1. (Stinson 5.10) Suppose that \(n = pq \) where \(p \) and \(q \) are distinct odd primes and \(ab \equiv 1 \pmod{(p-1)(q-1)} \). The RSA encryption operation is \(e(x) = x^b \mod n \) and the decryption operation is \(d(y) = y^a \mod n \). In the text-book it is proved that \(d(e(x)) = x \) if \(x \in \mathbb{Z}_n^* \). Prove that the same statement is true for any \(x \in \mathbb{Z}_n \).

2. (Stinson 5.14) Prove that RSA Cryptosystem is not secure against a chosen ciphertext attack using the following steps.

(a) First, show that the encryption operation is multiplicative, that is, \(e_K(x_1x_2) = e_K(x_1)e_K(x_2) \), for any two plaintexts \(x_1 \) and \(x_2 \).

(b) Next, use the multiplicative property to construct an example how you can decrypt a given ciphertext \(y \) by obtaining the decryption \(\hat{x} \) of a different (but related) ciphertext \(\hat{y} \).

3. (a) Evaluate the Jacobi symbol \(\left(\frac{801}{2005} \right) \).

You should not do any factoring other than dividing out powers of 2.

(b) Let \(n \) be a composite integer and \(a \) an integer such that \(1 < a < n \). Then \(n \) is called an \textit{Euler pseudoprime} to the base \(a \) if \(\left(\frac{a}{n} \right) \equiv a^{\frac{n-1}{2}} \pmod{n} \).

Show that 2005 is an Euler pseudoprime to the base 801.

4. Let \(n = pq \), where \(p \) and \(q \) are primes. We can assume that \(p > q > 2 \) and we denote \(d = \frac{p-q}{2} \) and \(x = \frac{p+q}{2} \). Then \(n = x^2 - d^2 \).

a) Show that if \(d < \sqrt{p+q} \) then \(x \) can be computed by taking the square root of \(n \) and by rounding the result up to the nearest integer.

b) Test the method described in a) for \(n = 4007923 \) to determine \(x \), and further to determine \(p \) and \(q \).

5. (a) Find all square roots of 1 modulo 4453.

(b) 2777 is a square root of 3586 modulo 4453. Find all square roots of 3586 modulo 4453.

6. A prime \(p \) is said to be a \textit{safe prime} or \textit{Sophie Germain prime} if \((p - 1)/2 \) is a prime.

a) Let \(p \) be a safe prime, that is, \(p = 2q + 1 \) where \(q \) is a prime. Prove that an element in \(\mathbb{Z}_p \) has multiplicative order \(q \) if and only if it is a quadratic residue and not equal to 1 mod \(p \).

b) The integer 08012003 is a safe prime, since 4006001 is a prime. Find some element of multiplicative order 4006001 in \(\mathbb{Z}_{4006001} \).