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SPN – A Small Example
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Linear Approximation of S-boxes
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S-boxes

S-box is a function f :

�

0 � 1

� n � �

0 � 1

� m, where m and n are (small)

integers.
Example. The S-box S4 of the DES

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
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DES S-box S4 First Row

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

x y x1

�

y3 x y x1

�

y3

0000 0111 1 1000 0001 1

0001 1101 0 1001 0010 0

0010 1110 1 1010 1000 1

0011 0011 1 1011 0101 1

0100 0000 0 1100 1011 0

0101 0110 1 1101 1100 1

0110 1001 0 1110 0100 1

0111 1010 1 1111 1111 0
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The S-box πS

z 0 1 2 3 4 5 6 7 8 9 A B C D E F

πS

�

z

�

E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
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Linearity of S-box

Definition Suppose f :

�

0 � 1

� n � �

0 � 1

� m is an S-box and

a �
�

a1 �� � � � an

� � �

0 � 1

� n and b �
�

b1 �� � � � bn

� � �
0 � 1

� m. We

use NL

�

a � b

�

to denote the number of x � �

0 � 1
� n such that

f

�

x

�

� y and

a1x1

�

a2x2

�
� � �

�

anxn

� b1y1
�

b2y2

�
� � �

�

bnyn�

or using the short notation

a � x
�

b � y � 0�

Remark. Then the bias of the random variable a � X

�

b � Y is

equal to 2

� nNL
�

a � b
�

� 1
2 (to be defined soon).
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The Linear Approximation Table NL

�

a � b

�
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Piling-Up Lemma
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Piling-Up Lemma

Definition Suppose that T is a discrete random variable that

takes values from

�

0 � 1

�

. Then the quantity

ε � Pr

�

T � 0

�

�

1
2

is called the bias of T.

Lemma 3.1 Suppose Tj are independent discrete random

variables with biases ε j, j � 1 � 2 �� � � � k. Then the bias ε of

T � T1

�

T2

�
� � �

�

Tk can be calculated as

ε � 2k � 1ε1ε2

� � � εk�
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Proof of Piling-Up Lemma

Proof. We will give the proof for k � 2. The general case follows

by induction. By independency

Pr

�

T � 0

�

� Pr

�

T1

� 0

�

Pr

�

T2

� 0

� �

Pr
�

T1

� 1

�

Pr

�

T2

� 1

�

� Pr

�

T1

� 0

�

Pr

�

T2

� 0

� � �

1 � Pr
�

T1

� 0

� � �

1 � Pr

�

T2

� 0

� �

� 2Pr

�

T1

� 0

�

Pr

�

T2

� 0

�

� Pr
�

T1

� 0

�

� Pr

�

T2

� 0

� �

1

From this we get

ε � Pr

�

T � 0

�

� 1
�

2

� 2

�

Pr

�

T1

� 0
�

Pr
�

T2

� 0

�

�

1
2

Pr

�

T1

� 0

�

�

1
2

Pr

�

T2

� 0

� � 1
4

�

� 2

�

Pr
�

T1

� 0

�

�

1
2

� �

Pr

�

T2

� 0

�

�

1
2

�

� 2ε1ε2�

Linear Cryptanalysis – 11/36



Piling-Up Lemma and Independence

Example Let T1, T2 and T3 be independent random variables

with biases ε1

� ε2

� ε3

� 1

�

4. Denote

T12

� T1

�

T2 with bias ε12
� 2ε1ε2

� 1
8

�

T23

� T2

�

T3 with bias ε23

� 2ε2ε3

� 1
8

�

T13

� T1

�

T3 with bias ε13

� 2ε1ε3

� 1
8

�

Then T12 and T23 cannot be independent. If they were

independent, then by the Piling-Up Lemma the bias of

T13

� T12

�

T23 would be equal to 2 � 1
8

� 1
8

� 1
32 which is not

the case.
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Converse of the Piling-Up Lemma

It can be shown that the converse of the Piling-Up Lemma also

holds. We state it here for two random variables.

Converse of the Piling-Up Lemma. Suppose T1 and T2 are

discrete random variables with biases ε1 and ε2. If the bias ε of

T � T1

�

T2 satisfies

ε � 2ε1ε2 �

then T1 and T2 are independent.

To give the proof we introduce first the Walsh-Hadamard

transform.
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Walsh-Hadamard Transform

Definition Suppose f :

�

0 � 1

� n � ZZ is any integer-valued

function of bit strings of length n. The Walsh-Hadamard

transform transforms f to a function F :

�

0 � 1
� n � ZZ defined as

F

�

w

�

� ∑
x � �

0 � 1

�

n

f

�

x

� �
� 1

� w � x � w � �
0 � 1

� n �

where the sum is taken over integers.

