Linear Cryptanalysis T-79.5501 Cryptology Lecture 5 February 26, 2008

Kaisa Nyberg

SPN – A Small Example

Linear Cryptanalysis - 2/36

Linear Approximation of S-boxes

S-boxes

S-box is a function $f : \{0,1\}^n \to \{0,1\}^m$, where *m* and *n* are (small) integers.

Example. The S-box S_4 of the DES

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

DES S-box S_4 **First Row**

7 13	14 3	0 6	9 10	1 2	8 5 11	12 4 15
X	x y		x x	У	$x_1 \oplus y_3$	
0000	0111	1	1000	0001	1	
0001	1101	0	1001	0010	0	
0010	1110	1	1010	1000	1	
0011	0011	1	1011	0101	1	
0100	0000	0	1100	1011	0	
0101	0110	1	1101	1100	1	
0110	1001	0	1110	0100	1	
0111	1010	1	1111	1111	0	

The S-box π_S

Z	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
$\pi_S(z)$	E	4	D	1	2	F	В	8	3	А	6	С	5	9	0	7

Xi	\mathbf{X}_2	Xa	\mathbf{X}_{4}	Y1	Y ₂	Ya	Y_4
0	0	0	0	1	1	1	0
0	0	0	1	0	L.	0	0
0	0	1	0	1	1	0	1
0	0	1	1	0	0	0	$ 1\rangle$
0	1	0	0	0	0	1	0
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
0	1	1	1	1	0	0	0
1	0	0	0	0	0	1	1
1	0	0	1	1	0	1	0
1	0	11	0	0	1	1	0
1	0	11	11	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	0	0	1
1	1	1	0	0	0	0	0
1	1	1	1	0	1	1	1

Linearity of S-box

Definition Suppose $f : \{0,1\}^n \to \{0,1\}^m$ is an S-box and $a = (a_1, \dots, a_n) \in \{0,1\}^n$ and $b = (b_1, \dots, b_n) \in \{0,1\}^m$. We use $N_L(a,b)$ to denote the number of $x \in \{0,1\}^n$ such that f(x) = y and

$$a_1x_1 \oplus a_2x_2 \oplus \ldots \oplus a_nx_n = b_1y_1 \oplus b_2y_2 \oplus \ldots \oplus b_ny_n.$$

or using the short notation

$$a \cdot x \oplus b \cdot y = 0.$$

Remark. Then the bias of the random variable $a \cdot \mathbf{X} \oplus b \cdot \mathbf{Y}$ is equal to $2^{-n}N_L(a,b) - \frac{1}{2}$ (to be defined soon).

The Linear Approximation Table $N_L(a,b)$

								3	6							1.1
a,	0	1	2	з	4	6	6	7	8	. 9		8	c	D	E	P
0	16	8	8	8	8	8	8	8	8	8	8	8	8	8	В	8
1	8	8	6	6	8	8	4	14	10	10	8	8	10	10	8	8
2	8	8	6	6	8	8	6	- 6	6	. 8	10	10	8	8	2	10
3	8	8	8	8	8	8	8	8	10	2	6	6	10	10	6	6
4	8	10	8	6	6	4	6	8	8	6	8	10	10	4	10	8
5	8	6	6	8	6	8	12	10	6	8	4	10	8	6	6	8
6	8	10	6	12	10	8	8	10	8	6	10	12	6	8		6
7	8	6	8	10	10	4	10	. 8	6	8	10	B	12	10	8	10
8	- 8	8	8	8	8	8	8	. 8	6	10	10	6	10	6	8	2
9	8	8	6	6	8	8	6	6	4	8	6	10	8	12	10	6
A.	8	12	- 6	10	4	8	10	6	10	10	8	8	10	10	8	8
8	8	12	8	4	12	8	12	8	8	8	8	. 8	8	. 8	8	8
C	8	6	12	8	¢	6	10	8	10	8	10	12	8	10	8	6
0	8	10	10	8	6	12	8	10	4	6	10	8	10	8	8	10
E.	. 8	10	10	8	6	4	8	10	6	8	8	6	4	10	8	8
F.		6	4	6	6	8	10	8	8	6	12	6	6	8	10	8

FIGURE 3.2 Linear approximation table: values of $N_L(a, b)$

Piling-Up Lemma

Definition Suppose that **T** is a discrete random variable that takes values from $\{0, 1\}$. Then the quantity

$$\boldsymbol{\varepsilon} = \mathbf{Pr}[\mathbf{T} = 0] - \frac{1}{2}$$

is called the bias of **T**.

