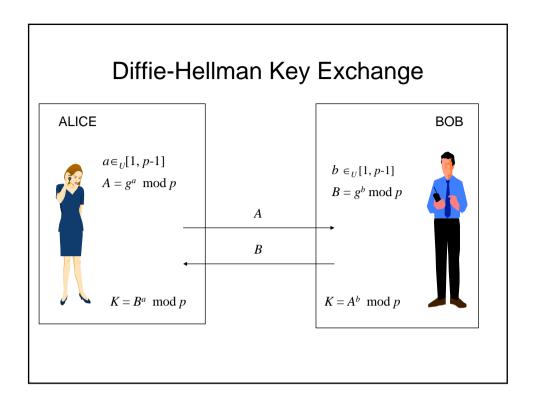
T-79.5502 Advanced Course in Cryptology

Lecture 3, March 23, 2006 Insecurity of textbook crypto (Chapter 8)

- -Weak security notion
- -The CDH and DL Problems and Assumptions
- -Cryptanlytic attacks against Public Key cryptosystems
- -RSA Problem and Assumption
- -IF Problem and Assumption
- -Active attack on textbook RSA and ElGamal encryption
- -Insecurity of Rabin encryption

Weak Security Notion (Property 8.2)

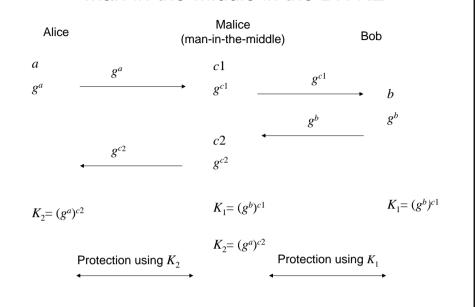
- (i) All-or-nothing secrecy: For a given ciphertext output from a given encryption algorithm, the attacker's task is to retrieve thewhole plaintext block; or for a given plaintext-ciphertext pair the attacker's task is to uncover the secret key. The attacker either succeeds to get all of the secret or fails with nothing.
- (i) The attacker does not manipulate or modify ciphertexts, and does notask a key owner to provide encryption or decryption services.



Security of Diffie-Hellman Key Exchange

- If the Discrete Logarithm Problem (DL) is easy then DH KE is insecure
- Computational Diffie-Hellman Problem (CDH): Given g,g^a,g^b , compute g^{ab} .
- It seems that in groups where the CDH is easy, also the DL is easy.
 It is unknown if this holds in general (Maurer-Wolf).
- · DH KE is secure against passive wiretapping.
- DH KE is insecure under the active man-in-the-middle attack: Man-in-the-Middle exchanges a secret key with Alice, and another with Bob, while Alice believes that she is talking confidentially to Bob, and Bob believes he is talking confidentially to Alice (see next slide).
- This problem is solved by authenticating the Diffie-Hellman key exchange messages.

Man-in-the-Middle in the DH KE



CDH and DL Problems (in a finite group)

Definition 8.1 CDH Problem

INPUT desc(G): the description of finite group G

 $g \in G$: a generator element of g

 g^{a} , $g^{b} \in G$ for some integers 0 < a,b < ord(G)

OUTPUT g^{ab}

Definition 8.2: DL Problem

INPUT desc(G): the description of finite group G

 $g \in G$: a generator element of g

 $h \in_{\mathsf{U}} G$

OUTPUT the unique integer $a < \operatorname{ord}(G)$ such that $h = g^a$

(denote $a = \log_g h$)

CDH Assumption (in a finite group)

Assumption 8.1 CDH Assumption

- A CDH problem solver is a \mathcal{PP} algorithm \mathcal{A} with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[g^{ab} \leftarrow \mathcal{A}(\operatorname{desc}(G), g, g^a, g^b)]$ where the input to \mathcal{A} is given in Def 8.1.
- Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs
 - (i) $\operatorname{desc}(G)$ with $\operatorname{ord}(G) = q$, where |q| = k,
 - (ii) a generator element $g \in G$.
- We say that IG satisfies the Computational Diffie-Hellman (CDH) assumption if there is no CDH problem solver for $IG(1^k)$ with advantage $\varepsilon > 0$ non-negligible in k for all sufficiently large k.

The difficulty of the CDH problem means that Diffie-Hellman KE is secure (the key remains secret) under passive attacks.

