- 1. Determine the two least significant decimal digits of the integer 2005^{2005} .
- 2. (Stinson 5.9) Suppose that p = 2q + 1, where p and q are odd primes. Suppose further that $\alpha \in \mathbb{Z}_p^*$, $\alpha \neq \pm 1 \pmod{p}$. Prove that α is a primitive element modulo p if and only if $\alpha^q \equiv -1 \pmod{p}$.
- 3. Find the smallest primitive element in \mathbb{Z}_{17}^* . (Hint: use the result of problem 2.) What are the orders of elements 2 and 4? Give 2 and 4 as powers of the smallest primitive element.
- 4. Consider the Galois field $\mathbb{F} = \mathbb{Z}_2[x]/(f(x))$, with the polynomial $f(x) = x^5 + x^2 + 1$. Perform the following computations in this field.
 - a) Compute $(x^4 + x)(x^3 + x^2 + 1)$.
 - b) Using the Euclidean Algorithm, compute $(x^3 + x)^{-1}$.
 - c) Compute x^{35} . (Hint: $x^5 = x^2 + 1$.)
- 5. Consider the finite field $\mathbb{F} = \mathbb{Z}_2[x]/(f(x))$, where $f(x) = x^4 + x + 1$. Plaintext consists of equally likely strings of 4 bits with a single 1 bit. In each string the other 3 bits are zeros. The encryption method is a stream cipher with $\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathbb{F}^*$. Given a key $K = \beta \in \mathbb{F}^*$ and a plaintext sequence $x_i, i = 1, 2, \ldots$, the keystream and the encryption rule is defined as follows

$$z_i = \beta^i$$
, and $y_i = e_{z_i}(x_i) = \beta^i x_i, i = 1, 2, \dots$

It is given that the 3rd and 4th terms of the ciphertext sequence are

 $y_3 = 1100$ and $y_4 = 0111$.

Then exactly two keys are possible. What are they? (Hint: To facilitate the computations you may represent the elements of \mathbb{F}^* as powers of a primitive element α . For example, if you choose $\alpha = 0010$, then the four possible plaintext terms are 1, α , α^2 or α^3 .)

6. Consider Galois field $\mathbb{F} = \mathbb{Z}[x]/(m(x))$ with polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. The elements of \mathbb{F} are given as octets XY using hexadecimal notation. Suppose that two polynomials c(x) and d(x) with coefficients in \mathbb{F} are given as follows:

$$c(x) = 03x^3 + 01x^2 + 01x + 02$$

$$d(x) = 0Bx^3 + 0Dx^2 + 09x + 0E$$

Show that $c(x)d(x) = 01 \pmod{(x^4 + 01)}$. The polynomial c(x) defines the MixColumn transformation in Rijndael and d(x) defines its inverse transformation.

7. (Stinson 6.4 (a)) Suppose that p is an odd prime and k is a positive integer. The multiplicative group $\mathbb{Z}_{p^k}^*$ has order $\phi(p^k) = p^{k-1}(p-1)$, and is known to be cyclic. A generator of this group is called a *primitive element modulo* p^k . Suppose that α is a primitive element modulo p. Prove that at least one of α or $\alpha + p$ is a primitive element modulo p^2 .