Formal Conformance Testings 2006

Lecture 10
2nd November 2004

Specification-based testing algorithms

- Algorithms for running testing, based on a specification
Basic on-the-fly algorithm

\[E := \emptyset, \quad C := 0 \]
\[\text{repeat} \]
\[X := \{ <E \cup <m, C>, C + \varepsilon > | m \in \Sigma, \varepsilon > 0, <E \cup <m, C>, C + \varepsilon > \in \text{Tr}(S) \} \]
\[\text{wait:} \]
\[X_{\tau} := \{ <E, C + \varepsilon > | \varepsilon > 0, <E, C + \varepsilon > \in \text{Tr}(S) \} \]
\[N := X_{\tau} \cup X \]
\[\text{if } [N = \emptyset] \text{ then FAIL} \]
\[\text{if } [\text{stopping criterion}] \text{ then PASS} \]
\[\text{choose } T = <E', t> \text{ from } N \]
\[\text{if } T|_{C} \in \Sigma \text{ then } \{ \text{send } T|_{C}, E := E \cup <T|_{C}, C> \} \]
\[\text{wait for input until } t \quad \text{// note: } t > C \]
\[\text{if } [\text{input } m \text{ received at time } t' (C \leq t' < t)] \]
\[\text{then } E := E \cup <m, t'>; \quad C := t'; \quad X := \emptyset; \quad \text{goto wait} \]
\[\text{else } C := t \]

Correctness arguments

- \(<E, C>\) is "current" trace
- If there is no proper extension of \(<E, C>\) in \(\text{Tr}(S)\), we give FAIL verdict
 - FAIL or ERROR is correct, must show that ERROR is unnecessary
- Otherwise we "hypothesize" an extension of at most one, immediately occurring extra event
 - If the event is input to SUT, we produce that
 - The extension is legal (in \(\text{Tr}(S)\))
- We wait until the end of the extension
- If SUT produces events, these are recorded
- We now claim that ERROR verdict cannot result
Errors?

- At beginning of iteration \(i \), there is at least one extension until some time \(C + \epsilon \), otherwise \texttt{FAIL} is signalled.
- Suppose on next iteration \(i+1 \) the algorithm find empty \(N \), i.e. observed trace is outside specification.
- Because the extension chosen by the algorithm is always valid by construction, an output event must have occurred or missed.
- This happens always after the possible input event has been sent.
- Therefore all deviations from \(\text{Tr}(S) \) are attributable to output errors.

Abstract version

```
Choose valid continuation
  none found -> fail

Execute chosen continuation
  stopping criterion -> pass
```

Choosing test steps

- How to choose a test step = how to choose next continuation = testing heuristic
- Where to focus
- Where to “lead” the system under test

Overview

- This is a planning problem
- Assume we can somehow attach “value” to executed test runs
- Test runs that exercise “important parts” of the specification have more value
- We want to create a plan of correct test execution that results in a test run with high value
- But note that we don’t know what the SUT will do!
Planning types

- Conformant planning = linear plan that achieves its goal, no matter what the SUT does
- Single-agent planning = co-operative planning = plan that assumes that SUT co-operates
- Adversarial planning = planning against enemy = plan that assumes that SUT actively resists testing
- Stochastic planning = planning against nature = plan that assumes that SUT makes its own choices stochastically

Example

- Test that you can get 6 by throwing die
 - Conformant plan: none, as there is no way to enforce the die to give 6
 - Single-agent plan: roll once—the die will co-operate and give 6
 - Adversarial plan: no plan—how many times you roll, the die will always give something else than 6
 - Stochastic plan: roll the die until you get 6—the expected number of rolls is 6
Computational aspects

- Planning in general is very difficult
- Conformant plans do not always exist
- Single-agent planning is in practice cheaper than adversarial or stochastic planning

Discussion

- In practice SUTs are not co-operating nor adversarial; they are independent and stochastic, but their stochastic choice functions are not known
- Co-operative planning is a “quick heuristic”
- Adversarial planning is “worst case analysis” which guarantees in theory best worst-case performance—but is computationally very expensive
- Conformant planning only for simple systems
When to stop testing?

