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Cryptology

Lecture 4 (Oct 4, 2005):

- Linear Feedback Shift Registers
- Polynomials over Z,
- Linear complexity



Linear Feedback Shift Registers

A binary linear feedback shift register (LFSR) is the following device
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where the i 1" tap constant c; = 1, if the switch connected, and ¢, = 0 if
it is open. The contents of the register z,, z,,2,,2,,. .., 2z, ,are
binary values. Given this state of the device the output is z,and the
new contents are z,,z,, 25, ... ,Z,, Z,, Where z_ is computed using
the recursion equation

The sum is computed modulo 2. As this process is iterated, the LFSR

outputs a binary sequence z,, z,,2,,25,...,2,4,Zy,- - - Thenthe

terms of this sequence satisfy the linear recursion relation



LFSR: The first examples

Zgsm = CoZ ¥ C1Z 1 ¥ Cu 2y ¥ C 323 +. . o Crp g Zyi 1
forallk=0,1,2,...
Examples 1.
a)z;=0,1=0,1,2,... shortestLFSR: «—— (no contents, length = 0)

A

b)z,=1,1=0,1,2,... shortest LFSR: N (lengthm = 1)

c) sequence 010101... ; shortest LFSR: «——0 |1

2,=0, z,=1,2,,,=2,,k=0,1,2,...

(length m = 2)

A

d) sequence 000000100000010... LFSR: «<— 0| 0| 0| 0| O] O[1 |«




LFSR: Connection polynomial

The polynomial over Z,
f(X) =Cy +C X+ Co X2+ Cyx3+. . .+ C X1+ XM
is called the connection polynomial of the LFSR with taps c, c,. .. C 4.
Given f(x) =c,+c,x+. ..+ c XM+ x™ of degree m, we denote by f*(x)
the reciprocal polynomial of f , defined as follows:
fr(x) = x™f(x 1) = cgxM+cy x ™+, xM2+ .+ c X + 1.
It has the following properties:
1. deg f*(x) < deg f(x) , and deg f*(x) = deg f(x) if and only if c, = 1.
2. Let h(x) = f(x)g(x). Then h*(x) = f*(x)g*(x).
The set of sequences generated by the LFSR with connection polynomial
f(x) is denoted by Q(f):

Q(f) ={S = (z))lz; € Z,; 24,y =CZx + C1Zysqt . . .+ CritZyim.1s K=0,1,...}



LFSR: Generating function

Q(f) is a linear space over Z, of dimension m. Its elements S can also be
expressed using the formal power series notation:

Z X

S=S(X)=2zy +z,X+Z2,X2+2Z;x3+. . .= ., Z

Theorem 1. If S(x) € Q(f), where deg f(x) = m, then there is a polynomial
P(x) of degree less than m such that S(x) = P(x)/f*(x).

Proof. f*(X) =20 mCmiX'=2i-0._»CniX', Wherec,=1,and c, =0,

unless 0 <i<m. Then

S(x) F(X) = (Xi =00 ZiX NZi=0..00 Cmi X' ) = Zi=0. o0 (=i Zi tCrmet) X' -

Fori>m, denote r =i - m, and consider the i t" term in the sum above:

2 =0, Zi4Cmt = 2 =0 r+m Zr+m -t Cmt = 2k=0..m Zr+k Ck = 0, @s S(x) € Q(f).

Then S(X)f(X) = Zi=o...m1 (Xt=0...i Zi1Cm) X' = P(X), where deg P(x) <m.

O



Generating function, example

In Theorem 1, P(x) =
2o+ (Z4F CqZg)X+ (2o + CyqZy + C0Zo)XPt ..+ (Z 4+ CriqZpp F- - F C,Z) XM
Hence m first terms of the sequence determine P(x) uniquely.
Example 2. 0010111 0010111 001... is generated by LFSR with
polynomial f(x) =1 + x + x3. Then f*(x) = x3 + x? + 1
Generating function
S(X) = X2+ X x4+ X0+ X%+ xT+x 241+ xT0+.
What is P(x) ? m =3, z,=0, z, =0, z,= 1, and we get

P(X) = Zo+ (24 CqZo)X + (Z + CrpgZy + CrpZg)X?+ ...

J

+ (Zm-1+ Cm-1zm-2 Tt C1ZO) Xm-1 = X2
Check: S(x) = P(x)/ f*(x) = x?/(x3 +x? +1)



LFSR: Sum sequence

Corollary 1. Q(f) = { S(x) = P(x)/f*(x) | deg P(x) < deg f(x) }.
Proof. Both sets are linear spaces over Z, of the same dimension

(deg f(x)). By Thm 1, Q(f) is contained in the space on the right hand
side. Therefore, the sets are equal.

