
Differential Cryptanalysis and
Boolean Functions

T-79.5501 Cryptology
Lecture 6

March 4, 2008

Kaisa Nyberg

Differential Cryptanalysis and Boolean Functions – 1/35



Differential Cryptanalysis

Differential Cryptanalysis and Boolean Functions – 2/35



Differential Cryptanalysis

Presented by E. Biham and A. Shamir in 1989.

A chosen plaintext attack on block ciphers.

A difference in the plaintext is transferred over several nonlinear S-boxes to

some output difference on the second last round.

Makes use of differentials with large probabilities. Suppose that

f :

�

0 � 1 �n � �

0 � 1 �m is an S-box. Given a
��� �

0 � 1 �n, a

��	� 0, we set:

ND




a

� � b �� � #

�

x� �
0 � 1 �n �

f



x



a

�� 

f




x

� � b

� �

Differential are chained similarily as linear approximations to form a

differential characteristic. The probability of a characteristic is the product of

the probabilities of the differentials it consists of.
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The Table ND of the S-box πS
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Possible Output Differences b

�

for a

�

� B � 1011

x x

�

a

�

y y � b

�

0000 1011 1110 1100 0010

0001 1010 0100 0110 0010

0010 1001 1101 1010 0111

0011 1000 0001 0011 0010

0100 1111 0010 0111 0101

0101 1110 1111 0000 1111

0110 1101 1011 1001 0010

0111 1100 1000 0101 1101

1000 0011 0011 0001 0010

1001 0010 1010 1101 0111

1010 0001 0110 0100 0010

1011 0000 1100 1110 0010

1100 0111 0101 1000 1101

1101 0110 1001 1011 0010

1110 0101 0000 1111 1111

1111 0100 0111 0010 0101

πS
�

x

�

1011

� � πS

�

x

�

takes

only on 5 different values b

�

.

One of them, b

�

	 0010 has

probability 1
2 .
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Iterative and Impossible Characteristic

An iterative characteristic (resp. linear approximations) is such

that its input difference (resp. linear combination at input) is

equal to the output difference (resp. linear combination at the

output). This property makes it possible to use them repeatedly

in an iterated block cipher such as SPN (AES) or Feistel

Network (DES).

An impossible characteristic is an efficient tool for Feistel

networks with bijective round function. If some candidate key

leads to a situation which is known to never happen, then such

a candidate is wrong.
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Iterative Characteristics for Feistel Network

� � � �

� � �

� � �

� �

� �

� �

�� �� �� �	 
�� � � � � � �� �� �� �� � � � � � � �� � � � �� � �� � � � � �	 �� � � � � � �� �� �� �� � � � � � � �� � � ��  �

�
�

�

�
�
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Impossible Differential Characteristic

��

� �

� �� � � � � 	 � 
 �

�

�

�

���������������

��

�

�

�

�

�
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Boolean Algebras and Rings
Background information
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Boolean Algebra – Example

Example 1. For a set E, we denote by P

�

E

�

the set algebra of

E, that is,

P

�

E

� 	 �

x

�

x � E

�
�

For x � y � P

�

E

�

, let us define

addition x

�

y the union of x and y

with neutral element 0 the empty set

multiplication xy the intersection of x and y

with neutral element 1 the entire set E
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Boolean Algebra – Operations

P




E

�

equipped with these operations has the following properties:

(i) Addition is commutative and associative, and x

�

0� x, 1
�

x� 1, for

all x� P




E

�

.

(ii) Multiplication is commutative and associative and 1x� x, x0� 0, for all

x� P




E

�

.

(iii) The distributive law: x




y

�

z

� � xy

�

xz, for all x � y � z� P




E

�

.

(iv) Each x� P




E

�

has a unique complement x

�� P




E

�

such that

x

�

x

� � 1 and xx

�� 0.

Definition 1.Boolean algebra is a set B� �

0 � 1 � x � y �� � �

�

with three

operations:

addition x � y � � x �

y

multiplication x � y � � xy

complementation x � � x �

with the properties (i) - (iv)

listed above.
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Finite Boolean Rings

Let B be a Boolean algebra. As defined above, there is no inverse with

respect to addition. Define a new addition, the exclusive-or addition or

xor-addition

x



y� xy

� �

x

�

y � for x � y� B�
Fact 1. xor-addition satisfies properties (i) - (iv), except that, instead of

1

�

x� 1, we have 1



x� x

�

.

