1. Consider ElGamal Public-key Cryptosystem in Galois field $GF(2^4)$ with polynomial $x^4 + x + 1$ and with the primitive element $\alpha = 0010 = x$. Your private key is $a = 7$.
 a) Compute your public key β.
 b) Decrypt ciphertext (0100,1110) using your secret key.

2. It is given that
 \[12^{2004} \equiv 4815 \pmod{50101}, \]
 where 50101 is a prime. Show that the element $\alpha = 4815$ is of order 25 in the multiplicative group $\mathbb{Z}_{50101}^\times$.

3. Using Shanks’ algorithm attempt to determine x such that
 \[4815^x \equiv 48794 \pmod{50101}. \]
 Hint: See Problem 2.

4. Element $\alpha = 202$ is of order 16 in the multiplicative group \mathbb{Z}_{2005}^\times. It is given that element $\beta = 133$ is in the subgroup generated by α. Using Shanks’ algorithm compute the discrete logarithm x of $\beta = 133$ to the base $\alpha = 202$, that is, solve the congruence
 \[202^x \equiv 133 \pmod{2005}. \]

5. Solve the congruence
 \[3^x \equiv 135(\pmod{353}) \]
 using the Pohlig-Hellman algorithm.

6. Let E be the elliptic curve $y^2 = x^3 + x + 13$ defined over \mathbb{Z}_{31}.
 a) Determine the quadratic residues modulo 31.
 b) Determine the points on E.

7. Let p be prime and $p > 3$. Show that the following elliptic curves over \mathbb{Z}_p have $p + 1$ points:
 a) $y^2 = x^3 - x$, for $p \equiv 3(\pmod{4})$. Hint: Show that from the two values $\pm r$ for $r \neq 0$ exactly one gives a quadratic residue modulo p.
 b) $y^2 = x^3 - 1$, for $p \equiv 2(\pmod{3})$. Hint: If $p \equiv 2(\pmod{3})$, then the mapping $x \mapsto x^3$ is a bijection in \mathbb{Z}_p.