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T-79.5502 Advanced Course 
in Cryptology

Lecture 3, March 23, 2006
Insecurity of textbook crypto (Chapter 8)

–Weak security notion
–The CDH and DL Problems and Assumptions
–Cryptanlytic attacks against Public Key cryptosystems
–RSA Problem and Assumption
–IF Problem and Assumption
–Active attack on textbook RSA and ElGamal encryption
–Insecurity of Rabin encryption

Weak Security Notion (Property 8.2)

(i) All-or-nothing secrecy: For a given ciphertext output 
from a given encryption algorithm, the attacker’s task
is to retrieve thewhole plaintext block; or for a given
plaintext-ciphertext pair the attacker’s task is to 
uncover the secret key. The attacker either succeeds
to get all of the secret or fails with nothing.

(i) The attacker does not manipulate or modify
ciphertexts , and does notask a key owner to provide
encryption or decryption services. 
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Diffie-Hellman Key Exchange

ALICE BOB

a∈U[1, p-1]

A = ga mod p
b ∈U [1, p-1]

B = gb mod p
A

B

K = Ba mod p K = Ab mod p

Security of Diffie-Hellman Key Exchange

• If the Discrete Logarithm Problem (DL) is easy then DH KE is 
insecure

• Computational Diffie-Hellman Problem (CDH): 
Given g,ga,gb, compute gab.

• It seems that in groups where the CDH is easy, also the DL is easy. 
It is unknown if this holds in general (Maurer-Wolf).

• DH KE is secure against passive wiretapping.
• DH KE is insecure under the active man-in-the-middle attack: Man-

in-the-Middle exchanges a secret key with Alice, and another with
Bob, while Alice believes that she is talking confidentially to Bob, 
and Bob believes he is talking confidentially to Alice (see next slide).

• This problem is solved by authenticating the Diffie-Hellman key
exchange messages.  
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Man-in-the-Middle in the DH KE

Alice Malice
(man-in-the-middle) Bob

a

ga

K2= (ga)c2

ga
gc1

b

gb

K1= (gb)c1

gc2

gb

c1

gc1

c2

gc2

K1= (gb)c1

K2= (ga)c2

Protection using K2 Protection using K1

CDH and DL Problems (in a finite group)
Definition 8.1 CDH Problem
INPUT desc(G): the description of finite group G

g ∈ G: a generator element of g
ga, gb ∈ G for some integers 0 < a,b < ord (G)

OUTPUT gab

Definition 8.2: DL Problem
INPUT desc(G): the description of finite group G

g ∈ G: a generator element of g
h ∈U G

OUTPUT the unique integer a < ord(G) such that h = ga

(denote a = logg h)
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CDH Assumption (in a finite group)

Assumption 8.1 CDH Assumption
A CDH problem solver is a PP algorithm A with an advantage ε >0 

defined by ε = Prob[ gab← A(desc(G), g, ga, gb )] where the input to 
A is given in Def 8.1.

Let IG be an instance generator that on input 1k runs in time
polynomial in k and outputs
(i) desc(G) with ord (G) = q, where |q| = k, 
(ii) a generator element g ∈ G.

We say that IG satisfies the Computational Diffie-Hellman (CDH) 
assumption if there is no CDH problem solver for IG(1k) with
advantage ε >0  non-negligible in k for all sufficiently large k.

The difficulty of the CDH problem means that Diffie-Hellman KE is 
secure (the key remains secret) under passive attacks.

Recall: Non-Polynomial Bounds
Definition 4.12. A function f (n): N → R is said to be

unbounded by any polynomial in n (or, non-polynomially
bounded quantity) if for any polynomial p(n) there exists
a natural number n0 such that f(n) > p(n), for all n > n0.

Definition 4.13. A function ε(n): N → R is said to be a 
negligible in n if its inverse 1/ε(n) is a non-polynomially
bounded quantity. 

Hence a function ε(n): N → R is said to be a non-negligible
in n if its inverse 1/ε(n) is a polynomially bounded
quantity.
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DL Assumption (in a finite group)
Assumption 8.1 DL Assumption
A DL problem solver is a PP algorithm A with an advantage ε > 0 

defined by ε = Prob[ loggh← A(desc(G), g, h )] where the input to A
is defined in Def 8.2.

Let IG be an instance generator that on input 1k runs in time
polynomial in k and outputs
(i) desc(G) with ord (G) = q, where |q| = k, 
(ii) a generator element g ∈ G,
(iii) h ∈ G. 

We say that IG satisfies the Discrete logarithm (DL) assumption if
there is no DL problem solver for IG(1k) with advantage ε >0  non-
negligible in k for all sufficiently large k.

If DL Assumption holds then the function x → gx is one way. It is not
known if it is a trap-door one-way function.