Recall: Non-Polynomial Bounds

- Definition 4.12. A function f(n): $\mathbb{N} \to \mathbb{R}$ is said to be unbounded by any polynomial in n (or, non-polynomially bounded quantity) if for any polynomial p(n) there exists a natural number n_0 such that f(n) > p(n), for all $n > n_0$.
- Definition 4.13. A function $\varepsilon(n)$: $\mathbf{N} \to \mathbf{R}$ is said to be a negligible in n if its inverse $1/\varepsilon(n)$ is a non-polynomially bounded quantity.
- Hence a function $\varepsilon(n)$: $\mathbf{N} \to \mathbf{R}$ is said to be a non-negligible in n if its inverse $1/\varepsilon(n)$ is a polynomially bounded quantity.

DL Assumption (in a finite group)

Assumption 8.1 DL Assumption

- A DL problem solver is a \mathcal{PP} algorithm \mathcal{A} with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[\log_g h \leftarrow \mathcal{A}(\operatorname{desc}(G), g, h)]$ where the input to \mathcal{A} is defined in Def 8.2.
- Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs
 - (i) $\operatorname{desc}(G)$ with $\operatorname{ord}(G) = q$, where |q| = k,
 - (ii) a generator element $g \in G$,
 - (iii) $h \in G$.
- We say that IG satisfies the Discrete logarithm (DL) assumption if there is no DL problem solver for $IG(1^k)$ with advantage $\varepsilon > 0$ nonnegligible in k for all sufficiently large k.
- If DL Assumption holds then the function $x \to g^x$ is one way. It is not known if it is a trap-door one-way function.

Trapdoor One-way Function

Property 8.1:

A one-way trapdoor function ia a one-way function $f_t : D \to R$, i.e., it is easy to evaluate for all $x \in D$ and difficult to invert for almost all values in R. Hwever if the trapdoor information is used, then for all values $y \in R$ it is easy to compute $x \in D$ satisfying $y = f_t(x)$.

easy = there is an efficient (PP) algorithm difficult = there is no efficient algorithm

Importance of Arbitrary Instances for Intractability Assumptions

For example: If the order q of the group G is a smooth number, i.e.,

$$q = q_1^{e_1} q_2^{e_2} \dots q_m^{e_m}$$

then we can find the discrete logarithm efficiently using the Pohlig-Hellman algorithm. Actually, we solve the discrete logarithm problem separately in each small group of order q_i^{ei} generated by g^{ri} where

$$ri = q/q_i^{ei}$$

(Recall the structure of a finite cyclic group. Example: If g is a generator of \mathbf{Z}^*_{19} , g is of order $18=2\cdot 3^2$, then $g1=g^2$ is a generator of a cyclic subgroup of order 9 and $g2=g^9$ is a generator of cyclic subgroup of order 2 in \mathbf{Z}^*_{19} . For each $h\in\mathbf{Z}^*_{19}$ the discrete logarithm $a=\log_g h$ can be found by computing $a1=\log_{g1}h^2=2a \mod 9$ and $a2=\log_{g2}h^9=9a \mod 2$ and combining the results using the Chinese Remainder Theorem)

Cryptanalysis against PK cryptosystems: Active Attacks

Chosen-plaintex attack (CPA): An attacker has the encryption black box in its possession.

Chosen-ciphertext attack (CCA): An attacker can give a finite number of ciphertexts (excl. the target ciphertext) and see the corresponding decryptions.

Adaptive chosen-ciphertext attack (CCA2): An attacker has the decryption black box in its possession, and can input chosen ciphertexts (excl. the target one) and obtain the decryptions, one at a time.

The RSA Problem and Assumption

Definition 8.4 RSA Problem

INPUT N = pq with p, q prime numbers e: an integer such that $\gcd(e, \phi(N)) = 1$ $c \in \mathbf{Z}_N^*$

OUTPUT the unique integer $m \in \mathbf{Z}_N^*$ such that $m^e \equiv c \pmod{N}$

Assumption 8.3 RSA Assumption

An RSA problem solver is a \mathcal{PP} algorithm A with an advantage $\varepsilon > 0$ defined by $\varepsilon = \text{Prob}[m \leftarrow A(N, e, m^{\varepsilon})]$ where the input to A is defined in Def 8.4.

Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs

(i) a 2k-bit modulus N=pq where p and q are two distinct uniformly random primes each is k bits long

(ii) $e \in \mathbf{Z}^*_{(p-1)(q-1)}$

We say that IG satisfies the RSA assumption if there is no RSA problem solver for $IG(1^k)$ with advantage $\varepsilon > 0$ non-negligible in k for all sufficiently large k.

The Integer Factorization Problem and Assumption

Definition 8.5 IF Problem

INPUT N odd composite integer with at least two distinct prime

factors

OUTPUT prime p such that p / N

Assumption 8.4 IF Assumption

An IF problem solver is a \mathcal{PP} algorithm \mathcal{A} with an advantage $\varepsilon > 0$ defined by $\varepsilon = \operatorname{Prob}[\ \mathcal{A}(N) \mid N \ \text{and} \ 1 < \mathcal{A}(N) < N]$ where the input to \mathcal{A} is defined in Def 8.5.

Let IG be an instance generator that on input 1^k runs in time polynomial in k and outputs

(i) a 2k-bit modulus N=pq where p and q are two distinct uniformly random primes each is k bits long

(ii) $e \in \mathbf{Z}^*_{(p-1)(q-1)}$

We say that IG satisfies the IF assumption if there is no IF problem solver for $IG(1^k)$ with advantage $\varepsilon > 0$ non-negligible in k for all sufficiently large k.

An Attack on the Text-book RSA

Recall: Multiplicative property of the RSA

Attack: Malice sees c and knows that $m < 2^t$. With non-negligible probability there exist m_1 and m_2 such that $m = m_1 \cdot m_2$, where $m_1 < 2^{t/2}$.

Hence $c = m_1^e \cdot m_2^e \pmod{N}$.

Malice builds a list $\{1^{e}, 2^{e}, 3^{e}, ..., (2^{t/2})^{e}\}$

And searches through the sorted list trying to find i and $j \in \{1,2,3,...,2^{t/2}\}$ such that

$$c \cdot (i^e)^{-1} \equiv i^e \pmod{N}$$

Cost

Space cost: $2^{t/2} \cdot \log N$ bits

Time cost:

- creating lists $\mathcal{O}_{\mathsf{B}}(2^{t/2} \cdot \log^3 N)$
- sorting the list $\mathcal{O}_{\mathsf{B}}(t/2 \cdot 2^{t/2})$
- searching through the sorted list $\mathcal{O}_{\mathsf{B}}(2^{t/2} \cdot (t/2 + \log^3 N))$

Total time cost: $\mathcal{O}_{\mathsf{B}}(2^{t/2+1}\cdot(t/2+\log^3 N))$

If the space cost is affordable then the attack achieves square root level reduction in time complexity.

Real life instantiation: m = DES-key, t = 64, space 2^{42} bits, time 2^{44} .

Insecurity of Rabin

CCA, that is, given a decryption oracle, it is possible to compute square roots. Given a square root oracle, it is possible to factor the modulus.

Security of ElGamal encryption

Theorem 8.3 For a plaintext message uniformly distributed in the plaintext message space, the ElGamal cryptosystem is "all-ornothing" secure against CPA if and only if the CDH is hard.

Proof: "<=" Assume ElGamal is not "all-or-nothing" secure. Then there is a decryption oracle, which given public key (p, g, y) and ciphertext (c_1, c_2) , the oracle outputs

$$m \leftarrow (p,g,y,c_1,c_2)$$

with a non-negligible advantage δ such that m satisfies

$$c_2/m \equiv g^t \pmod{p}$$
, where $t = \log_g y \log_g c_1$.

Then for an arbitrary CDH problem instance $(p,g,\,g_1,g_2)$ we set $(p,g,\,g_1)$ as the public key and set $(g_2,\,c_2)$ as ciphertext pair for a random $\,c_2$.

Then with advantage δ , the ElGamal decryption oracle outputs

$$m \leftarrow (p, g, g_1, g_2, c_2)$$

with m satisfying

 $c_2/m \equiv g^{ab} \pmod{p}$, where $a = \log_g g_1$ and $b = \log_g g_2$

thus solving the CDH problem efficiently.

Insecurity of ElGamal encryption

From the ciphertext, Malice gets

$$c_2^r = m^r$$

where r is the order of the generator g.

ElGamal encryption is multiplicative. Hence the same attack as with the RSA applies. The time complexity of the attack is about $2^{r/2}$.