Theorem 2. Let h(x) = lcm (f(x), g(x)), and let S,(x) € Q(f) and
S,(X) € Q(g). Then S,(x)+S,(x) € Q(h).

Proof. h(x) = f(x)q,(X) = g(x)d,(x), where deg q,(x) = deg h(x) - deg f(x)

and deg g,(x) = deg h(x) - deg g(x). Then by Thm 1:
S1(X) + Sy(x) = (P4(x)/f*(x)) + (P2(x)/g*(x))
= (P4(x)a,*(x) + Pa(X)a,*(x))/h*(x)
where deg(P4(x)g,*(x) + P,(X)g,*(X)) <
max{deg P,(x) + deg q,*(x), deg P,(x)+ deg q,*(x)} < deg h(x ).

The claim follows using Corollary 1. 0



LFSR: sum sequence example

Corollary 2. If f(x) divides h(x), then Q(f) < Q(h).
Example 3. f(x)=1+x+x3; g(x) =1+ x;
h(x) = lcm (f(x),g(X)) =1+ x + x2 + x° .
All sequences generated by the combination of the two LFSRs on the
left hand side can be generated using a single LFSR of length 5:

A
L/

D

D
N

A

Further, if f-LFSR is initialized with 011, g-LFSR with 00, and the h-LFSR with

01110, then the two systems generate the same sequence: 011100101110010...
Indeed, take the five first bits of any sequence generated by the f register and use
them to initialize the h register. Then the h register generates the same sequence

as f register.



LFSR: State space

In the example above the LFSR with connection polynomial f(x) runs
through all seven possible non-zero states.

Whereas, the state space of the LFSR with polynomial h(x) splits into five

Separate sets of states as follows: 00001
00010

00000 11111 01010 01110 10001 00100
10101 11100 00011 01001

11001 00110 10011

10010 01101 00111

00101 11010 01111

01011 10100 11110

10111 01000 11101

11011

10110

1+1+2+7+7+14=32=25 8%%88
10000




Polynomials: Exponent

FACT 1. For all binary polynomials f (x) there is a polynomial of the form

1 + x®, where e > 1, such that f (x) divides 1 + x&. The smallest of such non-
negative integers e is called the exponent of f(x). The exponent of f(x)
divides all other numbers e such that f (x) divides 1 + x&.

IfS=(z;) e Q1 +x"),thenclearly z, =z, , foralli =0,1,... Then it must
be that the period of the sequence S =(z,) divides n.

We have the following theorem:

Theorem 3. If S = (z;) € Q(f(x)), then the period of S divides the
exponent of f(x).

FACT 2. There exist polynomials f (x) for which all non-zero sequences in

Q(f) have a period equal to the exponent of f (x). The polynomials with

this property are exactly the irreducible polynomials.



Polynomials: Primitive polynomials

FACT 3. For all positive integers m, the largest possible value of the exponent of a
polynomial of degree mis 2™ — 1, and there exist polynomials with exponent equal
to 2m — 1. Such polynomials are called primitive. Primitive polynomials are
irreducible.

Corollary 3. Let f (x) be a primitive polynomial of degree m. Then all

sequences generated by an LFSR with polynomial f (x) have period 2™ - 1.

Example 4. Binary polynomials of degree 4 with non-zero constant term :

exponent exponent
x4+ 1=(x+1) 4 X4+ X2+ x+1=(x3+x2+1)(x+1) 7
x4+ x + 1 (primitive) 15 X4+ x3+x+1=(x+1)2(x2+x+1) 6
X*+x2+1=(x2+x+ 1) 6 X*+x3+x2+1=(x3+x+1)(x+1) 7
x4 + x3 + 1 (primitive) 15 x4+ x3+x2+x+1 irreducible 5




Linear complexity

LetS =2,z,,2,,25,... be afinite or infinite sequence. We say

that the linear complexity LC(S ) of S is the length of the shortest
LFSR which generates it.

Linear complexity of a finite sequence does not decrease if new terms
are added to the sequence, but it may remain the same.

Examples 5.

a) S =000...01 (with n - 1 zeroes); LC(S ) = n; one feedback polynomial
of the LFSRis 1 + x"; indeed, any polynomial of degree n can be
taken as feedback polynomial.

b) S =111..10 (with n ones); LC(S ) = n; one feedback polynomial of
the LFSR is 1 + x + X"; indeed, any polynomial of degree n with odd
number of terms can be taken as feedback polynomial.

c) By example 3, the linear complexity of 0111001011 is less than or
equal to 3, since the polynomial f has degree 3. From b) above it
follows that the linear complexity is exactly 3.



Linear complexity

Theorem 4. Let LC(S) = L . Consider the LFSR of length L which
generates the sequence S of length n (where n can be infinite). Then
a) the L subsequent states of the the LFSR are linearly independent.
b) the L + 1 subsequent states are linearly dependent.

c) If moreover, at least 2L terms of the sequence are given, thatis, n >

2L, then the connection polynomial of the generating LFSR is uniquely
determined (see also Stinson: Section 1.2.5).