Lemma 3.1 Suppose $\mathbf{T}_{\mathbf{j}}$ are independent discrete random variables with biases ε_j , j = 1, 2, ..., k. Then the bias ε of $\mathbf{T} = \mathbf{T}_1 \oplus \mathbf{T}_2 \oplus ... \oplus \mathbf{T}_k$ can be calculated as

$$\mathbf{\varepsilon} = 2^{k-1} \mathbf{\varepsilon}_1 \mathbf{\varepsilon}_2 \cdots \mathbf{\varepsilon}_k.$$

Proof of Piling-Up Lemma

■ *Proof.* We will give the proof for k = 2. The general case follows by induction. By independency

$$Pr[T = 0] = Pr[T_1 = 0]Pr[T_2 = 0] + Pr[T_1 = 1]Pr[T_2 = 1]$$

= Pr[T_1 = 0]Pr[T_2 = 0] + (1 - Pr[T_1 = 0])(1 - Pr[T_2 = 0])
= 2Pr[T_1 = 0]Pr[T_2 = 0] - Pr[T_1 = 0] - Pr[T_2 = 0] + 1

From this we get

$$\begin{aligned} &\epsilon = \mathbf{Pr}[\mathbf{T} = 0] - 1/2 \\ &= 2(\mathbf{Pr}[\mathbf{T}_1 = 0]\mathbf{Pr}[\mathbf{T}_2 = 0] - \frac{1}{2}\mathbf{Pr}[\mathbf{T}_1 = 0] - \frac{1}{2}\mathbf{Pr}[\mathbf{T}_2 = 0] + \frac{1}{4}) \\ &= 2(\mathbf{Pr}[\mathbf{T}_1 = 0] - \frac{1}{2})(\mathbf{Pr}[\mathbf{T}_2 = 0] - \frac{1}{2}) = 2\varepsilon_1\varepsilon_2. \end{aligned}$$

Linear Cryptanalysis – 11/36

Piling-Up Lemma and Independence

• Example Let T_1 , T_2 and T_3 be independent random variables with biases $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1/4$. Denote

$$\begin{array}{rcl} \mathbf{T}_{12} &=& \mathbf{T}_1 \oplus \mathbf{T}_2 \text{ with bias } \boldsymbol{\epsilon}_{12} = 2\boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_2 = \frac{1}{8}, \\ \mathbf{T}_{23} &=& \mathbf{T}_2 \oplus \mathbf{T}_3 \text{ with bias } \boldsymbol{\epsilon}_{23} = 2\boldsymbol{\epsilon}_2 \boldsymbol{\epsilon}_3 = \frac{1}{8}, \\ \mathbf{T}_{13} &=& \mathbf{T}_1 \oplus \mathbf{T}_3 \text{ with bias } \boldsymbol{\epsilon}_{13} = 2\boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_3 = \frac{1}{8}. \end{array}$$

Then T_{12} and T_{23} cannot be independent. If they were independent, then by the Piling-Up Lemma the bias of $T_{13} = T_{12} \oplus T_{23}$ would be equal to $2 \cdot \frac{1}{8} \cdot \frac{1}{8} = \frac{1}{32}$ which is not the case.

Converse of the Piling-Up Lemma

- It can be shown that the converse of the Piling-Up Lemma also holds. We state it here for two random variables.
- Converse of the Piling-Up Lemma. Suppose T_1 and T_2 are discrete random variables with biases ε_1 and ε_2 . If the bias ε of $T = T_1 \oplus T_2$ satisfies

$$\varepsilon = 2\varepsilon_1\varepsilon_2,$$

then T_1 and T_2 are independent.

To give the proof we introduce first the Walsh-Hadamard transform.

Walsh-Hadamard Transform

■ **Definition** Suppose $f : \{0,1\}^n \to \mathbb{Z}$ is any integer-valued function of bit strings of length *n*. The Walsh-Hadamard transform transforms *f* to a function $F : \{0,1\}^n \to \mathbb{Z}$ defined as

$$F(w) = \sum_{x \in \{0,1\}^n} f(x)(-1)^{w \cdot x}, w \in \{0,1\}^n,$$

where the sum is taken over integers.

The Walsh-Hadamard Transform can also be inverted. Actually, it is its own inverse upto a constant multiplier (see exercises):

$$f(x) = 2^{-n} \sum_{w \in \{0,1\}^n} F(w) (-1)^{w \cdot x}$$
, for all $x \in \{0,1\}^n$.

Probability Distribution and Bias of (T_1, T_2)

Suppose $\mathbf{Z} = (\mathbf{T}_1, \mathbf{T}_2)$ is a pair of binary random variables, $a = (a_1, a_2)$ be a pair of bits and ε_a be the bias of $a \cdot \mathbf{Z} = a_1 \mathbf{T}_1 \oplus a_2 \mathbf{T}_2$.

Lemma

$$\mathbf{\varepsilon}_{a} = \frac{1}{2} \sum_{(t_{1}, t_{2})} \mathbf{Pr}[\mathbf{Z} = (t_{1}, t_{2})](-1)^{a_{1}t_{1} \oplus a_{2}t_{2}}$$

Proof. Denote $t = (t_1, t_2)$ and $a \cdot t = a_1 t_1 \oplus a_2 t_2$. Then

$$2\varepsilon_a = 2\mathbf{Pr}[a \cdot \mathbf{Z} = 0] - 1 = \mathbf{Pr}[a \cdot \mathbf{Z} = 0] - \mathbf{Pr}[a \cdot \mathbf{Z} = 1]$$
$$= \sum_{t, a \cdot t = 0} \mathbf{Pr}[\mathbf{Z} = t] - \sum_{t, a \cdot t = 1} \mathbf{Pr}[\mathbf{Z} = t] = \sum_t \mathbf{Pr}[\mathbf{Z} = t](-1)^{a \cdot t}.$$

