1. Bob is using RSA cryptosystem and his modulus is \(n = pq = 59 \times 167 = 9853 \). Bob chooses an odd integer for his public encryption exponent \(b \). Show that if the plaintext is 2005 then the ciphertext is equal to 2005.

2. a) Use the square-and-multiply algorithm to compute \(2^{615} \mod 667 \).

 b) Determine \(2^{-1} \mod 667 \). Compare this with a) and explain what you see.

3. Let \((F_n)\) be the sequence of Fibonacci numbers, that is, positive integers such that \(F_0 = 0, F_1 = 1 \) and \(F_n = F_{n-1} + F_{n-2} \), for \(n = 2, 3, \ldots \).

 a) Show that the Euclidean algorithm takes \(n - 2 \) iterations to compute \(\gcd(F_n, F_{n-1}) \).

 b) Show that
 \[
 F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.
 \]

 c) Show that, for \(n > 2 \),
 \[
 \left(\frac{1 + \sqrt{5}}{2} \right)^{n-2} < F_n < \left(\frac{1 + \sqrt{5}}{2} \right)^{n-1},
 \]
 or what is the same,
 \[
 n - 2 < \log_f F_n < n - 1, \quad \text{where} \quad f = \frac{1 + \sqrt{5}}{2}.
 \]

4. (Stinson 5.14) Prove that RSA Cryptosystem is not secure against a chosen ciphertext attack using the following steps.

 (a) First, show that the encryption operation is multiplicative, that is, \(e_K(x_1 x_2) = e_K(x_1) e_K(x_2) \), for any two plaintexts \(x_1 \) and \(x_2 \).

 (b) Next, use the multiplicative property to construct an example how you can decrypt a given ciphertext \(y \) by obtaining the decryption \(\hat{x} \) of a different (but related) ciphertext \(\hat{y} \).

5. (a) Evaluate the Jacobi symbol
 \[
 \left(\frac{801}{2005} \right).
 \]
 You should not do any factoring other than dividing out powers of 2.

 (b) Show that 2005 is an Euler pseudoprime to the base 801.

6. Let \(n = pq \), where \(p \) and \(q \) are primes. We can assume that \(p > q > 2 \) and we denote \(d = \frac{p-q}{2} \) and \(x = \frac{p+q}{2} \). Then \(n = x^2 - d^2 \).

 a) Show that if \(d < \sqrt{p+q} \) then \(x \) can be computed by taking the square root of \(n \) and by rounding the result up to the nearest integer.
b) Test the method described in a) (if you have a calculator available) for $n = 4007923$

to determine x, and further to determine p and q.