Euler Phi-Function

In section 1.1.3 of the text-book, Definition 1.3, the Euler phi-function is defined as follows.
Definition 1.3 (Stinson) Suppose $a \geq 1$ and $m \geq 2$ are integers. If $\operatorname{gcd}(a, m)=1$ then we say that a and m are relatively prime. The number of integers in \mathbb{Z}_{m} that are relatively prime to m is denoted by $\phi(m)$.
We set $\phi(1)=1$. The function

$$
m \mapsto \phi(m), m \geq 1
$$

is called the Euler phi-function, or Euler totient function. Clearly, for m prime, we have $\phi(m)=m-1$. Further, we state the following fact without proof, and leave the proof as an easy exercise.

Fact. If m is a prime power, say, $m=p^{e}$, where p is prime and $p>1$, then $\phi(m)=m\left(1-\frac{1}{p}\right)=p^{e}-p^{e-1}$.
The main purpose of this section is to prove the multiplicative property of the Euler phi-function.
Proposition. Suppose that $m \geq 1$ and $n \geq 1$ are integers such that $\operatorname{gcd}(m, n)=1$. Then $\phi(m \times n)=\phi(m) \times \phi(n)$.
Proof. If $m=1$ or $n=1$, then the claim holds. Suppose now that $m>1$ and $n>1$, and denote:

$$
\begin{aligned}
& A=\{a \mid 1 \leq a<m, \operatorname{gcd}(a, m)=1\} \\
& B=\{b \mid 1 \leq b<n, \operatorname{gcd}(b, n)=1\} \\
& C=\{c \mid 1 \leq c<m \times n, \operatorname{gcd}(c, m \times n)=1\}
\end{aligned}
$$

Then we have that $|A|=\phi(m),|B|=\phi(n)$, and $|C|=\phi(m \times n)$. We show that C has equally many elements as the set $A \times B=\{(a, b) \mid a \in$ $A, b \in B\}$, from which the claim follows.

Since $\operatorname{gcd}(m, n)=1$, we can use the Chinese Remainder Theorem, by which the mapping

$$
\pi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}, \pi(x)=(x \bmod m, x \bmod n)
$$

is bijective. Now we observe that $A \subset \mathbb{Z}_{m}, B \subset \mathbb{Z}_{n}$, and $C \subset \mathbb{Z}_{m \times n}$. Moreover, it holds that $x \in C$ if and only if $\pi(x) \in A \times B$, which we see by writing the following chain of equivalences:

$$
\begin{aligned}
\operatorname{gcd}(x, m \times n)=1 & \Leftrightarrow \operatorname{gcd}(x, m)=1 \text { and } \operatorname{gcd}(x, n)=1 \\
& \Leftrightarrow \operatorname{gcd}(x \bmod m, m)=1 \text { and } \operatorname{gcd}(x \bmod n, n)=1 .
\end{aligned}
$$

As a corollary, we get Theorem 1.2 of the textbook.
Theorem 1.2 Suppose

$$
m=\prod_{i=1}^{k} p_{i}^{e_{i}}
$$

where the integers p_{i} are distinct primes and $e_{i}>0,1 \leq i \leq k$. Then

$$
\phi(m)=\prod_{i=1}^{k}\left(p_{i}^{e_{i}}-p_{i}^{e_{i}-1}\right) .
$$

