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Cryptology

Notes from Lecture 2:
- Entropy of key
- Unicity Distance
- Design principles for symmetric ciphers
- Modular arithmetic



Key length
key length in bits = key entropy

if and only if the keys are chosen equiprobably

Example. Bluetooth PIN
Maximum length 128 bits. 
Maximum entropy = 128 bits never achieved in practise. 
Two reasons:
1) User selects PIN (in a hurry, to set up a connection)
2) Encoding of keypad characters. Each character takes 8 

bits => PIN has at most 16 characters. 
Numeric PIN: max entropy ~ 16 log210 ~ 53
Alphanumeric PIN: max entropy = 16 log236 ~ 83



Ciphertext only attack
How much ciphertext is needed to determine the key from

ciphertext only? (assuming no bounds on the 
computations adversary needs to make)

Example: Exhaustive key search given a ciphertext. With
each possible key candidate perform decryption, and 
see if the result makes sense. Works only if plaintext not
completely random.

Shift cipher, ciphertext: WNAJW 
d5(WNAJW) = river; d22(WNAJW) = arena
Key is not uniquely determined. 
Using statistical characteristics of plaintext language we

can determine how long plaintext must be, on the 
average, to determine the key uniquely. 



Theorem 2.10
Let (P, C, K, E, D) be a cryptosystem. Then
H(K|C) = H(K) + H(P) – H(C).

Proof: K and P independent =>
H(K,P,C) = H(K,P) = H(K) + H(P).
On the other hand,
H(K,P,C) = H(K,C) = H(C) + H(K|C). □



Example 2.3 Continued
H(P) ≈ 0.81
H(K) ≈1.5
H(C) ≈1.85
Thm 2.10 tells H(K|C) = 0.81 + 1.5 – 1.85 = 0.46.
Can be computed also directly: 
H(K|C) = ∑yPr[y] H(K|y) =
1/8 ·H(K|1)+7/16 ·H(K|2) +1/4 ·H(K|3) + 3/16 ·H(K|4)
where, e.g. H(K|3) = - ¾ log2(¾) – ¼ log2(¼) ≈ 0.8, 
since Pr[K1|3] = 0, Pr[K2|3] = ¾ and Pr[K3|3] = ¼

Conclusion: The average uncertainty about the key is 0.46 
bits if one ciphertext character is given.



Entropy of language
Definition 2.7: Suppose L is a language. The 

entropy of L is defined as
HL = limn->∞ H(Pn)/n.

Here P denotes the random variable of one
character, P2 the random variable of two
characters, …, Pn a word of n characters. Let P
be the set of possible characters. Then it follows
from Thm 2.6 and Cor 2.9 that

H(Pn) ≤ n H(P) ≤ n log2|P|, for all n, 
with equalities if and only if the language is 
purely random. It follows that HL ≤ log2|P|.



Redundancy of language

Redundancy RL of L is defined as
RL = 1 – HL/ log2|P|.

Example. L English, P alphabet of 26 characters, 
log2|P| ≈ 4,7 
H(P) ≈ 4,15 
H(P2)/2 ≈ 3,62 
H(P3)/3 ≈ 3.22 …
HL ≈ 1,5 (one estimate)



Unicity distance (Def 2.8)
Assume |P| = |C|. Then

H(Cn) – H(Pn) ≈ nlog2|C| - nHL
≈ nlog2|C| - (nlog2|P| - nRL log2|P|) = n RLlog2|P| . 

From Thm 2.10 we get
H(K|Cn) ≈ H(K) – n RLlog2|P| 

= log2|K| – n RLlog2|P|, 
which gives an estimate of the entropy of the key
given n characters of ciphertext. The key is 
uniquely determined exactly if H(K|Cn) = 0. This
happens approximately for n = n0, where

n0 = log2|K|/ RLlog2|P|
Example: see separate note.



Stream ciphers
Let (P,C,K,L,E,D, g) be a synchronous stream

cipher (Definition 1.6)
g(K,i) = zi key-stream generation
yi = ezi(xi) encryption
xi = dzi(yi) decryption

Requirement:
Key-stream {zi} should be indistinguishable from

one-time-pad



Block Ciphers
A block cipher is a cryptosystem (P,C,K, E,D), for 

which it is typical that the same encryption
operation eK is applied to a number of 
consequent data blocks. 

Even if H(K|Cn)=0 it should be computationally
infeasible to solve for the key given ciphertext
and any known plaintext features.

Shannon: Design the encryption operation for a 
block cipher as a composition of different
transformations which produce diffusion and 
confusion. 



Modular arithmetic

Given a positive integer m and any two
integers a and b, we say that a is congruent
to b modulo m, if m divides b – a. We then
denote a ≡ b (mod m).

When a is divided by m, there is a unique
remainder, that is, an integer r, 0 ≤ r < m, 
such that a = km + r, or what is equivalent,  
a ≡ r (mod m). We also denote r = a mod m. 
We identify a with its remainder modulo m 
and compute with remainders modulo m. 



Solving an equation mod m
Assume gcd(a,m) = 1. If ax ≡ ay (mod m), then x ≡ y (mod m). 
It follows that

{ax mod m | x = 0,1,…,m-1} = {0,1,…,m-1} = Zm, 
which means that for all b in Zm, the equation

ax ≡ b (mod m) (1)
has a unique solution. 

If gcd(a,m) = d, then the equation (1) has a solution if and 
only if d divides b. Then the number of solutions is d. To 
solve the equation (1), divide it first by d to get:

(a/d)x ≡ b/d (mod m/d). (2)
Then gcd (a/d,m/d) = 1, and (2) has a unique solution x0 

modulo m/d. This gives d solutions mod m. The are: 
x0, x1=x0+m/d, x2=x0+2m/d, …,xd-1=x0+(d-1)m/d.



Inverse mod m
It follows that equation

ax ≡ 1 (mod m)
has a solution if and only if gcd(a,m) = 1. If a 
solution exists it is unique, and we denote it
by x = a-1 mod m. It is the multiplicative
inverse of element a modulo m.



Euclidean algorithm
see text-book 5.2.1
The Chinese Remainder Theorem
see text-book 5.2.2
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