- Two heuristic problems in testing
 - What to do
 - When to stop
- If you have arbitrarily much time, you should test arbitrarily long
- In practice there is a trade–off between better testing and spending more resources
- This is the “stopping criterion”
- Trade–offs can be analyzed using rational decision theory and like theories
 - More on this later

A goal–oriented version

- A test execution algorithm that “aims” at a specific trace
- The trace is chosen by the algorithm, in a yet unspecified manner
Basic on-the-fly algorithm

\[E := \emptyset, C := 0 \]
repeat
\[X := \{ <E \cup <m, C>, C+\varepsilon > | m \in \Sigma, \varepsilon > 0, <E \cup <m, C>, C+\varepsilon > \in \text{Tr}(S) \} \]
wait:
\[X_{\tau} := \{ <E, C+\varepsilon > | \varepsilon > 0, <E, C+\varepsilon > \in \text{Tr}(S) \} \]
Choose a suitable \(G \) from \(\text{Tr}(S) \) s.t. \(<E, C> \) is proper prefix of \(G \)
\[N := (X_{\tau} \cup X) \cap \text{pfx}(G) \]
if \(N = \emptyset \) then \text{FAIL}
if \(\text{stopping criterion} \) then \text{PASS}
choose \(T = <E', t> \) from \(N \)
if \(T|_C \in \Sigma_w \) then
\{ send \(T|_C \), \(E := E \cup <T|_C, C> \) \}
wait for input until \(t \) \note{t > C}
if \(\text{input m received at time } t' (C \leq t' < t) \)
then \(E := E \cup <m, t'>; C := t'; X := \emptyset \); goto wait
else \(C := t \)

Abstract version

Choose target trace \(G \)
(extension of the present trace)

Choose valid continuation
that is a prefix of \(G \)

none found

fail

Execute chosen continuation

stopping criterion

pass
Comments

- Decision about “where to proceed” has been factored into two decisions:
 - What is the aim
 - What is the next step towards the aim

Property covering

- Assume there exists a universe of “properties”, and a procedure Universal_Property_Check that maps a trace and a specification to a set of properties
 - A set of properties that every “execution” of a specification (as a reference implementation) that produces the given trace has
Property covering (ctd.)

- Furthermore, assume there exists another procedure Plan_For_More_Properties that maps a set of properties, a trace, and a specification, to a new "goal" trace, such that an execution leading to the trace covers more properties.
- We get a greedy property-covering testing algorithm.

Basic on-the-fly algorithm

\[
\begin{align*}
E &:= \emptyset, C := 0; P := \emptyset \\
\text{repeat} &\\
X &:= \{ <E \cup <m, C>, C+\epsilon > | m \in \Sigma, \epsilon > 0, <E \cup <m, C>, C+\epsilon > \in \text{Tr}(S) \} \\
\text{wait:} &\\
X_t &:= \{ <E, C+\epsilon > | \epsilon > 0, <E, C+\epsilon > \in \text{Tr}(S) \} \\
P &:= P \cup \text{Universal_Property_Check}(E, C, S) \\
G &:= \text{Plan_For_More_Properties}(P, <E, C>, S) \\
\text{if } [\text{no } G \text{ found }] &\\& \text{Choose a suitable } G \text{ from } \text{Tr}(S) \text{ s.t. } <E, C> \text{ is proper prefix of } G \\
N &:= (X \cup X_t) \cap G \\
\text{if } [N = \emptyset] &\text{ then \textbf{FAIL}} \\
\text{if } [\text{stopping criterion }] &\text{ then \textbf{PASS}} \\
\text{choose } T = <E', t> \text{ from } N \\
\text{if } T'_e \in \Sigma, \text{ then } &\text{ send } T'_{C}, E := E \cup <T'_{C}, C> \} \\
\text{wait for input until } t &\text{ \text{\textbf{/ note: } t > C}} \\
\text{if } [\text{input } m \text{ received at time } t' (C \leq t' < t)] &\\& \text{ then } E := E \cup <m, t'>; C := t'; X := \emptyset; \text{goto wait} \\
\text{else } C &:= t
\end{align*}
\]

* because \(E \) may contain event \(e \) at time \(C \), in this case we must check that \(<E-e, C> \) is prefix of \(G \) and that \(G \) contains \(e \).
Abstract version

