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Entropy

Definition 2.4 Suppose X is a discrete random variable which

takes on values from a finite set X �
�

x1 � x2 �� � � � xn
�

with

probability distribution pi

� Pr

�

X � xi

�

, i � 1 � 2 �� � � � n. Then, the

entropy of X is defined to be the quantity

H

�

X

�

� 	

n

∑
i 
 1

pi log2 pi�

If pi

� 0, then we take pi log2 pi

� 0.

Let X be a binary random variable that takes on only two

values 0 or 1, that is, X �
�

0 � 1

�

, and denote p � Pr

�

0

�

. Then

H
�

X
�

� 	 p log2 p 	
�

1 	 p

�

log2

�

1 	 p

�
�
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Properties of Entropy

The following theorem states that the maximum entropy is

achieved if the probability distribution is uniform.

Theorem 2.6 Let X be as in the definition above. Then

H

�

X

� �

log2 n, with equality if and only if pi

� 1

�

n, for all

i � 1 � 2 �� � � � n.

For the proof see textbook.

Theorem 2.7 Let X and Y be discrete random variables. Then

H

�

X � Y
� �

H

�

X

� �

H

�

Y

�
�

with equality if and only if X and Y are independent.

For the proof see textbook.
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Conditional Entropy

Definition 2.6 Suppose X and Y are two discrete random

variables which takes on values from a finite set X and Y ,

respectively. Then for any fixed y � Y , we get a conditional

probability distribution on X and we denote the associated

random variable by X

�

y. Then

H

�

X

�

y

�

� 	 ∑
x � X

Pr
�

x
�

y
�

log2 Pr

�

x

�

y

�
�

We define the conditional entropy, denoted by H(X|Y) to be

the weighted average of H
�

X

�

y

�

over the values y of Y,

computed as

H
�

X
�

Y
�

� 	 ∑
y �Y

∑
x � X

Pr

�

y

�

Pr

�

x

�

y

�

log2 Pr

�

x

�

y

�
�
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Properties of Conditional Entropy

Suppose X and Y are two discrete random variables which take

on values from a finite set X and Y , respectively. Then

H

�

X � Y

�

� H

�

X

� �

H

�

Y

�

X

�

and H

�

X � Y

�

� H
�

Y

� �

H

�

X

�

Y

�

H

�

X

�

Y

� �

H

�

X

�
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Cryptosystem

Definition 1.1 A cryptosystem is a five-tuple

�

P � C � K � E � D

�

,

where the following conditions are satisfied:

1. P is a finite set of possible plaintexts;

2. C is a finite set of possible ciphertexts;

3. K , the keyspace, is a finite set of possible keys;

4. For each K � K , there is an encryption rule ek

� E and a

corresponding decryption rule dk

� D . Each eK : P � C
and dK : C � P are functions such that dK

�

eK

�

x

� �

� x for

every plaintext x � P .
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Stochastic Model of Cryptosystem

P is a random variable that takes on values in P ;

C is a random variable that takes on values in C ; and

K is a random variable that takes on values in K .

Assumption: P and K are independent random variables.

As eK

�

x

�

� y for x � P and K � K , the probability distributions

of P and K induce the probability distribution of C.

In a cryptosystem the random variable C is not independent of

P and K.
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Entropies Related to a Cryptosystem

Total entropy:

H

�

P � C � K

�

� H

�

C � K

�

� H

�

P � K

�

� H
�

P
� �

H

�

K

�

Entropy of K and C:

H

�

K � C

�

� H

�

K

� �

H

�

C
�

K
� �

H

�

K

� �

H

�

C

�

It follows that H

�

P

� �

H

�

C

�

. In a good cryptosystem,

H

�

P

�

H

�

C

�

.

Theorem 2.10 states that

H
�

C
�

	 H

�

P

�

� H

�

K

�

	 H

�

K

�

C

�

.
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Perfect Secrecy

A cryptosystem achieves perfect secrecy if Pr

�

x

�

y

�

� Pr
�

x

�

for

all x � P and y � C . It means that a cryptosystem achieves

perfect secrecy if and only if P and C are independent random

variables.

Shannon’s Pessimistic Inequality If a cryptosystem achieves

perfect secrecy, then H

�

P

� �

H
�

K
�

.

