cryptogram] =
1
2

and we get

Adv(Charlie) =
1
2
· |Pr [Charlie = 0|Exp0]− Pr [Charlie = 0|Exp1]|

=
1
2
· Adv(Malice)

Therefore good attack against IND-CPA game implies good attack against
DDH game.
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Why some instantiations of ElGamal fail?

If the message m /∈ G then mgxk is not one-time pad, for example

G = 〈2 mod 6〉 =⇒ m2xk = m mod 2

and a single bit of information is always revealed.

Fix a generator of g ∈ Z
∗
p for large p ∈ P such that DDH holds.

If public key y = gx is quadratic residue (QR), then yk is also QR.

m is QR if and only if myk is QR

Fix I. Choose g ∈ QR so that 〈g〉 = QR and m ∈ QR.

Fix II. Choose almost regular hash function h : G → {0, 1}� and define

Epk(m) = (gk, h(gxk)⊕m) for m ∈ {0, 1}�. Then h(gxk) is almost uniform.
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Hybrid encryption

Assume that (G, E,D) is a IND-CPA secure cryptosystem and prg is a secure
pseudorandom generator (secure stream-cipher, e.g. AES in counter mode).

Encrypt. For m ∈ {0, 1}� choose seed ∈M randomly and compute

E∗
pk(m) = (Epk(seed), prg(seed)⊕m)

Decrypt. Given (c1, c2) compute seed← Dsk(c1) and output c2⊕prg(seed).

Theorem. The hybrid encryption is IND-CPA secure.
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All homomorphic encryptions are vulnerable

A cryptosystem is homomorphic if Epk(m1) · Epk(m2) = Epk(m1 ◦m2).

• Vanilla RSA is homomorphic.

• ElGamal is homomorphic.

• Goldwasser-Micali is homomorphic.

If Malice can somehow decrypt limited number of messages
=⇒ he can perfectly hide what messages are actually decrypted.

Sometimes decryption of few carefully selected cryptograms may leak enough
information so that Malice can completely break the scheme.
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