Fact 2. xor-addition has neutral element 0 and inverses. Indeed, each x� B

is its own inverse, since x



x� xx
� �

xx
�� 0

�

0� 0.

Let B be a Boolean algebra. Then B with xor-addition and its

algebra-multiplication is a ring with unit 1.

Definition 2. Boolean ring is a ring with the property that xx� x for all

elements x.
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An Example and Boolean Polynomials

Example 2. E � �

a

�

a set of one element. Then P




E

� � �

0 � 1 � � ZZ2.

Equipped with multiplication and or-addition (1+1 = 1), P



E

�
is a Boolean

algebra. Equipped with multiplication and xor-addition (1


1� 0), P




E

�

is a

Boolean ring.

Definition Let B be a Boolean algebra. A Boolean polynomial in B is a

string which results from a finite number of Boolean operations on a finite

number of elements in B.
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Representations of Boolean Polynomials

Example 3. Boolean polynomials can be represented in different equivalent

ways. Polynomials x

�

yz and




x

�

y

� 


x

�

z

�

are two different representations

of the same polynomial. Similarily, x




y

�

z

�

is the same as xy

�

xz

(distributivity law).

Boolean algebra has a partial ordering defined as follows:

x

�

y � xy� y�

As usual, we denote x � y in case x
�

y and x

�	� y. An element x� B is said

to be a minimal element or atom, if 0 � x and there is no y� B such that

0 � y � x. Similarily, x� B is said to be a maximal element, if x � 1, and

there is no y� B such that x � y � 1. Clearly, complements of atoms are

maximal elements and vice versa.
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Disjunctive and Conjunctive Normal Forms

Assume now that the Boolean algebra B is finite. Then for any given x� B

the set of atoms contained by x is uniquely determined, and moreover, x has

a unique representation as a sum of the atoms contained by x. Such a

representation is called the disjunctive normal form.

Similarily, any given x� B has a unique representation as the product of the

maximal elements that are larger than or equal to x. This representation is

the conjunctive normal form.
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Algebraic Normal Form

Let B be a Boolean algebra, and consider the associated Boolean ring.

Then

�

n B

�

x1 � x2 �� � � � xn

�

is the set of all finite multivariate polynomials over

B. Such a polynomial has a unique representation as an xor-sum of

monomials of the form:

J � �

1 � 2 �� � � � n

�

aJ ∏
j � J

x j

where aJ

� B are uniquely determined. This representation is called the

algebraic normal form.

Consider the Boolean algebra B� ZZ2
� �

0 � 1 �

. The the algebraic normal

form of a Boolean polynomial of n indeterminates x1 �� � � � xn over B� ZZ2 is

g




x1 �� � � � xn

� � a0


a1x1


� � �



anxn



a12x1x2


� � �

� � �


a 	

n 
 1

�

nxn 
 1xn



a123x1x2x3


� � �



a12� � � nx1x2

� � � xn�

with coefficients ai1 �� � � � ik

� B� ZZ2.
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Boolean Functions
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Algebraic Normal Form Algorithm

Let us now consider a function f : ZZn
2

� ZZ2. Such a function is called a

Boolean function of n variables. We can always associate with it a Boolean

polynomial by deriving an algebraic normal form representation using the

following algorithm:

ANF Algorithm.

1. Set g




x1 �� � � � xn

� � f




0 � 0 �� � � � 0

�

2. For k� 1 to 2n � 1, do

3. compute the binary representation of the integer k,

k� b1
�

b22

�

b322 � � � � �

bn2n 
 1

4. if g




b1 � b2 �� � � � bn
� �	� f



b1 � b2 �� � � � bn

�

then

set g




x1 �� � � � xn

� � g




x1 �� � � � xn

� 

∏n
i � 1




xi

� bi

5. ANF




f

� � g



x1 �� � � � xn

�
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Algebraic Normal Form Algorithm – Example

Example 4.

