Traces and specifications

- Trace = set of events + end time stamp
 - Event = message + time stamp
 - Prefix, extension, snapshot
- Specification \cong set of valid traces
 - Prefix-closed
 - Serial
Test step disjointness

- For any \(i, s, T, \) and \(T_1 \) and \(T_2 \) it must hold that if \(T_1 \neq T_2 \) and
- \(\xi(i, s, T)[T_1] > 0 \) and
- \(\xi(i, s, T)[T_2] > 0 \), then
- \(T_1 \prec T_2 \), and
- \(T_2 \prec T_1 \)
- A technical convenience
Progressivity

- There does not exist an infinite sequence T_1, T_2, T_3, \ldots and a constant $K \in \mathbb{R}$ such that
 $\xi(i, s, T_i)[T_{i+1}] > 0$ for all i, but such that for all $T_i = <E_i, t_i>$ it holds that $t_i < K$.

Choice of ξ

- We have defined properties of ξ, not the function itself
- The particular choice for ξ depends on
 - the set of implementations I,
 - the set of testing strategies T, and
 - the desired structure of test steps.
Trace probabilities

- Let $P[i, s, T]$ denote the probability of observing T as a prefix of a long enough trace when strategy s is executed against implementation i
- Idea is to compute the product of the preceding test step probabilities

Trace probabilities

- Random experiment:
- Implementation i and a testing strategy s fixed
- A trace prefix T^* has fixed, $T^* = <E,K>$
- s is executed against i many times, yielding traces $T_1 = <E_1,t_1>$, $T_2 = <E_2,t_2>$, ..., such that for all n, $t_n > K$
- What is the probability that for a uniformly chosen n, $T_n[K] = T^*$?
 - $X[t]$ is that prefix of X whose end time stamp is t
Solution

» Traces that end at test step boundaries are easy: compute product probability
» Traces that end at non-boundaries require an extra construct

Step 1: Traces at test step boundaries

» Denote by $P^*[i,s,T]$:

$$\max_{T_1,\ldots,T_n: \prod_{i \in [1, n-1]} \xi(i,s,T_i)[T_{i+1}]}$$

where $T_1 = \epsilon$ and $T_n = T$

» $P^*[i,s,T]$ is the compound probability for trace T, if T "happens" at test step boundary
Sketch

This trace does not end a test step boundary
Step 2: traces at non-boundaries

Denote by $P[i,s,T]$

$$P^*[i,s,T^*] \times \left(\sum_{T':T \preceq T'} \xi(i,s,T^*)[T'] \right)$$

where T^* is the longest prefix of T such that $P^*[i,s,T^*] > 0$
Sanity checks

- If $P^*[i,s,T] > 0$,
 - then $P[i,s,T] = P^*[i,s,T]$.
 - Ok.
- If $P[i,s,T] = 0$ (trace T cannot be produced),
 - there still exists the greatest prefix T^* of T such that $P^*[i,s,T^*] > 0$.
 - Every test step succeeding T^* must result in a trace differing from T — ok.

Sanity check 1 memo

- Assume $P^*[i,s,T] > 0$
- Note $T^* = T$
- $P[i,s,T] = P^*[i,s,T] \times (\sum_{T': T \prec T'} \xi(i,s,T[T']))$
- The sum yields one
Execution summary

- ξ defines execution semantics
- Properties for ξ
 - Gives probability distribution over traces
 - Test step = trace extension
 - Test step disjointness
 - Progressivity
- However, no concrete structure
- $P[i,s,T]$ is the probability of producing trace T when s is run against i
 - Hides test steps

Why test steps?

- 1 test step =
 - unit of testing cost
 - unit of benefit
- Testing can be stopped between test steps, but not during them
 \rightarrow stopping criteria
- Technical construct for describing arbitrarily long executions without the concept of “an infinite trace” (there is no such concept here)
Cost or benefit

Measuring the “size” of a trace

- Temporal length = end time stamp
- Size of event set
- Number of test steps used to produce
Verdicts