Trapdoor One-way Function
Property 8.1:
A one-way trapdoor function ia a one-way function ft: D →

R, i.e., it is easy to evaluate for all x ∈ D and difficult to 
invert for almost all values in R. Hwever if the trapdoor
information is used, then for all values y ∈ R it is easy to 
compute x ∈ D satisfying y = ft(x) .

easy = there is an efficient (PP ) algorithm
difficult = there is no efficient algorithm
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Importance of Arbitrary Instances
for Intractability Assumptions

For example: If the order q of the group G is a smooth number, i.e., 
q = q1

e1q2
e2…qm

em

then we can find the discrete logarithm efficiently using the Pohlig-
Hellman algorithm. Actually, we solve the discrete logarithm problem
separately in each small group of order qi

ei generated by gri where
ri = q/qi

ei

(Recall the structure of a finite cyclic group. Example: If g is a generator
of Z*19 , g is of order 18= 2· 32, then g1 = g2 is a generator of a cyclic
subgroup of order 9 and g2 = g9 is a generator of cyclic subgroup of 
order 2 in Z*19. For each h ∈ Z*19 the discrete logarithm a = logg h can
be found by computing a1 = logg1 h2 = 2a mod 9 and a2 = logg2 h9 = 9a 
mod 2 and combining the results using the Chinese Remainder
Theorem)

Cryptanalysis against PK 
cryptosystems: Active Attacks

Chosen-plaintex attack (CPA): An attacker has the 
encryption black box in its possession. 

Chosen-ciphertext attack (CCA): An attacker can give a 
finite number of ciphertexts (excl. the target ciphertext) 
and see the corresponding decryptions.  

Adaptive chosen-ciphertext attack (CCA2): An attacker has
the decryption black box in its possession, and can input 
chosen ciphertexts (excl. the target one) and obtain the  
decryptions, one at a time.
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The RSA Problem and Assumption
Definition 8.4 RSA Problem
INPUT N = pq with p, q prime numbers

e: an integer such that gcd(e, φ(N)) = 1
c ∈ ZN

*

OUTPUT the unique integer m ∈ ZN
* such that me ≡ c (mod N)

Assumption 8.3 RSA Assumption
An RSA problem solver is a PP algorithm A with an advantage ε > 0 defined by

ε = Prob[ m← A(N, e, me)] where the input to A is defined in Def 8.4.
Let IG be an instance generator that on input 1k runs in time polynomial in k 

and outputs
(i) a 2k-bit modulus N = pq where p and q are two distinct uniformly random
primes each is k bits long
(ii) e ∈ Z*

(p-1)(q-1)
We say that IG satisfies the RSA assumption if there is no RSA problem solver

for IG(1k) with advantage ε >0  non-negligible in k for all sufficiently large k.

The Integer Factorization Problem and 
Assumption

Definition 8.5 IF Problem
INPUT N odd composite integer with at least two distinct prime

factors
OUTPUT prime  p such that p | N

Assumption 8.4 IF Assumption
An IF problem solver is a PP algorithm A with an advantage ε > 0 defined by

ε = Prob[ A(N) | N  and 1 < A(N) < N] where the input to A is defined in Def
8.5.

Let IG be an instance generator that on input 1k runs in time polynomial in k 
and outputs
(i) a 2k-bit modulus N = pq where p and q are two distinct uniformly
random primes each is k bits long
(ii) e ∈ Z*

(p-1)(q-1)
We say that IG satisfies the IF assumption if there is no IF problem solver for 

IG(1k) with advantage ε > 0  non-negligible in k for all sufficiently large k.



8

An Attack on the Text-book RSA

Recall: Multiplicative property of the RSA
Attack: Malice sees c and knows that m < 2t. With

non-negligible probability there exist m1 and m2
such that m = m1· m2, where m1 < 2 t/2.

Hence c = m1
e · m2

e (mod N).
Malice builds a list {1e,2e,3e,…,(2t/2)e}
And searches through the sorted list trying to find

i and j ∈{1,2,3,…, 2t/2} such that
c ·(ie)-1 ≡ je (mod N)

Cost
Space cost: 2t/2 · log N bits

Time cost: 
• creating lists OB(2t/2 · log3N)
• sorting the list OB(t/2 · 2t/2 )
• searching through the sorted list OB(2t/2 ·(t/2 +log3N))
Total time cost: OB(2t/2 + 1 ·(t/2 +log3N) )

If the space cost is affordable then the attack achieves square root
level reduction in time complexity.

Real life instantiation: m = DES-key, t =64, space 242 bits, time 244.
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Insecurity of Rabin

CCA, that is, given a decryption oracle, it is 
possible to compute square roots. Given a 
square root oracle, it is possible to factor the 
modulus.

Security of ElGamal encryption
Theorem 8.3 For a plaintext message uniformly distributed in the 

plaintext message space, the ElGamal cryptosystem is “all-or-
nothing” secure against CPA if and only if the CDH is hard. 

Proof: “<=” Assume ElGamal is not “all-or-nothing” secure. Then there
is a decryption oracle, which given public key (p, g, y) and ciphertext
(c1,c2), the oracle outputs

m ← (p,g,y, c1,c2)
with a non-negligible advantage δ such that m satisfies

c2 /m ≡ gt (mod p), where t = logg y logg c1.
Then for an arbitrary CDH problem instance (p,g, g1,g2) we set (p,g, g1)

as the public key and set (g2, c2) as ciphertext pair for a random c2 . 
Then with advantage δ , the ElGamal decryption oracle outputs

m ← (p, g, g1, g2, c2)
with m satisfying 

c2 /m ≡ gab(mod p), where a = logg g1 and b = logg g2

thus solving the CDH problem efficiently.
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Insecurity of ElGamal encryption

From the ciphertext, Malice gets
c2

r = m r

where r is the order of the generator g.
ElGamal encryption is multiplicative. Hence the same

attack as with the RSA applies. The time complexity of 
the attack is about 2r/2 .


