T-79.5501 Cryptology

Notes from Lecture 2:

- Entropy of key
- Unicity Distance
- Design principles for symmetric ciphers
- Modular arithmetic

Key length

key length in bits = key entropy if and only if the keys are chosen equiprobably

Example. Bluetooth PIN

Maximum length 128 bits.

Maximum entropy = 128 bits never achieved in practise.

Two reasons:

- 1) User selects PIN (in a hurry, to set up a connection)
- 2) Encoding of keypad characters. Each character takes 8 bits => PIN has at most 16 characters.
 Numeric PIN: max entropy ~ 16 log₂10 ~ 53
 Alphanumeric PIN: max entropy = 16 log₂36 ~ 83

Ciphertext only attack

- How much ciphertext is needed to determine the key from ciphertext only? (assuming no bounds on the computations adversary needs to make)
- Example: Exhaustive key search given a ciphertext. With each possible key candidate perform decryption, and see if the result makes sense. Works only if plaintext not completely random.
- Shift cipher, ciphertext: WNAJW
- d_5 (WNAJW) = river; d_{22} (WNAJW) = arena
- Key is not uniquely determined.
- Using statistical characteristics of plaintext language we can determine how long plaintext must be, on the average, to determine the key uniquely.

Theorem 2.10

Let $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ be a cryptosystem. Then H(K|C) = H(K) + H(P) - H(C).

Proof: K and P independent => H(K,P,C) = H(K,P) = H(K) + H(P). On the other hand, H(K,P,C) = H(K,C) = H(C) + H(K|C). \Box

Example 2.3 Continued

- H(**P**) ≈ 0.81
- H(**K**) ≈1.5
- H(**C**) ≈1.85
- Thm 2.10 tells $H(\mathbf{K}|\mathbf{C}) = 0.81 + 1.5 1.85 = 0.46$.
- Can be computed also directly:
- $H(\mathbf{K}|\mathbf{C}) = \sum_{y} Pr[y] H(\mathbf{K}|y) =$
- 1/8 ·H(**K**|1)+7/16 ·H(**K**|2) +1/4 ·H(**K**|3) + 3/16 ·H(**K**|4) where, e.g. H(**K**|3) = - $\frac{3}{4} \log_2(\frac{3}{4}) - \frac{1}{4} \log_2(\frac{1}{4}) \approx 0.8$, since Pr[K₁|3] = 0, Pr[K₂|3] = $\frac{3}{4}$ and Pr[K₃|3] = $\frac{1}{4}$

Conclusion: The average uncertainty about the key is 0.46 bits if one ciphertext character is given.

Entropy of language

Definition 2.7: Suppose L is a language. The entropy of L is defined as

 $H_L = \lim_{n \to \infty} H(\mathbf{P}^n)/n.$

Here **P** denotes the random variable of one character, **P**² the random variable of two characters, ..., **P**ⁿ a word of n characters. Let \mathscr{P} be the set of possible characters. Then it follows from Thm 2.6 and Cor 2.9 that

 $H(\mathbf{P}^n) \leq n H(\mathbf{P}) \leq n \log_2 |\mathscr{P}|$, for all n, with equalities if and only if the language is purely random. It follows that $H_{\perp} \leq \log_2 |\mathscr{P}|$.

Redundancy of language

Redundancy R_L of L is defined as $R_L = 1 - H_L / \log_2 |\mathcal{P}|$.

Example. L English, \mathscr{P} alphabet of 26 characters, $\log_2 |\mathscr{P}| \approx 4,7$ $H(\mathbf{P}) \approx 4,15$ $H(\mathbf{P}^2)/2 \approx 3,62$ $H(\mathbf{P}^3)/3 \approx 3.22 \dots$ $H_1 \approx 1,5$ (one estimate)

Unicity distance (Def 2.8)

Assume $|\mathcal{F}| = |\mathcal{C}|$. Then $H(\mathbf{C}^n) - H(\mathbf{P}^n) \approx n \log_2 |\mathcal{C}| - n H_1$ $\approx n\log_2|\mathcal{C}| - (n\log_2|\mathcal{F}| - nR_1 \log_2|\mathcal{F}|) = nR_1\log_2|\mathcal{F}|$. From Thm 2.10 we get $H(\mathbf{K}|\mathbf{C}^n) \approx H(\mathbf{K}) - n R_1 \log_2 |\mathcal{F}|$ $= \log_2 |\mathcal{K}| - n R_1 \log_2 |\mathcal{F}|,$ which gives an estimate of the entropy of the key given n characters of ciphertext. The key is uniquely determined exactly if $H(\mathbf{K}|\mathbf{C}^n) = 0$. This happens approximately for $n = n_0$, where

$$n_0 = \log_2 |\mathcal{K}| / R_L \log_2 |\mathcal{F}|$$

Example: see separate note.

Stream ciphers

Let
$$(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{L}, \mathcal{E}, \mathcal{D}, g)$$
 be a synchronous stream
cipher (Definition 1.6)
 $g(K,i) = z_i$ key-stream generation
 $y_i = e_{zi}(x_i)$ encryption
 $x_i = d_{zi}(y_i)$ decryption

Requirement:

Key-stream $\{z_i\}$ should be indistinguishable from one-time-pad

Block Ciphers

- A block cipher is a cryptosystem ($\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}$), for which it is typical that the same encryption operation e_{K} is applied to a number of consequent data blocks.
- Even if H(**K**|**C**ⁿ)=0 it should be computationally infeasible to solve for the key given ciphertext and any known plaintext features.
- Shannon: Design the encryption operation for a block cipher as a composition of different transformations which produce diffusion and confusion.

Modular arithmetic

Given a positive integer m and any two integers a and b, we say that a is congruent to b modulo m, if m divides b - a. We then denote $a \equiv b \pmod{m}$.

When a is divided by m, there is a unique remainder, that is, an integer r, $0 \le r < m$, such that a = km + r, or what is equivalent, a \equiv r (mod m). We also denote r = a mod m. We identify a with its remainder modulo m and compute with remainders modulo m.

Solving an equation mod m

Assume gcd(a,m) = 1. If $ax \equiv ay \pmod{m}$, then $x \equiv y \pmod{m}$. It follows that

{ax mod m | x = 0,1,...,m-1} = {0,1,...,m-1} = Z_m , which means that for all b in Z_m , the equation ax = b (mod m) (1)

has a unique solution.

If gcd(a,m) = d, then the equation (1) has a solution if and only if d divides b. Then the number of solutions is d. To solve the equation (1), divide it first by d to get:

 $(a/d)x \equiv b/d \pmod{m/d}.$ (2) Then gcd (a/d,m/d) = 1, and (2) has a unique solution x_0 modulo m/d. This gives d solutions mod m. The are:

 $x_0, x_1 = x_0 + m/d, x_2 = x_0 + 2m/d, \dots, x_{d-1} = x_0 + (d-1)m/d.$

Inverse mod m

It follows that equation

 $ax \equiv 1 \pmod{m}$

has a solution if and only if gcd(a,m) = 1. If a solution exists it is unique, and we denote it by $x = a^{-1} \mod m$. It is the multiplicative inverse of element a modulo m.

Euclidean algorithm see text-book 5.2.1 The Chinese Remainder Theorem see text-book 5.2.2