T-79.5501
Cryptology

Notes from Lecture 3:
- Euler Φ-function
- Finite fields
- Structure of finite fields
- Galois Fields
Euler Phi-function

See separate text

Vocabulary:
prime: alkuluku
relatively prime, coprime: suhteellinen alkuluku, keskenään jaottomat
multiplicative inverse: käänteisluku
ring: rengas
field: kunta
Finite fields

Let $m \geq 2$ be prime. Then all numbers a, $0 < a < m$, are coprime with m, and hence have multiplicative inverses modulo m. It means that the ring \mathbb{Z}_m with modulo m arithmetic is a field.

Fact. The number of elements of a finite field is a prime power p^n, where p is prime and $n \geq 1$. A finite field with $n > 1$ can be constructed as a Galois field (polynomial field), see below.
Structure of a finite field

See: Textbook, Section 5.2.3, and separate text.

\[\mathbb{Z}_n^* = \{a \mid 0 < a < n, \gcd(a,n) = 1\} \]

multiplicative group of the ring \(\mathbb{Z}_n \)

\[|\mathbb{Z}_n^*| = \Phi(n) \]

cyclic subgroup: sykliinen aliryhmä

order: kertaluku

primitive: primitiivinen
Galois Field

In Galois fields
full of flowers
primitive elements
dance for hours.

S.B. Weinstein

Textbook, Section 6.4