Euler Phi-Function

In section 1.1.3 of the text-book, Definition 1.3, the Euler phi-function is defined as follows.

Definition 1.3 (Stinson) Suppose $a \ge 1$ and $m \ge 2$ are integers. If gcd(a, m) = 1 then we say that a and m are relatively prime. The number of integers in \mathbb{Z}_m that are relatively prime to m is denoted by $\phi(m)$.

We set $\phi(1) = 1$. The function

$$m \mapsto \phi(m), \ m \ge 1$$

is called the Euler phi-function, or Euler totient function. Clearly, for m prime, we have $\phi(m) = m - 1$. Further, we state the following fact without proof, and leave the proof as an easy exercise.

Fact. If m is a prime power, say, $m = p^e$, where p is prime and p > 1, then $\phi(m) = m(1 - \frac{1}{p}) = p^e - p^{e-1}$.

The main purpose of this section is to prove the multiplicative property of the Euler phi-function.

Proposition. Suppose that $m \ge 1$ and $n \ge 1$ are integers such that gcd(m,n) = 1. Then $\phi(m \times n) = \phi(m) \times \phi(n)$.

Proof. If m = 1 or n = 1, then the claim holds. Suppose now that m > 1 and n > 1, and denote:

$$\begin{array}{lcl} A & = & \{a \,|\, 1 \leq a < m, \; \gcd(a,m) = 1\} \\ B & = & \{b \,|\, 1 \leq b < n, \; \gcd(b,n) = 1\} \\ C & = & \{c \,|\, 1 \leq c < m \times n, \; \gcd(c,m \times n) = 1\}. \end{array}$$

Then we have that $|A| = \phi(m)$, $|B| = \phi(n)$, and $|C| = \phi(m \times n)$. We show that C has equally many elements as the set $A \times B = \{(a,b) \mid a \in A, b \in B\}$, from which the claim follows.

Since gcd(m, n) = 1, we can use the Chinese Remainder Theorem, by which the mapping

$$\pi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n, \ \pi(x) = (x \bmod m, x \bmod n)$$

is bijective. Now we observe that $A \subset \mathbb{Z}_m$, $B \subset \mathbb{Z}_n$, and $C \subset \mathbb{Z}_{m \times n}$. Moreover, it holds that $x \in C$ if and only if $\pi(x) \in A \times B$, which we see by writing the following chain of equivalences:

$$\gcd(x, m \times n) = 1 \iff \gcd(x, m) = 1 \text{ and } \gcd(x, n) = 1$$

 $\Leftrightarrow \gcd(x \bmod m, m) = 1 \text{ and } \gcd(x \bmod n, n) = 1.$

As a corollary, we get Theorem 1.2 of the textbook.

Theorem 1.2 Suppose

$$m = \prod_{i=1}^k p_i^{e_i},$$

where the integers p_i are distinct primes and $e_i > 0$, $1 \le i \le k$. Then

$$\phi(m) = \prod_{i=1}^{k} (p_i^{e_i} - p_i^{e_i-1}).$$