- Update property set P
- Choose target trace G (covering new properties)
- Choose valid continuation
 - none found: fail
 - stopping criterion: pass

Summary

- Basic on-the-fly algorithm
- Planning types
- Stopping criterion
- Goal-oriented testing
Interpreting programs as specifications

- A program (e.g. Java + UML program) is interpreted as a specification by considering it as a reference implementation
- Any behaviour that the reference implementation can produce is valid
- Any behaviour that the reference implementation could not produce is invalid
Notation

- Denote by $ETr(p)$ the set of execution traces the program can generate
- $ETr(p)$ assumed prefix-complete by construction
- Denote by $Tr(p)$ the largest subset of $ETr(p)$ that is serial

Computational view

- Given a program p and a trace T, it is difficult to check if $T \in Tr(p)$, from a computation point of view
 - Checking $T \in ETr(p)$ is an unsolvable problem (\Rightarrow infinite state model checking)
 - Checking $T \in Tr(p)$ additionally requires checking that there exists at least one family of arbitrarily long extensions of T
Computational view continued

▶ Using Tr(p) as a set of valid traces causes thus some real world complications—in the general case
▶ But if program p e.g.
 • always accepts all inputs, and
 • never crashes,
▶ then Tr(p) = ETr(p), and we are left “only” with the trace inclusion check

A dive deeper

▶ How do we check if T ∈ Tr(p) for a given program p?
▶ How do we compute the ”properties” that a trace ”necessarily” covers?
▶ How do we compute goal traces?
State space based computation

- $\text{Tr}(p)$ (for a program p) is external behaviour. It abstracts away the "internals" of the program.
- This is not practical from the computation point of view.
- Typically also the internal and "silent" computation steps count and cause difficulties.
- \rightarrow internal state spaces

State spaces

- A state is (here) a pair $<c, T>$ where c is an “internal control state” and T is an I/O trace produced “until now”.
- For every state s, there exists a set of successor states (potentially infinite), denoted by $\text{next}(s)$.
- If $s' \in \text{next}(s)$, we write also $s \rightarrow s'$.
State spaces

▷ Assume we can associate with a specification program
 • an initial state $s_0 = <c_0, \emptyset, 0>$
 • next state relation
▷ $ETr(p) = \{ T | \exists <c, T> : s_0 \rightarrow^* <c, T> \}$
▷ $Tr(p) = \text{maximal serial subset of } ETr(p)$
 • In practice we can sometimes assume that the seriality requirement is fulfilled implicitly i.e.
 $ETr(p) = Tr(p)$

Basic trace inclusion check algorithm

$W := \{s_0\}$
$V := \emptyset$
While $W \neq \emptyset$
 Choose $<c, T>$ from W
 If $T = T^*$
 Return FOUND
 Else if $T < T^*$
 $V := V \cup \{<c, T>\}$
 $W := W \cup (\text{next}(<c, T>) - V)$
 $W := W - \{<c, T>\}$
 Return NOT FOUND
Comments

- If next(s) is infinite, won’t work
 - Symbolic methods needed
- Does not necessarily terminate if
 - Infinite branches (next(s) infinite)
 - Arbitrarily many computation steps possible in finite real time
 (unboundedly many steps possible before trace end time stamp reaches a constant t)

Properties

- Suppose we can attach a set of properties P to every transition from s to s’
- Write s→_p s’ if there is a transition from s to s’ with properties P
Universal_Property_Check(T*, S)

W := {<s0, ∅>}
V := ∅
P := everything
While W ≠ ∅
 Choose <<c,T>,π> from W
 If T = T*
 P := P ∩ π
 Else if T ≺ T*
 V := V ∪ {<<c,T>, π>}
 N := { <s', π'> | s → Q s', π' = π ∪ Q }
 W := W ∪ (N - V)
 W := W - {<<c,T>, π>}
 If P is everything
 Return Trace not found
 Else
 Return P

Comments

 Computes the set of properties that every execution that produces a given trace must have
Plan_For_More_Properties(P,T*,S)

