1. (6 pts) Suppose that in a cryptosystem the following holds: for each pair \((x, y)\), \(x \in \mathcal{P}\) and \(y \in \mathcal{C}\), there is exactly one key \(K \in \mathcal{K}\) such that \(e_K(x) = y\), that is, \(H(K|PC) = 0\). Prove that then the cryptosystem achieves perfect secrecy if and only if \(H(K) = H(C)\).

2. (6 pts) Solve the following system of congruences

\[
\begin{align*}
11x & \equiv 3 \pmod{2008} \\
3x & \equiv 0 \pmod{2007}.
\end{align*}
\]

3. Let us consider two binary linear feedback shift registers with connection polynomials \(f(x) = x^4 + x^3 + x^2 + 1\) and \(g(x) = x^3 + x^2 + 1\), where \(g(x)\) is primitive.

 (a) (3 pts) Determine \(\text{lcm}(f(x), g(x))\).

 (b) (3 pts) Let \(S_1\) be a sequence generated by the LFSR with polynomial \(f(x)\) and \(S_2\) be a sequence generated by the LFSR with polynomial \(g(x)\). Determine the largest possible period of the sum sequence \(S_1 + S_2\) (termwise mod 2).

4. (6 pts) Given three input bits \((x_1, x_2, x_3)\) the output bits \((y_1, y_2)\) of an S-box, which maps three bits to two bits, are defined as follows:

\[
\begin{align*}
y_1 &= x_1x_2 \oplus x_3 \\
y_2 &= x_1x_3 \oplus x_2.
\end{align*}
\]

Determine the output bit \(y_j\) for which the bias of \(x_1 \oplus x_2 \oplus y_j\) is different from zero.