- Specification: Guides
- Definition: Defines correctness of

Tester ← Interaction → SUT

Announces

Verdict = test result
Verdicts

- Pass
- Fail
- Error
- Confused

Verdicts

Correct execution

Incorrect execution
Verdicts explained

<table>
<thead>
<tr>
<th>Verdict</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>System under test has behaved correctly</td>
</tr>
<tr>
<td>Fail</td>
<td>System under test has behaved incorrectly</td>
</tr>
<tr>
<td>Error</td>
<td>Tester has behaved incorrectly</td>
</tr>
<tr>
<td>Confused</td>
<td>Fail–and–Error, result produces by an ambiguous specification (a special corner case)</td>
</tr>
</tbody>
</table>

Verdicts as traffic lights

- Pass
- Fail
- Error ("lights broken")
- Confused
Calculating verdict

- Verdict is calculated from a trace T and a specification S

$$\text{verdict}(T,S) \in \{ \text{pass, fail, error, conf} \}$$

Pass verdict

$$\text{verdict}(T,S) = \text{pass}$$

if and only if

$$T \in \text{Tr}(S)$$
Other verdicts

- Hence, $T \notin \text{Tr}(S)$ implies

 \[\text{verdict}(T,S) \in \{ \text{fail, error, conf} \} \]

- There is one verdict for $T \in \text{Tr}(S)$, and three for the other case

Other verdicts

- The problem: how to classify the cases $T \notin \text{Tr}(S)$ into
 - errors of the SUT (\rightarrow fail),
 - errors of the tester (\rightarrow error),
 - and those cases where the erring party cannot be defined (\rightarrow confused)?
Solution sketch (1)

Tester

Valid prefixes

SUT

\[t = 0.2 \]

\[t = 0.9 \]

\[t = 1.2 \]

\[t = 2 \]

Valid prefixes

Solution sketch (2)

Tester

Valid prefixes

SUT

\[t = 0.2 \]

\[t = 0.9 \]

Valid continuations?
Solution sketch (3)

- All valid continuations differ from T first at input events?
 - error [tester error]
- All valid continuations differ from T first at output events?
 - fail [SUT failure]
- Otherwise
 - confused [unclear]

Technicallity

- The set of end time stamps for the valid prefixes of T can be either open or closed at the upper boundary
- Open set requires basically a limit construct (as usual)
Solution sketch (4)

- **Tester**
- **SUT**

Valid prefixes

- **A**
- **t=0.2**
- **t=0.9-ε**
- **t=0.9**

Valid continuations?

Details

- Assume $T \notin Tr(S)$
- Let $V = Tr(S) \cap Pfx(T)$
 - Note: $ε \in V$
 - This is the set of valid **proper prefixes** of T
- Let $K = \{ t \mid \exists E: <E, t> \in V \}$
- K is either
 - closed: $[0, t]$, or
 - open: $[0, t)$.
 - It is the set of **end time stamps** in V.
Example (closed set)

- \(\text{Tr}(S) = \)
- \(\bigcup \{ \text{Pfx}(\langle \langle A, t' \rangle, t \rangle) \mid t \in [2, \infty), t' \leq 1 \} \)
- \(T = \langle \emptyset, 10 \rangle \)
- Note that \(T \notin \text{Tr}(S) \)
- \(V = \{ \langle \emptyset, t \rangle \mid t \leq 1 \} \)
- \(K = [0, 1] \)
- Especially \(\langle \emptyset, 1 \rangle \) is in \(V \), because \(\langle \langle A, 1 \rangle, 1.1 \rangle \) is valid

Example (open set)

- \(\text{Tr}(S) = \)
- \(\bigcup \{ \text{Pfx}(\langle \langle A, t' \rangle, t \rangle) \mid t \in [2, \infty), t' < 1 \} \)
- \(T = \langle \emptyset, 10 \rangle \)
- Note that \(T \notin \text{Tr}(S) \)
- \(V = \{ \langle \emptyset, t \rangle \mid t < 1 \} \)
- \(K = [0, 1) \)
- Especially \(\langle \emptyset, 1 \rangle \) is not in \(V \), because for any \(t' < 1 \), event \(\langle A, t' \rangle \) should belong to the event set at time 1
Details continued

- Choose $\delta \in K$ (note: $0 \in K$ always, so K is not empty)
- Let X_δ denote the set of all valid extensions of $T[\delta]$ beyond the end time stamp of T
- $T[\delta]$ is the prefix of T with end time stamp δ