W := {<s0, ∅>}
V := ∅
While W ≠ ∅
 Choose <<c,T>,π> from W
 W := W – {<<c,T>,π>}
 If T ≼ T* or T* ≼ T
 If π ∉ P and T* ≺ T
 If (Universal_Property_Check(T,S) ∉ P)
 Return T
 Else
 V := V ∪ {<<c,T>,π>}
 N := {<s’, π’> | s →Q s’, π’ = π ∪ Q}
 W := W ∪ (N – V)
 Return Trace not found

Comments

- Finds a trace that implies properties that are not present in the set P
- Before the Universal_Property_Check, it holds that at least one way to reach the trace T implies new properties
- The Universal_Property_Check call is used to ensure that this holds for all alternative executions as well
Discussion

- Property = interesting feature in specification
- For example, a property = a state in a state chart model, or a method call in a Java class
- Intuition: it is good to exercise “many parts” of reference implementation rather than “few parts”
- But…

Discussion (ctd)

- … in general it is impossible to prove that this is a good idea
- So just a heuristic
Properties = coverage measures

- Known or used ways to measure “coverage” (properties)
 - Transitions of a state chart
 - States of a state chart
 - Lines visited
 - Branch coverage (true and false branches of switches)
 - Condition coverage (true and false valuations of “atomic” subexpressions in switch expressions)
 - ...

Improvements

- Greedy algorithms are not usually optimal → a better planner could reach all interesting properties in less testing steps
 - However becomes computationally more intensive
 - Greedy algorithm works rather well in practice
Implementing a toy FCT tool

- Assume all I/O with system is untimed and has the form of a single stimulus + single response
- Inputs A, B, C, ..., outputs 1, 2, 3, ...
- Can draw as a state machine
Step 1

- Create a trace inclusion checker
 - Trace e.g. “A1B3C4”
 - Return “pass” if trace found from state chart
 - Return “fail” if trace not in state chart, but every attempt to produce the trace from the state chart fails at a number (output)
 - Return “error” if trace not in state chart, but every attempt to produce the trace from the state chart fails at a letter (input)
 - Otherwise return “confused”
Example

“A1C3”

Example

“B3A4”
Example

“B3A4”

Example

“B3A4”
Step 2

- Create a state space explorer that computes for any given “pass” trace the set of those states where the specification state machine can be after the trace.

Example

“B3”
Step 3

▶ Build a test execution loop:
 • Check observed trace
 • Compute current specification states
 • Choose an input that is valid in one of the states
 • Send it to SUT
 • Receive response
 • Restart

Step 4

▶ Add testing heuristics
 • Co-operative planning
 • Adversarial planning
▶ Add test stopping heuristics
 • All states covered
 • “Seems” that no more states can be reached
Example

“B3A2”

Step 5

- Augment the specification / system model with observed transition probabilities from the SUT
- Use these to guide test planning
- Investigate algorithms scalability
Symbolic execution

- If next(s) sets are infinite, the testing algorithms can’t be realized “as such”
- Symbolic execution is needed
 - An algorithmic solution to the problem of infinite state sets
 - Well known in general
- For illustration, let us consider the trace inclusion check algorithm

Symbolic trace inclusion check algorithm

\[
\begin{align*}
W & := \{x[s_0]\} \\
V & := \emptyset \\
\text{While } W \neq \emptyset \\
& \quad \text{Choose } s \text{ from } W \\
& \quad \text{If } \text{NotEmpty}(s \cap \text{LiftTrace}(T^*)) \\
& \quad \quad \text{Return FOUND} \\
& \quad \text{Else} \\
& \quad \quad W := W - \{s\} \\
& \quad \quad V := V \cup \{s\} \\
& \quad \quad N := \text{SymbolicSuccessors}(s) \cap \text{LiftPrefix}(T^*) \\
& \quad \quad W := W \cup (N - V) \\
& \quad \text{Return NOT FOUND}
\end{align*}
\]
Comments

- α maps a concrete state to a symbolic state representing the singleton set consisting of the concrete state
- \sqcap computes symbolic intersection
- $\text{LiftPrefix}(T^*)$ returns a symbolic state that represents every state whose trace is either a prefix of T^*, or an extension of T^*
 - Replaces the check $T \prec T^*$
- $\text{LiftTrace}(T^*)$ returns a symbolic state that represents every state whose traces is exactly T^*
 - Replaces equivalence check
- NotEmpty checks for non-empty symbolic state