Probability Distribution and Bias of (T_1, T_2)

- Indeed, $\varepsilon_a = F(a)$ is the Walsh-Hadamard transform of $f(t) = \Pr[\mathbf{Z} = t]$.
- Using the inverse Walsh-Hadamard transform we get the following

$$\mathbf{Pr}[\mathbf{Z}=t] = \frac{1}{2} \sum_{(a_1,a_2)} \varepsilon_a(-1)^{a_1 t_1 \oplus a_2 t_2}.$$

Proof of the Converse of the Piling-Up Lemma, k = 2

- **Claim.** If the bias of $T_1 \oplus T_2$ is equal to $2\epsilon_1\epsilon_2$ then T_1 and T_2 are independent.
- Proof. For $a = (a_1, a_2) \in \{0, 1\}^2$, we use ε_a to denote the bias of $a \cdot \mathbf{Z} = a_1 \mathbf{T}_1 \oplus a_2 \mathbf{T}_2$. Then

$$\begin{aligned} \mathbf{Pr}[\mathbf{T}_{1} &= t_{1}, \mathbf{T}_{2} = t_{2}] &= \sum_{a} \varepsilon_{a} (-1)^{a_{1}t_{1} \oplus a_{2}t_{2}} \\ &= \varepsilon_{(0,0)} + \varepsilon_{(1,0)} (-1)^{t_{1}} + \varepsilon_{(0,1)} (-1)^{t_{2}} + \varepsilon_{(1,1)} (-1)^{t_{1} \oplus t_{2}} \\ &= \frac{1}{2} + \varepsilon_{1} (-1)^{t_{1}} + \varepsilon_{2} (-1)^{t_{2}} + 2\varepsilon_{1}\varepsilon_{2} (-1)^{t_{1}} (-1)^{t_{2}} \\ &= (\varepsilon_{1} (-1)^{t_{1}} + \frac{1}{2}) (\varepsilon_{2} (-1)^{t_{2}} + \frac{1}{2}) \\ &= \mathbf{Pr}[\mathbf{T}_{1} = t_{1}]\mathbf{Pr}[\mathbf{T}_{2} = t_{2}] \end{aligned}$$

Linear Attack on the SPN

$$\mathbf{T}_{1} = \mathbf{U}_{5}^{1} \oplus \mathbf{U}_{7}^{1} \oplus \mathbf{U}_{8}^{1} \oplus \mathbf{V}_{6}^{1} \text{ has bias } \frac{1}{4}, \text{ as } N_{L}(B,4) = 12$$

$$\mathbf{T}_{2} = \mathbf{U}_{6}^{2} \oplus \mathbf{V}_{6}^{2} \oplus \mathbf{V}_{8}^{2} \text{ has bias } -\frac{1}{4}, \text{ as } N_{L}(4,5) = 4$$

$$\mathbf{T}_{3} = \mathbf{U}_{6}^{3} \oplus \mathbf{V}_{6}^{3} \oplus \mathbf{V}_{8}^{3} \text{ has bias } -\frac{1}{4}, \text{ as } N_{L}(4,5) = 4$$

$$\mathbf{T}_{4} = \mathbf{U}_{14}^{3} \oplus \mathbf{V}_{14}^{3} \oplus \mathbf{V}_{16}^{3} \text{ has bias } -\frac{1}{4}, \text{ as } N_{L}(4,5) = 4$$

The four random variables have biases that are high in absolute value. By the Piling-Up Lemma we get the linear approximation

$$\mathbf{T} = \mathbf{X}_5 \oplus \mathbf{X}_7 \oplus \mathbf{X}_8 \oplus \mathbf{U}_6^4 \oplus \mathbf{U}_8^4 \oplus \mathbf{U}_{14}^4 \oplus \mathbf{U}_{16}^4$$
 (3.3)
with bias $|2^3(\frac{1}{4})^4| = \frac{1}{32}$ in absolute value.

Linear Cryptanalysis – 19/36

Matsui's Algorithm 2 is based on the following assumption: Wrong Key Assumption. If on the last round a wrong key is used to decrypt the ciphertext then the random variable of the linear approximation is much more uniformly distributed as indicated by the bias.

- In the example of the textbook, if wrong partial keys K_i^5 , i = 5, 6, 7, 8, 13, 14, 15, 16 are used to compute the values of \mathbf{U}_6^4 , \mathbf{U}_8^4 , \mathbf{U}_{14}^4 , and \mathbf{U}_{16}^4 , then the distribution of **T** is almost uniform.
- In this manner, part of the last round key bits can be found. The rest can be found by repeating the attack with a different approximation, or by exhaustive search.
- The required number of plaintext-ciphertext pairs is proportional to the inverse of the squared bias of the linear approximation. In the case of the example the data requirement is about 8000 plaintext-ciphertext pairs obtained using the same key.