T-79.5501
Cryptology

Lecture 9 (Nov 15, 2005):
- Wiener’s Low decryption Exponent Attack, Sec 5.7.3
- Security of the Rabin Cryptosystem, Sec 5.8.1
- Bleichenbacher’s attack
- OAEP (Cryptosystem 5.4)
- Rabin OT
- 1-out-of-2 oblivious transfer
RSA Cryptosystem

\(n = pq \) where \(p \) and \(q \) are two different large primes

\(\phi(n) = (p-1)(q-1) \)

\(a \) decryption exponent (private)

\(b \) encryption exponent (public)

\(ab \equiv 1 \pmod{\phi(n)} \)

RSA operation:

\((m^b)^a \equiv m \pmod{n} \)

for all \(m, 0 \leq m < n \).

Wiener’s result: It is insecure to select \(a \) shorter than about \(\frac{1}{4} \) of the length of \(n \).
RSA Equation

$$ab - k \phi(n) = 1$$

for some k where only b is known.

Additional information: $pq = n$ is known and $q < p < 2q$

$$n > \phi(n) = (p - 1)(q - 1) = pq - p - q + 1 \geq n - 3\sqrt{n}$$

Also we know that $a, b < \phi(n)$, hence $k < a$.

Wiener (1989) showed how to exploit this information to solve for a and all other parameters k, p and q, if a is sufficiently small.

Wiener’s method is based on continued fractions.
Continued Fractions

Every rational number t has a unique representation as a finite chain of fractions

$$
q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{1}{\ddots + \frac{1}{q_{m-1} + \frac{1}{q_m}}}}}
$$

and we denote $t = [q_1 q_2 q_3 \ldots q_{m-1} q_m]$. The rational number $t_j = [q_1 q_2 q_3 \ldots q_j]$ is called the j^{th} convergent of t. For $t = u/v$, just run the Euclidean algorithm to find the q_i, $i = 1, 2,\ldots,m$.
Convergent Lemma

Theorem 5.14 Suppose that $\gcd(u,v) = \gcd(c,d) = 1$ and

$$\left| \frac{u - c}{v} - \frac{1}{d} \right| < \frac{1}{2d^2}.$$

Then c/d is one of the convergents of the continued fraction expansion of u/v.

Recall the RSA problem: $ab - k\phi(n) = 1$

Write it as:

$$\frac{b}{\phi(n)} - \frac{k}{a} = \frac{1}{a\phi(n)}$$

Then, if $2a < \phi(n)$, then k/a is a convergent of $b/\phi(n)$.
Wiener’s Theorem

If in RSA cryptosystem

\[a < \frac{1}{3} \sqrt[4]{n}, \]

that is, the length of the private exponent \(a \) is less than about one forth of the length of \(n \), then \(a \) can be computed in polynomial time with respect to the length of \(n \).

Proof. First we show that \(k/a \) can be computed as a convergent of \(b/n \), based on Euclidean algorithm, which is polynomial time. To see this, we estimate:

\[\left| \frac{b - k}{n - a} \right| = \left| \frac{ab - kn}{an} \right| = \left| \frac{1 + k\phi(n) - kn}{an} \right| \leq \frac{3k}{a\sqrt{n}} < \frac{3}{\sqrt{n}} < \frac{1}{2a^2}. \]
Wiener’s Algorithm

Then the convergents $c_j/d_j = [q_1 q_2 q_3 \ldots q_j]$ of b/n are computed. For the correct convergent $k/a = c_j/d_j$ we have

$$bd_j - c_j \phi(n) = 1.$$

For each convergent one computes

$$n' = (d_j b - 1) / c_j$$

and checks if $n' = \phi(n)$. Note that $p + q = n - \phi(n) + 1$. Then if $n' = \phi(n)$, the equation

$$x^2 - (n - n' + 1)x + n = 0$$

has two positive integer solutions p and q.
PKCS#1

PKCS#1 v 1.5 before it was corrected:

\[EB = 00 \ || \ BT \ || \ PS \ || \ 00 \ || \ B \]

\[BT \]
block type: 00, 01, tai 02.
(In public key encryption \(BT = 02 \))