Symbolic states

- How symbolic states can be implemented?
- Many techniques known, e.g.
 - BDDs (binary decision diagrams)
 - Constraint systems
 - Linear constraints over reals (\rightarrow timed automata)
 - General constraints
Symbolic states

States

Symbolic states

Representation relation

Let \(z \) be a symbolic state
\(\gamma(z) \) is a set of states: the set of states represented by \(z \)
For a concrete state \(s \), \(\alpha(s) \) is a symbolic state such that \(\gamma(\alpha(s)) = \{s\} \)
Preliminary Axiom

- If $z \rightarrow z'$, then
 $$\gamma(z') \subseteq \{ s' \mid \exists s \in \gamma(z): s \rightarrow s' \}$$

Operations for symbolic states

- Emptiness check
 $$\text{Empty}(z) : \gamma(z) = \emptyset$$
- Intersection
 $$\gamma(z \cap z') = \gamma(z) \cap \gamma(z')$$
- Subsumption relation
 $$z \subseteq z' \Rightarrow \gamma(z) \subseteq \gamma(z')$$
Symbolic successors

- \(\text{Next}(z) = \{ z' \mid z \rightarrow z' \} \)
- Axiom 1 (completeness):
 \(s \in \gamma(z), s \rightarrow s' \) implies
 \(\exists z' \in \text{Next}(z) : s' \in \gamma(z') \)
- Axiom 2 (soundness):
 \(z' \in \text{Next}(z) \) implies
 \(\forall s' \in \gamma(z') : \exists s \in \gamma(z) : s \rightarrow s' \)

Operations needed for symbolic trace inclusion check

- \(\text{LiftTrace}(T) \)
 - Returns \(z \) such that
 \(\gamma(z) = \{ s \mid \exists c : s = <c, T> \} \)
- \(\text{LiftPrefix}(T) \)
 - Returns \(z \) such that
 \(\gamma(z) = \{ s \mid \exists c, T' : s = <c, T'>, T' \preceq T \} \)
Symbolic trace inclusion check algorithm

\[
\begin{align*}
W &:= \{\alpha[s_0]\} & W &= \{s_0\} \\
V &:= \emptyset \\
\text{While } W \neq \emptyset & \\
\quad \text{Choose } z \text{ from } W & \\
\quad \text{If not Empty}(z \cap \text{LiftTrace}(T^*)) & \\
\quad & \quad \text{Return FOUND} \\
\quad \text{Else} & \\
\quad & \quad W := W - \{z\} \\
\quad & \quad V := V \cup \{z\} \\
\quad & \quad N := \{z'' \mid z' \in \text{Next}(z), z'' = z' \cap \text{LiftPrefix}(T^*) \} \\
\quad & \quad W := W \cup (N - V) \\
\text{Return NOT FOUND} &
\end{align*}
\]

Set \(z\) contains \(<c, T>\) for some \(c\)?

Correctness discussion

- Suppose \(\gamma(z)\) are all reachable in the concrete state space
- Suppose \(z \rightarrow z'\)
- Then also \(\gamma(z')\) are all reachable by definition

- On the other hand, suppose \(s\) is reachable, and \(z\) is reachable such that \(\gamma(z)\) contains \(s\)
- Suppose \(s \rightarrow s'\)
- Then \(z'\) exists in the set \(\text{Next}(z)\) such that \(s' \in \gamma(z)\)
Discussion

- The symbolic state space depicts the whole infinite state space, but can be in itself finite as a structure
- Requires good way to actually represent and manipulate symbolic states

Constraint solutions

- Constraint set: \{X1 > 0, X3 = X1 + 0.1, number X2, X4 = X2 + 1\}
- \(X1 = 0.2, X3 = 0.3, X2 = 9, X4 = 10\) is a solution
- Corresponds to a real execution
- \(X1 = -1\) does not lead to a solution
 - Negative time stamp!
- \(X1 = 1, X3 = 10\) does not lead to a solution
 - Wrong wait time!
- \(X2 = \text{“hello”}\) does not lead to a solution
 - Received value not number!
Constraint sets