Sketch

- Observed trace
- Valid traces

Copyright © Antti Huima 2004–06. All Rights Reserved.
Details continued

- For every T' in X_δ, T' differs from T and $\Delta(T,T')$ is defined
- For every T', denote by $\alpha\ {T'}|_{\Delta(T,T')}$ if not τ
 - Otherwise denote by $\alpha\ {T'}|_{\Delta(T,T')}$
 - Note: α can not be τ
- Let D_δ be the union of all α
- D_δ lists those events on which valid extensions of $T[\delta]$ differ from T first

Details continued

- Assume there exists $\delta \in K$ such that $D_\delta \subseteq \Sigma_{\text{in}}$
 - Tester failure \rightarrow error
- Assume there exists $\delta \in K$ such that $D_\delta \subseteq \Sigma_{\text{out}}$
 - SUT failure \rightarrow fail
- Otherwise
 - undefined \rightarrow confused
Details continued

- If K is closed, we can always choose \(\delta = \max K \)
- If K is open, we must choose a \(\delta \) ”close enough” the upper bound of K
 - \((\sup K) - \epsilon \) for \(\epsilon > 0 \)

Disjointness

- \(D_\delta \subseteq \Sigma_{\text{in}} \) and \(D_\delta \subseteq \Sigma_{\text{out}} \) are disjoint conditions, because
 - \(\delta \leq \epsilon \) implies \(D_\epsilon \subseteq D_\delta \)
 - \(D_\delta \) is always non-empty
 - \(\Sigma_{\text{in}} \) and \(\Sigma_{\text{out}} \) are disjoint
Summary

► Is $T \in \text{Tr}(S)$?
 • Verdict is "pass"
► Else
 • Does there exists $\delta \in K$ such that $D_\delta \subseteq \Sigma_{\text{out}}$?
 • Verdict is "fail"
 • Otherwise, does there exists $\delta \in K$ such that $D_\delta \subseteq \Sigma_{\text{in}}$?
 • Verdict is "error"
 • Otherwise verdict is "confused"

Examples

► Spec: “System must send out X before time 2”
► Observed trace $<\emptyset, 2>$
► Verdict?
Examples

▶ Spec: “System must send out X at latest at time 2”
▶ Observed trace $<\emptyset, 2>$
▶ Verdict?

Examples

▶ Spec: “System must send out X before time 2 if it receives Y before 1”
▶ Observed trace $<\emptyset, 2>$
▶ Verdict?
Examples

▶ Spec: “System must send out X before time 2 if it receives Y before 1”
▶ Observed trace <{<Y,0.5>}, 2>
▶ Verdict?

Examples

▶ Spec: “System must send out X before time 2 if it receives Y before 1”
▶ Observed trace <{<Y,1.5>}, 2>
▶ Verdict?
Examples

- Spec: “System must receive clock signal every 1 second starting from \(t=1 \)”
- Observed trace \(<\{<\text{clock},1>\}, 1.5>\)
- Verdict?

Examples

- Spec: “System must receive clock signal every 1 second starting from \(t=1 \)”
- Observed trace \(<\{<\text{clock},1>\}, 2>\)
- Verdict?
Examples

▶ Spec: “System must receive clock signal every 1 second starting from t=1”
▶ Observed trace <{<clock,1>}, 2.5>
▶ Verdict?

Examples

▶ Spec: “Starting from t=1, on every second system must either send or receive X”
▶ Observed trace <∅, 10>
▶ Verdict?
Discussion

- These definitions are abstract and intensional
- They do not involve an algorithm
- They are given directly for trace sets making them universal
Conformance?

What does it mean that a system conforms to a specification?
- System functions as specified
- System passes all tests
- Which “all” tests?
- System passes every “test” that is “correct”
- What is “a test”? What is “a correct test”?

What is “a test”?

A test = ?
- a specific testing strategy
- a specific test execution trace
- a specific tester
- a specific tester execution

A correct test = ?
- A test execution trace with verdict ≠ ERROR
- A testing strategy or tester that “never works illegally”
 - What does this mean?
Correct testing strategies

A testing strategy s is correct with respect to a specification S if for any implementation i:

$$P[i,s,T] > 0 \Rightarrow \text{verdict}(T, S) \neq \text{ERROR}$$

Denote by $CT(S)$ the set of all correct testing strategies with respect to S

Synthetic correct strategies

A correct testing strategy can be (informally) constructed by the following loop:

- Guess the next action (send/wait) so that a valid trace extension will result
- Execute the chosen action, observing the actions of the SUT
- Restart loop

More on this later!