x1 x2 x3 f

�

x1 � x2 � x3

�

k g

�

x1 � x2 � x3

�
0 0 0 0 0

1 0 0 0 1 0

0 1 0 1 2 x2

1 1 0 0 3 x2

�

x1x2

0 0 1 1 4 x2

�

x1x2

�

x3

1 0 1 1 5 x2

�

x1x2

�

x3

0 1 1 0 6 x2

�

x1x2

�

x3

1 1 1 1 7 x2

�

x1x2

�

x3

Differential Cryptanalysis and Boolean Functions – 19/35



Hamming Weight and Hamming Distance

Let x� 


x1 �� � � � xm

� �

ZZm
2 . The Hamming weight of x is defined as

HW




x

� � � �

i� �

1 � 2 �� � � � m � �

xi

� 1

� �
�

For two vectors x� 


x1 �� � � � xm

� �

ZZm
2 and y� 


y1 �� � � � ym

� �
ZZm

2 the

Hamming distance is defined as

dH




x � y� � HW




x



y

� � � �
i� �

1 � 2 �� � � � m � �

xi

�	� yi

� �
�

Given two Boolean functions f : ZZn
2

� ZZ2 and g : ZZn
2

� ZZ2 the Hamming

weight of f is defined as

HW



f
� � � �

x� ZZn
2

�

f




x

� � 1

� � �

and the Hamming distance between f and g is

dH




f � g� � � �

x� ZZn
2

�

f




x

� �	� g




x

� � �
�
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Balanced Boolean Functions

A Boolean function f : ZZn
2

� ZZ2 is balanced if HW




f

� � 2n 
 1, which

happens if and only if

� �

x� ZZn
2

�

f




x

� � 1

� � � � �

x� ZZn
2

�

f



x

� � 0

� �
�

Example 5. Let f00 : ZZ4
2

� ZZ2 be the Boolean function defined as the first

outputbit of the s-box S1 of the DES, when the first and the last (sixth) input

bits are set equal to zero. Then f00 has the following values

f00

� 


1 � 0 � 1 � 0 � 0 � 1 � 1 � 1 � 0 � 1 � 0 � 1 � 0 � 1 � 0 � 0�

arranged in the lexicographical order with respect to the input




x2 � x3 � x4 � x5

�

.

Clearly, f00 is balanced, that is, HW




f00

� � 8. Further we see that

dH



f00 � s5

� � 6 � and dH




f00 � s2

� � 10 �

where we have denoted by si the ith input bit to S1 as a Boolean function of

the four middle input bits. That is, si




x2 x3 x4 x5

�

xi for i 2 3 4 5
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Correlation and Linear Functions

Let f : ZZn
2

� ZZ2 and g : ZZn
2

� ZZ2 be two Boolean functions. The correlation

between f and g is defined as

c




f � g� � 2


 n 
 � �

x� ZZn
2

�

f




x

� � g




x

� � �
�

� �

x� ZZn
2

�
f



x

� �	� g




x

� � � �

� 2


 n 


2n � 2

� �

x� ZZn
2

�

f




x

� �	� g



x

� � � � � 1 � 21 
 ndH




f � g�
�

A Boolean function f : ZZn
2

� ZZ2 is linear if it has an ANF of the form

f




x

� � a � x� a1x1


a2x2

 � � � 

anxn

for some a� 


a1 � a2 �� � � � an

� �
ZZn

2. Then f is just a linear combination of its

input bits. In such a case we denote f � La. A Boolean function is affine if it

has an ANF of the form f



x
� � a � x



1.
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Nonlinearity of Boolean Functions

Nonlinearity of a Boolean function f : ZZn
2

� ZZ2 is defined as its minimum

distance from the set consisting all affine and linear Boolean functions

N




f

� � minL linear

�

min

�

dH




f � L� � dH



f � L 

1

� � �
�

Example 5(continued)

From dH




f00 � s5

� � 6 and dH




f00 � s2

� � 10, it follows that the nonlinearity of

f is at most 6. Further we see that

c




f00 � s5

� � 1 �

1
8

� 6� 1
4

� and

c




f00 � s2
� � 1 �

10
8

� �

1
4

�
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Walsh-Hadamard Transform

Recall the definition of Walsh-Hadamard Transform: Given an

integer-valued function f : ZZn
2

� ZZ the Walsh-Hadamard transform is

defined as

F




w

� � ∑
x

� ZZn
2

f




x

� 

� 1

� w � x � w�

ZZn
2 �

where the sum is taken over integers.

The Walsh-Hadamard Transform is its own inverse upto a constant multiplier.