Proof. Let the connection coefficients be c,c, ¢, c; .. .c_4. Writing the
recursion equation

it =Co 2t C1 2y FCo Zy ot F Gy 2y
in vector form we get

(ZLZ v1Z0422Z 43...254)=(CgCiCyCy...C4) 2 (*)



Linear Complexity

where the rows (and columns) of the matrix Z are vectors

(Zy Zy o1 2 4902 43 - - -Zg4a ), fork=0,1,...,L - 1. Claim b) follows

immediately from this representation. Further, if L subsequent states

are linearly dependent, the sequence satisfies a linear recursion

relation of length (at most) L -1, and can be generated using a LFSR of

length less than L . This gives a).

Finally, if at least 2L terms of the sequence are given, then the L vectors
(Z, Zp o1 Z 420 2 43 - - - Z4pq1), K=0,1,..L

that determine the columns of the matrix Z in equation (*) are known.

By a), the matrix Z is invertible. This gives a unique solution for the tap

constants (¢, ¢, C, C5 . . .C_4). O



Linear Complexity

Now we know:

1. Any finite or periodic sequence has a finite linear complexity. Linear
complexity is less than or equal to the length and the period of the
sequence.

2. If we know the linear complexity of the sequence we can compute
the feedback polynomial. The feedback polynomial is unique if the
length of the available sequence is at least twice as much as the
linear complexity.

Question:
How can we determine the linear complexity for a sequence?
Answer:

Using Berlekamp-Massey Algorithm



Linear Complexity Change Lemma

Denote: S =242,2,,2,,. ..
SK =24,24,25, ...y Zp4
L, = LC(SW)

fk)(x) = polynomial of degree L, such that S® can be
generated using an LFSR with feedback polynomial f)(x)

Lemma. If LFSR with f®)(x) does not generate Sk*1) then
Proof. fk(x) generates Sk*') + {00...01}, that is, S&*1) with the last bit flipped ,
hence LC (S&*1) + {00...01}) = L,. Then
L_“(_j
k+1
k+1=LC(00...01) =LC ((S**" + 00...01)+ Sk)) <
LC (S**V + 00...01) + LC(S**) =L, + L.,

from where the claim follows.



Linear Complexity: Berlekamp-Massey

Berlekamp-Massey: If f&)(x) does not generate S&*1) then

and

f (k+1) (X) = y bl f (K) (X) + y Hea KM=l £ (M) (X)

where m is the largest index such that L, < L, . That is, m the previous
iIndex at which the linear complexity changed.

Comments:
(1) BM algorithm may give feedback polynomials with c, = 0.

(2) Polynomial f®)(x) is not unique unless degree of fk)(x) is < k/2.



Berlekamp-Massey Algorithm

K = number of terms observed

Z,.1 = k" term observed

1. Intialize k=0,L, =0, f®(x)=1.1Ifall z, =0, output L =0, f (x) =1.

2. Else, setr to be the least index such that z, , = 1. Then set
m=r-1,L,=0, fM(x)=1,andsetL. =r, fO(X)=1+X".

3. Setk=r.
Check if f ®)(x) generates z, from the preceeding terms of the
sequence. If yes, set f &*1)(x) = f ®)(x) and L,,, = L,.

5.  Else use Berlekamp-Massey theorem to compute L,,, and f &*1)(x).
If L.,>L, setm=k, L, =L, andfM(x)="f&(x).
If z, the last term, output f(x) = f &*)(x) and L = L.
Else set k = k+1, and go to 4.



Berlekamp-Massey: Example

K Zy .1 L, f &)(x) m
. VR L N
1 1 r=1 14+x" =1+X 0
2 LI T TAX 9O
3 0 2 X(1+xX) +1=1+x+x? 2
4 - Z S 2.
5 1 3 X32:x2 + x34+21.(1 + X)
=1+x+x3 4
0 1+x+x3 4
1+x+x3 4
1 1+x+x3 4

Initialisation
the first index
such that z,_,=1

l¢—

“— |ajump:
k=2, L, =1
m=0, L, =0

a jump:
k=4, L, =2
m=2, L, =1
k+1=5, L,,,=3




LC profile

The jumps are symmetric

over the line L, = k/2

ok

number of terms
observed



Sanastoa

LFSR = lineaarinen siirtorekisteri
connection polynomial = kytkentapolynomi
feedback polynomial = takaisinsyottopolynomi
tap constant = hana (kytkin) vakio

state = tila

power series = potenssisarja

enerating function = generoiva funktio
initialise = alustaa

irreducible = jaoton

recursion = rekursio, palautuvuus
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