EXAMPLE

Stinson, Problem 5.32: Suppose that n = 317940011 and b = 77537081 in the *RSA Cryptosystem*. Using Wiener's Algorithm, attempt to factor n. If you succeed, determine the secret exponent a and $\phi(n)$.

Solution: Running Wiener's algorithm we get:

j	r_j	q_j	c_j	d_j	n'
0	77537081	0	1	0	-
1	317940011	0	0	1	-
2	77537081	4	1	4	310148323
3	7791687	9	9	37	318763555.111
4	7411898	1	10	41	317902032
5	379789	19	199	816	317940995.452
6	195907	1	209	857	
:	:	:	:	:	:

j = 2 no solution, since n' is odd ($\phi(n)$ is divisible by 4).

j = 3 no solution, since n' is not integer.

j = 4 looks promising. Substitute n = 317940011 and n' = 317902032 to equation $x^2 - (n - n' + 1)x + n = 0$ and get

 $x^2 - 37980x + 317940011 = 0,$

from where we get solutions for p and q, which are $x = 18990 \pm 6533$. Then $a = d_4 = 41$, and $\phi(n) = n' = 317902032$.