The Walsh-Hadamard Transform can also be inverted. Actually,

it is its own inverse upto a constant multiplier (see exercises):

f

�

x

�

� 2
� n ∑

w � �

0 � 1

�

n

F

�

w

� �
� 1

� w � x , for all x � �

0 � 1

� n�
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Probability Distribution and Bias of

�

T1 � T2
�

Suppose Z �
�

T1 � T2

�

is a pair of binary random variables,

a �
�

a1 � a2

�

be a pair of bits and εa be the bias of

a � Z � a1T1

�

a2T2 .

Lemma

εa

� 1
2 ∑�

t1 �t2

�

Pr

�

Z �
�

t1 � t2
� � �

� 1

� a1t1

�

a2t2

Proof. Denote t �
�

t1 � t2

�

and a � t � a1t1

�

a2t2. Then

2εa

� 2Pr

�

a � Z � 0
�

� 1 � Pr

�

a � Z � 0

�

� Pr

�

a � Z � 1

�

� ∑
t � a �t � 0

Pr
�

Z � t
�

� ∑
t � a �t � 1

Pr

�

Z � t

�

� ∑
t

Pr

�

Z � t

� �
� 1

� a �t�
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Probability Distribution and Bias of

�

T1 � T2
�

Indeed, εa

� F

�

a

�

is the Walsh-Hadamard transform of

f

�

t

�

� Pr

�

Z � t

�

.

Using the inverse Walsh-Hadamard transform we get the

following

Pr

�

Z � t

�

� 1
2 ∑�

a1 � a2
�

εa
�

� 1
� a1t1

�

a2t2�
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Proof of the Converse of the Piling-Up Lemma, k � 2

Claim. If the bias of T1

�

T2 is equal to 2ε1ε2 then T1 and T2

are independent.

Proof. For a �
�

a1 � a2

� � �

0 � 1

� 2, we use εa to denote the bias

of a � Z � a1T1

�

a2T2. Then

Pr

�

T1

� t1 � T2

� t2

�

� ∑
a

εa
�

� 1
� a1t1

�

a2t2

� ε �

0 � 0

� � ε �

1 � 0

�
�

� 1

� t1 � ε �

0 � 1

�
�

� 1

� t2 � ε �

1 � 1

�
�

� 1

� t1

�

t2

� 1
2

� ε1

�
� 1

� t1 � ε2

�
� 1

� t2 �

2ε1ε2

�
� 1

� t1

�
� 1

� t2

�
�

ε1

�
� 1

� t1 � 1
2

� �

ε2

�
� 1

� t2 � 1
2

�

� Pr
�

T1

� t1

�

Pr

�

T2

� t2

�
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Linear Attack on the SPN
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Related Random Variables

T1

� U1
5

�

U1
7

�

U1
8

�

V1
6 has bias

1
4

, as NL
�

B � 4
�

� 12

T2

� U2
6

�

V2
6

�

V2
8 has bias �

1
4

, as NL
�

4 � 5

�

� 4

T3

� U3
6

�

V3
6

�

V3
8 has bias �

1
4

, as NL

�

4 � 5

�

� 4

T4

� U3
14

�

V3
14

�

V3
16 has bias �

1
4

, as NL

�

4 � 5

�

� 4

The four random variables have biases that are high in absolute

value. By the Piling-Up Lemma we get the linear approximation

T � X5
�

X7

�

X8

�

U4
6

�

U4
8

�

U4
14

�

U4
16

�

3� 3

�

with bias

�

23 � 1
4

� 4 �

� 1
32 in absolute value.
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The Last-Round Trick

Matsui’s Algorithm 2 is based on the following assumption:

Wrong Key Assumption. If on the last round a wrong key is used to

decrypt the ciphertext then the random variable of the linear approximation

is much more uniformly distributed as indicated by the bias.

In the example of the textbook, if wrong partial keys K5
i ,

i � 5 � 6 � 7 � 8 � 13 � 14 � 15 � 16 are used to compute the values of U4
6 � U4

8 � U4
14 �

and U4
16, then the distribution of T is almost uniform.

In this manner, part of the last round key bits can be found. The rest can be

found by repeating the attack with a different approximation, or by exhaustive

search.

The required number of plaintext-ciphertext pairs is proportional to the

inverse of the squared bias of the linear approximation. In the case of the

example the data requirement is about 8000 plaintext-ciphertext pairs

obtained using the same key.
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