- Constraint set = system of equations over data
- E.g.

\[\begin{align*}
 x & < y \\
 x \cdot z & = 9 \\
 s & = \text{"foo"} \\
 a & = \text{append}(s, s)
\end{align*} \]

Computational point of view

- Constraint sets are easy to create, difficult to solve
- Unsolvable problems abound
- But many realistic cases can be handled
Using constraints

- System state structure $<c, T>$
- Assume that $<c, T>$ is otherwise concrete represented, but that c and T can mention constraint variables
- Add a constraint set
- Symbolic state is of the form $<c, T>, C$ where C is a constraint set
- Constraint set constraints the values of the constraint variables
- A concrete state is represented iff it is obtained by replacing the constraint variables with a solution of the constraint set

Example

- $c = [t \rightarrow X1, x \rightarrow X2, ...]$
- $T = \langle\langle X2_{in}, X1 \rangle, \langle X4_{out}, X3 \rangle\rangle, X3\rangle$
- $C = \{X1 > 0, X3 = X1 + 0.1, \text{number } X2, X4 = X2 + 1\}$
- $<c, T>, C$ is a symbolic state
Intersections

- We assume the symbolic states are structured so that if \(z \) and \(z' \) represent at least one concrete same state, there is 1–1 correspondence between constraint variables of the symbolic states.
- This can be provided.

Intersections ctd

- We can then take two symbolic states \(z = \langle c, T \rangle, C \rangle \) and \(z' = \langle c', T' \rangle, C' \rangle \) and proceed to compute their intersection.
- Map all constraint variables of \(z' \) to those of \(z \), with mapping \(Q \) (if not possible, intersection empty).
- Intersection is \(\langle c, T \rangle, C \land Q(C') \rangle \).
- Assumes constraint sets are closed under conjunction.
Intersections ctd

- To make LiftTrace, LiftPrefix work, we must also allow for a case where the control part is undefined
- $<<c, T>, C> \cap <<?, T'>, C'>$: match T against T', then yield $<<c, T>, C \land Q(C')>$
- (or empty symbolic state)

Emptiness check

- Emptiness check can be now reduced to checking for the satisfiability of a constraint set
Subsumption check

- Subsumption check can be reduced now to checking that a constraint set implies another one
- To check for \(C \Rightarrow C' \), check for the satisfiability of \(C \land \neg C' \)
- Assumes now that constraint sets are closed also under negation → full Boolean closure

Where constraint variables come from?

- There are two causes for constraint variables in symbolic execution:
 - Internal choices (e.g. (random))
 - Input from environment (message, timeout)
- But these two cases are completely different!
 - Internal choices and input from environment correspond to decisions made by distinct parties (SUT, Tester)
 - A problem lurks…
Alternating quantifiers!

- Basically, we would like to create testing plans that cover all potential internal choices of a correctly working SUT.
- This yields to constraint solving over alternating quantifies (→ adversarial planning).
- Seems to be computationally infeasible.
- Must straighten some curves, and assume a co-operative SUT.
- With a co-operative SUT, SUT choices and Tester choices are on par.

More algorithms

- The symbolic versions of the full testing algorithms are left as an exercise for the student.
Formal Conformance Testing 2006

LAST LECTURES
30th Nov 2006

EXAMINATION INFO

► Next examination 15th December
► For those who leave from country at New Year, there is possibility for taking the examination orally next Monday
 • The results will be calibrated with the results from the written exam before being recorded
Topics today

- The classic IOCO theory
- Critique of IOCO

loco theory

- The “classic theory”
- Often referred to as the “ioco” testing theory and is quite well known among the academic peoples
- A framework developed by Tretmans, Heerink et al.
- Dates to early 90’s
locos theory overview

- LTSs (labeled transition systems) = finite state machines
- No notion or only a very weak notion of time
- Some tools have been developed based on the theory, for example TorX

Labeled transition systems

- A labeled transition system is a tuple \(<S, L, T, s_0>\) where
 - \(S\) is the set of states
 - \(L\) the set of transition labels
 - \(T \subseteq S \times L \times S\) the transition relation (with \(L_\tau = L \cup \{\tau\}\))
 - \(s_0 \in S\) the initial state.
Traces

