T-79.5501 Cryptology

Lecture 11 (April 17, 2007):

- Homomorphic encryption and how to sell digital goods
- Additive vs. multiplicative group notation
- Elliptic curves 6.5.1-6.5.4
- Computing point multiples on elliptc curves (self study: Section 6.5.5, one homework problem)

Homomorphic encryption

Given ElGamal encryptions of m_0 and m_1 :

$$(\alpha^{k_0}, \beta^{k_0} m_0)$$
 and $(\alpha^{k_1}, \beta^{k_1} m_1)$

one can generate valid ElGamal encryptions for m_0m_1 :

$$(\alpha^{k_0+k_1},\beta^{k_0+k_1}m_0m_1)$$

and and m_0/m_1 :

$$(\alpha^{k_0-k_1}, \beta^{k_0-k_1} \frac{m_0}{m_1})$$

even without knowledge of the public key.

One-out-of-Two Oblivious Transfer

Alice has two digital products m_0 and m_1 . Bob wants to buy one of them, and Alice is willing to sell just one.

The protocol (Aiello et al, Eurocrypt 2001)

- 1. Alice and Bob agree on a group G where ElGamal cryptosystem is secure, and a generator $\alpha \in G$ of order n.
- 2. Bob generates a key pair $(a, \beta = \alpha^a)$ for ElGamal cryptosystem and selects an item m_b he wants to buy. He represents his choice as bit $B = \alpha^b$ and computes an encryption of it: $C = (\alpha^k, \beta^k B)$. Bob sends C, β to Alice.
- 3. Alice verifies that β is a valid public key and C is a valid ciphertext (there are cryptographic methods for doing this).

One-out-of-Two Oblivious Transfer (2)

4. Alice draws four integers k_j , r_j , j = 0,1, $0 < k_j$, $r_j < n$, uniformly at random and computes encryptions of α^j , j = 0,1:

$$C_{j} = (\alpha^{k_{j}}, \beta^{k_{j}} \alpha^{j}), j = 0,1$$

and further encryptions of $\alpha^{j}/B = \alpha^{j-b}$ using homomorphic encryption. (Note that Alice does not know *B* but she knows the encryption *C* of it.)

$$(\frac{\alpha^{k_j}}{\alpha^k}, \frac{\beta^{k_j}\alpha^j}{\beta^k B}) = (\alpha^{k_j-k}, \beta^{k_j-k}\alpha^{j-b})$$

Then she raises both parts to power r_j and creates encryptions of $\alpha^{(j-b)rj}$ m_j :

$$(\alpha^{(k_j-k)r_j}, \beta^{(k_j-k)r_j}\alpha^{(j-b)r_j}m_j), j=0,1$$

And sends both encryptions (for j = 0 and 1) to Bob.

One-out-of-Two Oblivious Transfer (3)

5. Bob takes the one with j = b, and is able to decrypt m_b as

$$(\alpha^{(k_b-k)r_b},\beta^{(k_b-k)r_b}\alpha^{(b-b)r_b}m_b)$$

is a proper El Gamal encryption of m_b , since $\alpha^{b-b} = 1$.

If Bob selects $j \neq b$, and decrypts he gets

$$\alpha^{(j-b)r_j}m_j=\alpha^{\pm r_j}m_j,$$

which is random data.