T-79.5501 Cryptology Homework 11 December 7 & 8, 2005

- 1. (Stinson 6.18) In elliptic curves computing -P given a point P is trivial, compared to finite multiplicative groups based on fields where the analogical operation is taking inverses (using the Euclidean algorithm). By this property the double-and-add algorithm for point multiplication can be speeded up by using a NAF representation of the multiplier (see Section 6.5.5).
 - a) Determine the NAF representation of the integer 87.
 - b) Using the NAF representation of 87, use Algorithm 6.5 to compute 87P, where P = (2, 6) is a point on the elliptic curve $y^2 = x^3 + x + 26$ defined over \mathbb{Z}_{127} . Show the partial results during each iteration of the algorithm.
- 2. Consider p = 1231, which is a prime. Find an element of order q = 41 in the multiplicative group \mathbb{Z}_{1231}^* .
- 3. Consider a variation of the ElGamal Signature Scheme giving message recovery. The public parameters of this scheme are odd primes p and q such that q divides p-1, and an element α of the field \mathbb{Z}_p such that the multiplicative order of α is equal to q. A user's private key is an integer a such that 1 < a < q, and the user's public key β is computed as $\beta = \alpha^a \mod p$. A signature of a message $x \in \mathbb{Z}_q$ is a pair (γ, δ) , where $\gamma \in \mathbb{Z}_q$ and $\delta \in \mathbb{Z}_q$ are produced as follows: The user generates a secret random integer k such that 1 < k < q and computes

 $\gamma = (x - (\alpha^k \bmod p)) \bmod q$

$$\delta = (k - a\gamma) \mod q.$$

- a) Show how the message x can be recovered from the signature (γ, δ) given the public parameters p, q, α and β .
- b) Let p = 1999 and q = 37. Show that the multiplicative order of the element $\alpha = 2^{54} \mod 1999 = 1278$ is equal to 37.
- c) Given parameters p, q and α as in b), assume the private key is a = 8. Compute the public key.
- d) Compute a signature of the message x = 12 using the private key and show how the signature is verified.
- 4. Consider a variation of El Gamal Signature Scheme in $GF(2^n)$. The public parameters are n, qand α , where q is a divisor of $2^n - 1$ and α is an element of $GF(2^n)$ of multiplicative order q. A user's secret key is $a \in \mathbb{Z}_q$ and the public key β is computed as $\beta = \alpha^a$ in $GF(2^n)$. To generate a signature for message x a user with secret key a generates a secret value $k \in \mathbb{Z}_q^*$ and computes the signature (γ, δ) as

$$\begin{array}{rcl} \gamma & = & \alpha^k \, (\mbox{ in } GF(2^n)) \\ \delta & = & (x - a\gamma') k^{-1} \mbox{ mod } q, \end{array}$$

where γ' is an integer representation of γ . Suppose Bob is using this signature scheme, and he signs two messages x_1 and x_2 , and gets signatures (γ_1, δ_1) and (γ_2, δ_2) , respectively. Alice sees the messages and their respective signatures, and she observes that $\gamma_1 = \gamma_2$.

- a) Describe how Alice can now derive information about Bob's private key.
- b) Suppose n = 8, q = 15, $x_1 = 1$, $x_2 = 4$, $\delta_1 = 11$, $\delta_2 = 2$, and $\gamma'_1 = \gamma'_2 = 7$. What Alice can say about Bob's private key?