The leftmost 00 guarantees that the plaintext after conversion to an integer is less than the RSA module n.
PKCS#1 v 1.5

Bleichenbacherin hyökkäys:

- Bob näkee salatun C jonka haluaa tulkita: $M = C^d \mod n$
- Bob valitsee kokonaislukuja S ja laskee $C' = C^S \mod n$ ja lähettää tulokset C' Alicelle.
- Alice laskee $(C')^d \mod n = MS \mod n$ ja ilmoittaa Bobille onko tulos laillinen, siis PKCS standardin mukainen, vai ei.
- Jos C' on laillinen, niin Bob tietää että luvun $MS \mod n$ kaksi ensimmäistä tavua ovat 00 || 02
- Silloin Bob saa tietää että seuraava epäyhtälö pätee:

 $2B \leq MS \mod n < 3B$

 missä $B = 2^{8(k-2)}$ ja k on RSA-moduulin n pituus tavuina.
- Keräämällä useita (~ 2^{20}) epäyhtälöitä Bob voi määrittää $M:n$
PKCS#1 v 2.1 EME-OAEP
Based on Bellare and Rogaway’s Optimal Asymmetric Encryption scheme (1994)
Rabin OT

Two players: sender (Alice) and receiver (Bob)

Goal: Alice has one bit. Bob is allowed to try once to get the bit. His success probability is \(\frac{1}{2} \). Alice does not know, if Bob gets the bit or not.

Protocol:

1. Alice sets up an RSA cryptosystem: \(p, q, n, a, b, \) with \(ab \equiv 1 \mod \Phi(n) \).
2. Alice encrypts the bit \(s \), to get \(c = \{\text{encode}(s)\}^b \mod n \), and sends \(c, b \) and \(n \) to Bob.
3. Bob selects \(x, 0 < x < n \), at random, computes \(y = x^2 \mod n \), and sends \(y \) to Alice.
4. Alice finds the four square roots of \(y \) and picks one, say \(z \), of them and sends it to Bob.
5. If \(z \neq \pm x \mod n \), Bob can factor \(n \), compute \(a = b^{-1} \mod \Phi(n) \), and decrypt \(c \), with probability \(\frac{1}{2} \). Alice does not know if \(z \neq \pm x \mod n \).
1-out-of-2 OT using RSA

Protocol:
Two players: sender (Alice) and receiver (Bob)
Goal: Alice has two secret bits. Bob is allowed to see exactly one of them. Alice does not know, which of the two bits Bob gets.
Alice’s inputs: two bits a_0 and a_1
Bob’s input: one bit s
Protocol: $OT(a_0, a_1; s)$
Output to Alice: nothing
Output to Bob: $a_s = (s \oplus 1) a_0 \oplus s a_1$
Next we see how to implement $OT(a_0, a_1; s)$ assuming Bob is honest, which is the case of “private information retrieval”.
1-out-of-2 Oblivious Transfer

Protocol:

1. Alice sets up an RSA cryptosystem Alice sets up an RSA cryptosystem: p, q, n, a, b, with \(ab \equiv 1 \mod \phi(n) \), and sends n and b to Bob.

 Hard-core bit for the RSA function: For randomly chosen \(x \), given \(y, n, b \), where \(y = x^b \mod n \) finding the lsb of \(x \) is essentially as hard as finding all of \(x \) (see also Stinson, Section 5.9)

2. Bob selects a random \(m \) with lsb \(r_s \) and computes the ciphertext \(c_s = m^b \mod n \). Bob selects \(c_{1-s} \) at random, and sends \(c_s \) and \(c_{1-s} \), that is, \(c_0 \) and \(c_1 \) to Alice.

3. Alice decrypts \(c_0 \) and \(c_1 \) and gets the lsb:s \(r_0 \) and \(r_1 \) of the plaintexts. She then conceals the bits \(a_0 \) and \(a_1 \) by computing \(a'_0 = r_0 + a_0 \mod 2 \) and \(a'_1 = r_1 + a_1 \mod 2 \), and sends \(a'_0 \) and \(a'_1 \) to Bob.

4. Bob then gets \(a_s \) from \(a'_s \) as he knows \(r_s \). Alice does not know \(s \).