1. For each of the following 5-bit sequences determine its linear complexity and find one of the shortest LFSR that generates the sequence.
 a) 0 0 1 1 1
 b) 0 0 0 1 1
 c) 1 1 1 0 0

2. Find the shortest LFSR which generates all three sequences of problem 1.

3. Let S be a sequence of bits with linear complexity L. Its complemented sequence \bar{S} is the sequence obtained from S by complementing its bits, that is, by adding 1 modulo 2 to each bit.
 a) Show that $LC(\bar{S}) \leq L + 1$.
 b) Show that $LC(\bar{S}) = L - 1$, or L, or $L + 1$.

4. Use the Berlekamp-Massey Algorithm to find the shortest LFSR that generates the sequence:
 0 0 1 0 1 0 1 1 1 1 1 0 0.
 Is this LFSR uniquely determined?

5. Consider the 4-bit to 4-bit permutation π_S defined as follows:
 | 0 1 2 3 4 5 6 7 8 9 A B C D E F |
 | 3 F 0 6 A 1 D 8 9 4 5 B C 7 2 E |
 (This is the fourth row of the DES S-box S_4.) Denote by (x_1, x_2, x_3, x_4) and by (y_1, y_2, y_3, y_4) the input bits and output bits respectively. Find the output bit y_j for which the bias of $x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus y_j$ is the largest.

6. Suppose that X_1 and X_2 are independent random variables defined on the set $\{0, 1\}$. Let ϵ_i denote the bias of X_i, $\epsilon_i = \Pr[X_i = 0] - \frac{1}{2}$, for $i = 1, 2$. Prove that if the random variables X_1 and $X_1 \oplus X_2$ are independent, then $\epsilon_2 = 0$ or $\epsilon_1 = \pm \frac{1}{2}$. (Hint: If the random variables X_1 and $X_1 \oplus X_2$ are independent, then Piling-up lemma can be used to compute the bias of the \oplus-sum of these random variables.)