Euler Phi-Function

In section 1.1.3 of the text-book, Definition 1.3, the Euler phi-function is defined as follows.

Definition 1.3 (Stinson) Suppose $a \geq 1$ and $m \geq 2$ are integers. If $\gcd(a, m) = 1$ then we say that a and m are relatively prime. The number of integers in \mathbb{Z}_m that are relatively prime to m is denoted by $\phi(m)$. We set $\phi(1) = 1$. The function

$$m \mapsto \phi(m), \ m \geq 1$$

is called the Euler phi-function, or Euler totient function. Clearly, for m prime, we have $\phi(m) = m - 1$. Further, we state the following fact without proof, and leave the proof as an easy exercise.
Fact. If m is a prime power, say, $m = p^c$, where p is prime and $p > 1$, then \(\phi(m) = m(1 - \frac{1}{p}) = p^c - p^{c-1} \).

The main purpose of this section is to prove the multiplicative property of the Euler phi-function.

Proposition. Suppose that $m \geq 1$ and $n \geq 1$ are integers such that \(\gcd(m, n) = 1 \). Then \(\phi(m \times n) = \phi(m) \times \phi(n) \).

Proof. If $m = 1$ or $n = 1$, then the claim holds. Suppose now that $m > 1$ and $n > 1$, and denote:

\[
A = \{ a \mid 1 \leq a < m, \gcd(a, m) = 1 \} \\
B = \{ b \mid 1 \leq b < n, \gcd(b, n) = 1 \} \\
C = \{ c \mid 1 \leq c < m \times n, \gcd(c, m \times n) = 1 \}.
\]

Then we have that \(|A| = \phi(m) \), \(|B| = \phi(n) \), and \(|C| = \phi(m \times n) \). We show that C has equally many elements as the set $A \times B = \{(a, b) \mid a \in A, b \in B \}$, from which the claim follows.
Since gcd(m, n) = 1, we can use the Chinese Remainder Theorem, by which the mapping
$$
\pi : \mathbb{Z}_{mn} \rightarrow \mathbb{Z}_m \times \mathbb{Z}_n, \pi(x) = (x \mod m, x \mod n)
$$
is bijective. Now we observe that $A \subset \mathbb{Z}_m$, $B \subset \mathbb{Z}_n$, and $C \subset \mathbb{Z}_{m \times n}$.
Moreover, it holds that $x \in C$ if and only if $\pi(x) \in A \times B$, which we see by writing the following chain of equivalences:
\[
gcd(x, m \times n) = 1 \iff gcd(x, m) = 1 \text{ and } gcd(x, n) = 1 \\
\iff gcd(x \mod m, m) = 1 \text{ and } gcd(x \mod n, n) = 1.
\]

\square
As a corollary, we get Theorem 1.2 of the textbook.

Theorem 1.2 Suppose

\[m = \prod_{i=1}^{k} p_i^{e_i}, \]

where the integers \(p_i \) are distinct primes and \(e_i > 0, 1 \leq i \leq k \). Then

\[\phi(m) = \prod_{i=1}^{k} (p_i^{e_i} - p_i^{e_i-1}). \]