Shows that correct testing strategies exist
- Possible because of the seriality of valid set of traces
- In real life computationally intensive
Correct strategies ctd

▶ If we assume these synthetic strategies belong to the set of available testing strategies...
▶ ... then all correct and failing behaviours (at least prefixes of) of a system can be observed.

Classifying traces

▶ Let i be an implementation and S a specification
▶ For every trace T, one of the following is true:
 • There exists $s \in \text{CT}(S)$ such that $P[i, s, T] > 0$
 • There exists s, but none in CT(S), such that $P[i, s, T] > 0$
 • There does not exist any s such that $P[i, s, T] > 0$
Trace taxonomy ctd

- Furthermore, for every trace \(T \) it holds that \(\text{verdict}(T, S) \) is one of \(\text{PASS}, \text{FAIL}, \text{ERROR} \)
- We ignore ambiguous specifications \(\rightarrow \) \(\text{verdict CONFUSED} \) for now

Matrix for a trace \(T \)

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\exists s \in \text{CT}(S): P[i, s, T] > 0)</th>
<th>Possible</th>
<th>FAIL</th>
<th>Not possible (def. correct strategy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists s: P[i, s, T] > 0) (\forall s': P[i, s', T] > 0) (\Rightarrow s' \not\in \text{CT}(S))</td>
<td>Not possible (synthetic testers)</td>
<td>Possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exists s: P[i, s, T] > 0)</td>
<td>Possible (impl. restriction)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trace map of a general system

CORRECT AND INCORRECT TESTERS

I: correct, producible behaviour
II: incorrect, producible
INCORRECT TESTERS ONLY
III: producible behaviour against malfunctioning environment only
NO TESTERS AT ALL
IV: correct behaviour not implemented
V: incorrect behaviour not implemented
VI: behaviour involving malfunctioning environment that has not been implemented

Trace map of a correct system

CORRECT AND INCORRECT TESTERS

I: correct, producible behaviour
INCORRECT TESTERS ONLY
III: producible behaviour against malfunctioning environment
NO TESTERS AT ALL
IV: correct behaviour not implemented
V: incorrect behaviour not implemented
VI: behaviour involving malfunctioning environment that has not been implemented
Correct system ctd.

- If we restrict ourselves to correct testers, then
- all behaviour that can be generated is included within the set of valid traces $\text{Tr}(S)$. [Note: assumed that system is “correct”.]

Execution against correct strategies

- Define set of execution traces
 \[\text{ETr}(i) = \{ T \mid \exists s : P[i,s,T] > 0 \} \]
- Define now
 \[\text{ETr}(i, S) = \{ T \mid \exists s \in \text{CT}(S) : P[i,s,T] > 0 \} \]
- Here $\text{CT}(S)$ is the set of testing strategies correct with respect to S
- Note $\text{ETr}(i, S) \subseteq \text{ETr}(i)$ for all S
Continued…

► We have now eliminated the **ERROR** verdict
► Suppose for all $s \in CT(S)$,
 \[P[i, S, T] > 0 \text{ implies } \text{verdict}(T, S) \neq \text{FAIL} \]
► Then (assuming unambiguous specifications),
 \[P[i, S, T] > 0 \text{ implies } \text{verdict}(T, S) = \text{PASS} \]
► Hence, $ETr(i, S) \subseteq Tr(S)$

Conclusion

► We have thus reduced the conformance of an implementation i to a specification S to the equation
 \[ETr(i, S) \subseteq Tr(S) \]
► This is the underlying notion of conformance in the known theory of formal conformance testing
Conclusion ctd.

▶ Conformance = trace inclusion
 • Traces generated by implementation are included in those generated by specification
 • Incorrectly generated/out-of-specification traces must be excluded
 • Note: no explicit mention of single testing strategies above!

Implications

▶ Quantifying over all testers leads to simple trace set inclusion
▶ This trace set inclusion can be also checked for directly under suitable conditions → model checking
▶ Thus formal conformance testing = “partial model checking”