- The traces of an LTS are obtained by “walking” in it starting from the initial state, and collecting all symbols except τ’s which denote “silent activity” and which are removed.

\[
\begin{align*}
\varepsilon &\quad a &\quad aa \\
aab &\quad aabb &\quad aaba \\
aabba &\quad aabab &\quad aababa
\end{align*}
\]

Parallel composition

- The parallel composition of two LTSs is traditionally denoted by $L \parallel L'$.
- This construct creates a new LTS from two LTSs.
- Two LTSs run in synchrony, always taking arcs together with same labels. An exception is the τ-label which is not synchronized.
- This synchronization is not directional but completely symmetric.
 - Can be therefore called a “handshake”.

Copyright © Antti Huima 2004–06. All Rights Reserved.
Example

There are eight state pairs in total. So the parallel composition will have eight or less states. It is so small that we can construct it explicitly.

Example

The resulting LTS has only six states. The reason is that the states <1, 2'> and <4, 2'> are not reachable.

The second LTS does not allow for two b’s in a row.
More on the parallel composition

- Parallel composition models “synchronous, symmetric communication” or “symmetric handshake”.
- Powerful construct: the reachability problem (= can a given composite state be reached) for parallel composed LTSs is \(\text{PSPACE} \)-complete (on the number of composed LTSs). This means that the problem is very hard.
- In the ioco testing theory, parallel composition is used to model the communication between Tester and the SUT (both are assumed to be LTSs).

Parallel composition and realistic I/O

- In parallel composition, the two LTSs can take step with label \(a \neq \tau \) only if they do that together.
- This means that if a models, say, a message from Tester to SUT, then the SUT can refuse to receive the message (just by not having an outgoing transition with the label \(a \)).
- This is disturbing, because after all it is in the Tester’s discretion to decide when to send messages and when not.
- These aspects lead us to the concept of an IOTS.
IOTS

- IOTS = Input Output Transition System.
- The set of labels L is partitioned into input labels L_I and output labels L_O.
- An IOTS is a standard LTS that has the following extra property:
- For every reachable state s in the LTS, there exists a path from s that accepts any arbitrary input label first. This means that you cannot refuse an input and that you can’t deadlock.

Example

- Assume the set of input labels is $\{a\}$ and the set of output labels is $\{B\}$.

![Diagram of an IOTS](image1)

![Diagram of a non-IOTS](image2)
Testing Theory for IOTs

▶ In the “ioco” testing theory, the Tester and the SUT are assumed to be IOTs.
▶ Obviously, the Tester and SUT are mirror images of each other in the sense that outputs from SUT are inputs to Tester and vice versa.
▶ Hence, if \(L_O \) is the set of outputs from SUT, then this is the set of inputs to Tester, which must be always enabled in Tester.
▶ The specification is also an IOTS. (Actually, it can be a non-IOTS LTS—the theory speaks of “partial specifications”.)

The core idea

▶ Assume we have some definition of “observations” that an LTS produces; we denote this for now by \(\text{obs}(L) \) for an LTS \(L \).
▶ Given a tester \(t \), SUT \(i \) and specification \(s \), let us say that \(t \) confirms \(i \) w.r.t. \(s \) if

\[
\text{obs}(t || i) \subseteq \text{obs}(t || s).
\]

(All the three entities are IOTSs).
▶ We can now say that an implementation \(i \) conforms to a specification \(s \) if all possible testers confirm \(i \) w.r.t. \(s \).
▶ What are the observations?
Basic Observations

We assume that the observations that we can make of an LTS \(L \) are the following:
- The set of all traces of \(L \), plus
- the set of those traces of \(L \) after which \(L \) can be in a deadlock

Now write \(\text{obs}(L) \subseteq \text{obs}(L') \) if the subset relation holds for both the sets mentioned above.
This leads to the input–output testing relation \(\leq_{\text{iot}} \). We write \(i \leq_{\text{iot}} s \) to denote that \(i \) conforms to \(s \) in this sense.

