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Entropy

m Definition 2.4 Suppose X is a discrete random variable which
takes on values from a finite set X = {X1,X2,...,Xn} with
probability distribution pj = Pr[ X =x],i=1,2,...,n. Then, the
entropy of X is defined to be the quantity

HX) = 3 plog;p

m If pj =0, then we take pjlog, p = 0.

B Let X be a binary random variable that takes on only two
values 0 or 1, thatis, X = {0, 1}, and denote p = Pr|[0]. Then

H(X) = —plog, p— (1 - p)log,(1—p).
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Properties of Entropy

B The following theorem states that the maximum entropy is
achieved if the probability distribution is uniform.

m Theorem 2.6 Let X be as in the definition above. Then
H (X) < log, n, with equality if and only if p; = 1/n, for all
1=1,2,...,Nn.

B For the proof see textbook.

B Theorem 2.7 Let X and Y be discrete random variables. Then
H(X,Y) <H(X)+H(Y),

with equality if and only if X and Y are independent.

B For the proof see textbook.
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Conditional Entropy

m Definition 2.6 Suppose X and Y are two discrete random
variables which takes on values from a finite set X and Y,
respectively. Then for any fixed y € Y, we get a conditional
probability distribution on X and we denote the associated
random variable by X|y. Then

H(X]y) = EXPF X]y]log, Prx]y].

®m We define the conditional entropy, denoted by H(X|Y) to be
the weighted average of H(X|y) over the values y of Y,
computed as

H(X]Y) = — ; EXPr[y]Pr[XM log, Prix|y].

y
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Properties of Conditional Entropy

B Suppose X and Y are two discrete random variables which take
on values from a finite set X and Y, respectively. Then

B H(X,Y)=H(X)+H(Y|X)and H(X,Y) = H(Y) + H(X|Y)
m H(X]Y) <H(X)
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Cryptosystem

m Definition 1.1 A cryptosystemis a five-tuple (P, C, X, 'E, D),
where the following conditions are satisfied:

1. P is afinite set of possible plaintexts;

2. (Cis afinite set of possible ciphertexts;

3. X, the keyspace, is a finite set of possible keys;
4

. Foreach K € X, there is an encryptionruleeg € F and a
corresponding decryptionruledy € D. Eachex : P — C
and dk : C — P are functions such that dx (ex (X)) = X for
every plaintext x € P.
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Stochastic Model of Cryptosystem

m P is a random variable that takes on values in P;

m C is arandom variable that takes on values in C; and

B K is a random variable that takes on values in K.

B Assumption: P and K are independent random variables.

B As ex(X) =Yyfor x e P and K € X, the probability distributions
of P and K induce the probability distribution of C.

B |n a cryptosystem the random variable C is not independent of
P and K.
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Entropies Related to a Cryptosystem

B Total entropy:
H(P,C,K)=H(C,K)=H(P,K)=H(P)+H(K)
m Entropy of K and C:
H(K,C)=H(K)+H(C|K) <H(K)+H(C)

m |t follows that H(P) < H(C). In a good cryptosystem,
H(P) < H(C).

B Theorem 2.10 states that
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Perfect Secrecy

B A cryptosystem achieves perfect secrecy if Pr(x|y) = Pr(X) for
all xe P andye C. It means that a cryptosystem achieves
perfect secrecy if and only if P and C are independent random
variables.

m Shannon’s Pessimistic Inequality If a cryptosystem achieves
perfect secrecy, then H(P) < H(K).

®m Proof. In a cryptosystem, we have
H(C)+H(P|IC)=H(P,C)<H(P,C,K)=H(C,K)<H(C)+H(K).

m |t follows that H(P|C) < H(K). The claim follows from this
when we observe that if the cyptosystem achieves perfect
secrecy, then H(P|C) = H(P) as P and C are independent.
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Perfect Secrecy - Theorem 2.4

®m Theorem 2.4 Assume that |P| = |C| = |X]|. Then a
cryptosystem achieves perfect secrecy if and only if the
following conditions are satisfied:

1. Keys are chosen equiprobably, i.e., from uniform
distribution; and
2. for each pair (X,y), X € P and y € C, there is exactly one
key K € K such that ex (X) =Y.
B For the proof that (1) and (2) are necessary, see the textbook.

Here we give an alternative proof of sufficiency.

m Corollary One-time pad cryptosystem achieves perfect

secrecy.
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Conditions 1 and 2 imply perfect secrecy

B Assume that (1) and (2) hold. We express the properties in
terms of entropy:

B (1) means that H(K) = log, n, where n = | X|.

® (2) means that H(K|P,C) =0. Then H(P,C,K) =H(P,C).
On the other hand, H(P, C,K) = H(P,K) always. Hence

H(P,C) = H(P,K)
H(C)+H(P|C) = H(P)+H(K). (%)

® By (1) and |C| = n, we get H(K) =log,n > H(C).

B Then by (x), H(P|C) > H(P), and therefore H(P|C) = H(P),
which holds if and only if P and C are independent random
variables.
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Redundancy of a Natural Language

B A language consists of finite strings of characters drawn (not
necessarily independently from each other) from an alphabet.
Suppose L is a (natural) language with alphabet P. Let P"
denote the random variable which takes on values on strings of
lengthn,forn=1,2,....

m Definition 2.7 The entropy of L is defined to be the guantity
. H(P"
H = lim ( )

N— 00 N

The redundancy of L is defined to be

HL
log, |P|

RL=1-
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Redundancy of a Natural Language, cont’d

B The quantity H(P") is the entropy of n-letter strings of L.
Divided by n we get the average entropy per letter in an n-letter
string. Hence H{ is the average entropy per letter in L.

m |0g, |P| is the maximum entropy in one letter of the language.
The quantity H,_/10og, | P| measures the relative entropy in one
letter. It takes on values between 0 and 1. Hence redundancy
R_ measures how big proportion of the language is redundant.

B Let L be the English language. Then H = 1.4. The maximum
entropy of 26 letter alphabet is 09,26 ~ 4.7. Then
R.=1-1.4/47= 0.7, that is, the English language is about
70% redundant.
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Unicity distance

B Assume a string of n letters of a language L with alphabet P
and redundancy R have been encrypted using the same key K
in a cryptosystem (P, C, K, E, D). Assume that |P| = |C|. By
Thm 2.10 we have

H(K) —H(K|C") = H(C") —H(P"). (x)
B We estimate the righthand side by
nlog; [C|—nHL =nlog; [P| —n(1—R.)log, |P| = nR_log, | P

assuming that the ciphertext is uniformly distributed (as it
should be for a good cipher).
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Unicity distance, cont’'d

B When nis large enough such that the right hand side of (*) is
equal to H(K), then H(K|C") = 0, that is, there is no
uncertainty about the key any more. If the keys are chosen
equiprobably this happens when

l0gy | K| = nRLlog, | 2],

that is, when
N> log, | K| |
R log, |P|

B This bound is called the unity distance of the cryptosystem for

language L.
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