T-79.5501 Cryptology Midterm Exam 2 May 9, 2008

1. (6 pts) Solve

 $x^9 \equiv 5 \pmod{2008}.$

Note that $2008 = 8 \cdot 251$.

2. (6 pts) It is given that

 $2^{6!} \equiv 105226 \pmod{121939}.$

Attempt to find a nontrivial factor of 121939 using the p-1 method with B=6.

- 3. Bob is using the *Rabin Cryptosystem*. Bob's modulus is $40741 = 131 \cdot 311$. Alice knows Bob's modulus but not its factors. Alice wants to remind Bob of a date in December and sends it to Bob encrypted. The ciphertext is 38176.
 - (a) (3 pts) Show how Bob decrypts the ciphertext. One of the possible plaintexts is a date, which Bob accepts and discards the other decryptions.
 - (b) (3 pts) Alice happens to see one of the decryptions discarded by Bob. It is 20669. Show how Alice can now factor Bob's modulus.
- 4. Let \mathbb{F} be a finite field with q elements and β a primitive element in \mathbb{F} . Consider the function $f: \mathbb{Z}_{q-1} = \{0, 1, \dots, q-2\} \to \mathbb{F}^*, f(x) = \beta^x$.
 - (a) (3 pts) Show that f is a bijection.
 - (b) (3 pts) For $a' \in \mathbb{Z}_{q-1}$ and $b' \in \mathbb{F}$, let us denote

$$N_D(a',b') = \#\{x \in \mathbb{Z}_{q-1} | f((x+a') \mod (q-1)) - f(x) = b'\}.$$

Show that $N_D(a', b') = 1$, for all $a' \neq 0$ and $b' \neq 0$.