Input–output testing relation

When an implementation conforms to a specification in the sense of \(\leq_{\text{iot}} \):
- If you can produce a trace against the implementation, then you could produce the same trace against the specification (= reference implementation) (but not necessarily vice versa).
- If you can bring the implementation into a state where it just waits for input, then you could do the same with the specification (but not necessarily vice versa).
Alternative formulation

- An alternative way to define the same result is given next.
 - $i \preceq_{\text{rot}} s$ iff
 - $\text{traces}(i) \subseteq \text{traces}(s)$ and $\text{Qtraces}(i) \subseteq \text{Qtraces}(s)$
 where $\text{Qtraces}(L)$ is the set of those traces of L after which L can be in a state where only transitions labeled by inputs are possible (i.e. L is waiting for input and cannot proceed without one; a “quiescent state”—hence ‘Qtraces’).
- So, we see here a standard trace inclusion problem... at least almost. Note that Tester is not mentioned!

Quiescence...

- Quiescence traces model the assumption that we can detect when the SUT is not going to anything observable before it gets more input.
- Ultimately, this complication comes from the fact that there is no time in the theory.
- But actually there exists a stronger variant of this idea.
Let us assume that we patch the SUT so that whenever it is just waiting for input, it can send out a meta-message δ which denotes “I’m waiting for input” or “I’m quiescent”.

The name for δ is “suspension”.

We call the traces of an IOTS with this extension (can produce δ when no output is possible) “suspension traces”, denoted by $\text{Straces}(\mathcal{L})$.
Ioco relation

- Now an implementation i conforms to a specification s iff $\text{Straces}(i) \subseteq \text{Straces}(s)$.
- This corresponds to the inclusion of observations by all testers who can observe I/O behavior, deadlocks and δs.
- This is the ioco testing relation.

What is the Difference?

- \leq_{iop} is based on the possibility of detecting lack of output after a test run, but only at the end of a test run.
- In ioco it is possible to detect quiescence also in the midst of a test run.
General comments

- Ioco theory is low-level theory
 - Pragmatic systems are not given as LTSs but as Java programs, UML state charts, ...
 - Not a problem but a statement about the focus of the theory
- In principle no need to assume finite LTSes
 - But in the practice, algorithms focus on finite LTSes

Finite LTSes

- Usually finite LTSes are assumed in the context of ioco
- But realistic systems usually have infinite or very big state graphs
- Leads to the need to do manual abstraction
Manual abstraction in testing

- How to create a small finite state machine (i.e. LTS) from a specification generating a big/infinite state space?
- Drop out details
- Replace data with abstract placeholders

Benefits

- Resulting small state machines are easy to manipulate algorithmically
 - All kinds of interesting analyses and constructs are possible
- Strengthened focus on abstract control structure
Cons

- Driving real testing with abstract inputs can be impossible or very difficult—the system under test wants concrete input
 - Complicated extra adaptation component

Relevance of ioco theory

- A common framework
 - Many articles written
- Main contributions
 - Link the general practice of conformance testing (from telecom domain) with formal methods
 - Establish the flourishing study of formal models based conformance testing
Formal conformance testing and software process

- How can formal conformance testing be integrated into a software process?
- Main challenges
 - Where get executable/formal specification or design?
 - Where to get a tool?
 - What kind of process support is needed?

Specification?

- Clearly, a formal specification does not need to be in greek
- But it must have well-defined meaning
- In our context, it should be an executable reference design (e.g. in Scheme)
- Where to get it?
How to get a reference implementation?

- First do reference implementation, then implement the real system using it as a guide
- Reverse-engineer from the implementation afterwards
- Develop at the same time as the real implementation, based on same system requirements
- Create reference implementation / system model, code-generate real system from it (→ model driven architecture)

Tool support?

- Only emerging
- Main challenges
 - Algorithmic complexity
 - Conceptual difficulty
 - Usability
 - Business case
Process support

- Specifications (executable reference implementations) are software artifacts!
 - They need a software process themselves
 - Testing!
 - Validation!

CONCLUSIONS

- FCT / MBT is becoming a mainstream technology
- Realistic MBT implementation requires some advanced machinery
- The main idea is to derive tests from system specifications
- You were a great audience! ☺