T-79.5501 Cryptology

Spring 2007
Lecture 1
Stinson 2.1-2.3.
Computational security

Example (fixed size):
It is currently believed that recovering the secret 128-bit key of the AES requires at least 2^{100} operations.

Example (variable size):
The discrete logarithm problem in a group of size t is said to be hard if solving it requires $N(t)$ operations, where $N(t) \approx t$.
Provable security

Example: It is an open question if the security of the Diffie-Hellman key exchange can be reduced to the (conjectured) hardness of the Discrete Logarithm Problem. If such a reduction existed, then Diffie-Hellman key exchange would be provably secure.

On the other hand, the Diffie-Hellman problem itself has been around for about thirty years, and has achieved a position of a well-studied problem that is thought to be difficult.
Unconditional security

No upperbound to the computational effort (time, memory) of breaking the cryptosystem.

Cryptosystem is unconditionally secure if the probability of breaking it is small (negligible).

Example. Given a plaintext-ciphertext pair, AES maybe computationally secure. It is not unconditionally secure as the probability of success is equal to 1 given unlimited computational power.