Given the Walsh-Hadamard transform F




w

�

, w�

ZZn
2, of an integer valued

function f we can compute the values of f as

f




x

� � 2

 n ∑

w

� ZZn
2

F




w

� 

� 1

� w � x , for all x� ZZn
2�
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Fast Computation of Walsh-Hadamard Transform

A fast algorithm for calculating the Walsh-Hadamard transform is depicted

on the next slide. It takes n layers of 2n 
 1 parallel “2-DFT" operations

followed by “decimation by 2". This is a permutation, which skips every

second entry in the row, and after that takes the skipped elements without

changing their order. If the number N of the entries is even, the permutation

goes as follows:




1 � 2 � 3 � 4 � 5 �� � � � N � 1 � N� � 

1 � 3 � 5 �� � � � N � 1 � 2 � 4 �� � � � N�

�

The [2-DFT] operation is the Discrete Fourier Transform of two inputs,

defined as follows: [2-DFT]



m � n� � 


m

�

n � m � n

�

, for integers m and n.

Hence it takes n2n additions and subtractions to compute the

Walsh-Hadamard Transform for a function of n Boolean variables.
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Computation of the Walsh-Hadamard Transform

� � �
�

� � � � � �
�

�� � � � �
�

� � � � ��
�

� � �

��� 	
 � �� 	
 � ��� 	
 �

�� 	
 � �� 	
 � �� 	
 �

�� 	
 � �� 	
 � �� 	 
 �

� ��
�

� � �

�� �� � �

�� �� � �

�� �� ��

	 � � � �  � ��� � � � �

	 � � � �  � ��� � � � �

	 � � � �  � ��� � � � �

 � �

�
� � � 
 � �
�

�� � 
 � �
�

� � � 
 � �
�

� � � 
 ��
�

� � � 
 ��
�

� � �
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Two Transforms of Boolean Functions

Given a Boolean function f : ZZn
2

� ZZ2 there are two possible ways of

interpret it as an integer-valued function. The first approach is to take f as it

is, and compute its Walsh-Hadamard transform as above

F




w

� � 2


 n ∑
x

� ZZn
2

f




x

� 

� 1

� w � x , for all w�
ZZn

2�

The second approach is to consider a related

�
� 1 � 1 �

-valued function f̂

defined as follows:

f̂ : ZZn
2

� ZZ � f̂



x

� � 

� 1

� f

	

x

�
�

Applying the Walsh-Hadamard transform on f̂ , we get a transform

F̂ : ZZn
2

� ZZ defined as

F̂




w

� � ∑
x � ZZn

2

f̂




x

� 

� 1

� w � x� ∑
x � ZZn

2



� 1

� f

	

x

� �

w � x , w�

ZZn
2�
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The Walsh Transform

The latter transform F̂ is called the Walsh transform of the Boolean function

f . There exists an easy conversion rule from Walsh-Hadamard Transform to

Walsh Transform:

F̂




w

� � � 2F




w

� �

2n � δ




w

� �
where δ is the Kronecker symbol:

δ




0

� � 1 �
δ




w

� � 0 � for w

�	� 0�

Hence, the Walsh transform of a Boolean function can be computed by

computing first its Walsh-Hadamard Transform and then converting it to the

Walsh Transform.
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Correlation and the Walsh Transform

Next we show that given a Boolean function its correlations with all linear

functions can be computed simultaneously using the Walsh Transform. This

is due to the fact that there is a close connection between the Walsh

Transform and the correlations between f and linear functions. Indeed

F̂




w

� � � �

x� ZZn
2

�

f




x

� 

w � x� 0

� �
�

� �
x� ZZn

2

�

f




x

� 

w � x� 1

� �

� 2n � c




f � Lw

�

where we used the notation for a linear function Lw : Lw




x

� � w � x.

The values of the Walsh Transform are called the spectral coefficients, which

are up to a constant, the same as the correlation coefficients between f and

the linear functions.
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Parseval’s Theorem

The next theorem states that linear approximations with

non-zero correlation cannot be avoided. Every Boolean function

contains some nonzero terms in its Walsh spectrum F̂

�

w

�

,

w �

ZZn
2.