Proof. In a cryptosystem, we have

H

�

C

� �

H

�

P

�

C

�

� H

�

P �C
� �

H

�

P �C �K

�

� H

�

C �K

� �

H

�

C

� �

H

�

K

��
�

It follows that H

�

P
�

C
� �

H

�

K

�

. The claim follows from this

when we observe that if the cyptosystem achieves perfect

secrecy, then H
�

P

�

C

�

� H

�

P

�

as P and C are independent.
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Perfect Secrecy - Theorem 2.4

Theorem 2.4 Assume that

�

P

�

�
�

C

�

�
�

K

�

. Then a

cryptosystem achieves perfect secrecy if and only if the

following conditions are satisfied:

1. Keys are chosen equiprobably, i.e., from uniform

distribution; and

2. for each pair

�

x � y

�

, x � P and y � C , there is exactly one

key K � K such that eK

�

x
�

� y.

For the proof that (1) and (2) are necessary, see the textbook.

Here we give an alternative proof of sufficiency.

Corollary One-time pad cryptosystem achieves perfect

secrecy.
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Conditions 1 and 2 imply perfect secrecy

Assume that (1) and (2) hold. We express the properties in

terms of entropy:

(1) means that H

�

K

�

� log2 n, where n �
�

K
�

.

(2) means that H

�

K

�

P � C

�

� 0. Then H
�

P � C � K

�

� H

�

P � C

�

.

On the other hand, H

�

P � C � K

�

� H
�

P � K
�

always. Hence

H

�

P � C

�

� H

�

P � K

�

H

�

C

� �

H

�

P

�

C
�

� H

�

P

� �

H

�

K

�
�

��� �

By (1) and

�

C

�

� n, we get H

�

K

�

� log2 n

�

H

�

C

�

.

Then by

��� �

, H
�

P
�

C
� �

H

�

P

�

, and therefore H(P|C) = H(P),

which holds if and only if P and C are independent random

variables. T-79.5501 Cryptology – 11/15



Redundancy of a Natural Language

A language consists of finite strings of characters drawn (not

necessarily independently from each other) from an alphabet.

Suppose L is a (natural) language with alphabet P . Let Pn

denote the random variable which takes on values on strings of

length n, for n � 1 � 2 �� � � .

Definition 2.7 The entropy of L is defined to be the quantity

HL
� lim

n � ∞

H

�

Pn �

n

�

The redundancy of L is defined to be

RL

� 1 	

HL

log2

�

P

� �
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Redundancy of a Natural Language, cont’d

The quantity H

�

Pn �

is the entropy of n-letter strings of L.

Divided by n we get the average entropy per letter in an n-letter

string. Hence HL is the average entropy per letter in L.

log2

�

P

�

is the maximum entropy in one letter of the language.

The quantity HL

�

log2

�

P

�

measures the relative entropy in one

letter. It takes on values between 0 and 1. Hence redundancy

RL measures how big proportion of the language is redundant.

Let L be the English language. Then HL

� 1� 4. The maximum

entropy of 26 letter alphabet is log2 26 � 4� 7. Then

RL

� 1 	 1� 4

�

4� 7 � 0� 7, that is, the English language is about

70% redundant.
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Unicity distance

Assume a string of n letters of a language L with alphabet P
and redundancy RL have been encrypted using the same key K

in a cryptosystem

�

P � C � K � E � D

�

. Assume that
�

P

�

�
�

C

�

. By

Thm 2.10 we have

H

�

K

�

	 H

�

K

�

Cn �

� H
�

Cn �

	 H

�

Pn �
�

��� �

We estimate the righthand side by

n log2

�

C

�

	 nHL

� n log2
�

P
�

	 n

�

1 	 RL

�

log2

�

P

�

� nRL log2

�

P

�

assuming that the ciphertext is uniformly distributed (as it

should be for a good cipher).
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Unicity distance, cont’d

When n is large enough such that the right hand side of (*) is

equal to H

�

K

�

, then H

�

K

�

Cn �

� 0, that is, there is no

uncertainty about the key any more. If the keys are chosen

equiprobably this happens when

log2

�

K

�

� nRL log2

�

P

�
�

that is, when

n
� log2

�

K

�

RL log2

�

P

� �

This bound is called the unity distance of the cryptosystem for

language L.
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