Theorem 1. Parseval’s Theorem Let f : ZZn
2

� ZZ2 be a

Boolean function. Then

∑
w � ZZn

2

c
�

f � Lw

� 2 	 1 ,

or what is the same,

∑
w � ZZn

2

F̂

�

w

� 2 	 22n�
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Parseval’s Theorem – Proof

∑
w

� ZZn
2

F̂




w

� 2 � ∑
w

� ZZn
2

F̂




w

�

F̂




w

�

� ∑
w � ZZn

2




∑
x � ZZn

2



� 1

� f

	

x

� �

w � x� �



∑
y � ZZn

2



� 1

� f

	

y

� �

w � y�

� ∑
x � y

� ZZn
2



� 1

� f

	

x

� �

f

	

y

�

∑
w

� ZZn
2



� 1

� 	

x

�

y

�
� w�

� 2n ∑
x � ZZn

2



� 1

� f

	

x

� �
f

	
x

� � 22n �

where we used the following property for u� x



y

∑
w � ZZn

2



� 1

� u � w�
�

�
�

2n � for u� 0

0 � for u

�	� 0
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Example.

Example 6. The standard hash-function SHA-1 makes use of the following

two functions for combining three 32-bit blocks Xi, i� 0 � 1 � 2.

G




X0 � X1 � X2

� � 


X0

�

X1

� � 
�� X0

�

X2
�
T




X0 � X1 � X2

� � 


X0

�

X1

� � 


X0
�

X2
� � 


X1

�

X2

�

where

�

bitwise “and" multiplication

�

bitwise “or" addition

� bitwise complementation

The bitwise operations are the Boolean algebra operations. Let us now

consider one bit component of G, and denote it by g. Using the Boolean

algebra notation we have

g




x0 � x1 � x2

� � x0x1

�

x

�

0x2�
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The Normal Forms of g

The disjunctive normal form of g is

g




x0 � x1 � x2

� � x

�

0x

�

1x2

�

x

�

0x1x2

�

x0x1x

�

2

�

x0x1x2�

To determine the ANF of g we have two possibilities: either

a) by direct algebraic manipulation,or

b) make the value table of g and use the ANF algorithm.

The representation of g in its ANF form is

g




x0 � x1 � x2
� � x0x1



x0x2



x2�

We calculate the distance between g and the linear function x2, and get

dH




g � x2

� � HW




g



x2

� � 2 and c




g � x2

� � 1 �

1
4

� 2� 1
2

�

Differential Cryptanalysis and Boolean Functions – 33/35



Correlations of g

The correlations between g and the linear functions are calculated using the

Walsh Transform:

000 001 010 011 100 101 110 111

f : 0 1 0 1 0 0 1 1

1 -1 1 -1 0 0 2 0

1 1 0 2 -1 -1 0 0

2 0 2 -2 -2 0 0 0

2 2 -2 0 0 -2 0 0

4 0 -2 -2 -2 2 0 0

F : 4 -2 -2 0 0 -2 2 0

F̂ : 0 4 4 0 0 4 -4 0
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Differential Properties of Boolean Functions

The differential properties of f : ZZn
2

� ZZm
2 can be investigated by the

difference distribution table DDT, also denoted by ND




a

� � b ��
. The DDT is a


2n � 1

�
� 2m table, where the input difference indicates the row and the

output difference indicates the column of the table. The entry in the row

labeled by a�

ZZn
2, a

�	� 0, and in the column labeled by b�
ZZm

2 is denoted by

δ




a � b�

and it is defined as

δ




a � b� � #

�

x� ZZn
2

�
f



x

� 
f



x



a

� � b

�
�

These values can be calculated as

δ




a � b� � 2



	

m
�

n
�

∑
	

c � w

� � ZZm

�

n
2

F̂c




w

� 2 

� 1

� 	

w � c

�
�

	

a � b

�
�

where F̂c the Walsh Transform of the Boolean function

c � f � c1 f1
 � � � 

cm fm.
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Perfect and Almost Perfect Nonlinear Functions

Typically the entries in the DDT vary a lot, and such non-uniformity can be

exploited in differential cryptanalysis.

There exist S-boxes for which all values of δ




a � b�

, a

�	� 0 are equal. Such

functions are called perfect nonlinear, and they exist if and only if the number

of input bits is even and, moreover, at least twice as large as the number of

output bits.

The S-boxes of the AES block cipher are almost perfect nonlinear, that is,

δ




a � b� � 2 or δ




a � b� � 0, for all a

�	� 0 and b.
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