
T-79.232 Safety Critical Systems

Case Study 4: B Method - Functions, Sequences and

Nondeterminism

Teemu Tynjälä

March 13, 2008

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-1

Functions in B - what kinds are there?

B provides a rich set of function types in its input language, and we’ll describe each one

in its turn. The complete list is:

• Partial functions

• Total functions

• Injective functions

• Surjective functions

• Bijective functions

• Lambda notation for functions

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-2

Partial functions

Basically, partial functions are relations, so they consist of pairs (s, t) where s∈ S ∧ t ∈ T

However, we have the additional requirement, that any member of S is mapped onto at

most one element of T .

When we allow for some elements in set S not to be mapped onto an element of T we

have partial functions. In math,

S→p T = { f | f ∈ S↔ T
∧ ∀ s, t1, t2. (s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T ⇒
((s 7→ t1 ∈ f ∧ s 7→ t2 ∈ f) ⇒ t1 = t2))}

For example, if we say f avourite colour ∈ PERSON →p COLOUR, we are saying that

people have one favourite colour or not at all.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-3

Total Functions

A total function is a partial function between sets S and T with the added requirement that

every element of S must be mapped to exactly one element of T .

In mathematics,

S→ T = { f | f ∈ S→p T ∧ dom(f) = S}

Now, if we declare that f avourite colour ∈ PERSON → COLOUR, we are stating that

every person has exactly one favourite colour.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-4

Injective Functions

A function is injective between sets S and T , if it never maps two different members of S
into the same element of T . Partial injections are defined as follows:

S �p T = { f | f ∈ S→p T
∧ ∀ s1,s2, t. (s1 ∈ S ∧ s2 ∈ S ∧ t ∈ T ⇒
((s1 7→ t ∈ f ∧ s2 7→ t ∈ f) ⇒ s1 = s2)}

For total injections (injections that are also total functions), we have:

S � T = { f | f ∈ S �p T ∧ f ∈ S→ T}

For example username ∈ PERSON �p ID associates a username to people in such a

way that no two people get the same one. Also, there are some people who have no

username at all.
Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-5

Surjective Functions

A function between sets S and T is surjective if every element of set T is reached from

some element in set S.

For partial surjections we have:

S �p T = { f | f ∈ S→p T ∧ ran(f) = T}

For total surjections we have:

S � T = { f | f ∈ S �p T ∧ f ∈ S→ T}

For example attends ∈ PERSON �p SCHOOL says that every school is attended by

some people, but there may be some people who do not attend any school.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-6

Bijective Functions

Bijective functions are functions which is total, injective and surjective.

In mathematical terms we write,

S �� T = { f | f ∈ S � T ∧ f ∈ S � T}

For example, married ∈ husbands �� wives says that there is exactly one wife for every

husband, different husbands have different wives and every wife has a husband.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-7

Lambda notation for functions

The lambda notation gets us closer to the ’implementation’ language (= equations) of

functions. It basically separates two entities - the variables in the function, and the oper-

ation that computes the function.

For example, we can define the squaring function of a natural number as follows:

square = λ x.(x ∈N | x2)

The nice thing about lambda notation is that you can add conditions on variables for the

operation to occur. It also allows one to separate the domain of a function to disjoint parts.

For example, the following function divides the domain N into two separate parts and

performs a different operation on the input variable depending on whether is even or odd.

f = λ x.(x ∈N ∧ x mod 2 = 1 | 3x+1}
∪ λ x.(x ∈N ∧ x mod 2 = 0 | x/2}

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-8

B machine with Functions - 1

MACHINE Reading

SETSREADER ; BOOK ; COPY ; RESPONSE = {yes,no}

CONSTANTS copyo f

PROPERTIES copyo f ∈COPY � BOOK

VARIABLES hasread, reading

INVARIANT

hasread ∈ READER↔ BOOK

∧ reading ∈ READER �p COPY

∧ (reading ; copyo f) ∩ hasread = {}

INITIALISATION hasread := {} ‖ reading := {}

So, we have a machine where we have a number of COPIES of every BOOK, and every

READER is reading a different COPY at any moment, as well as nobody is allowed to

read a book a second time.
Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-9

B machine with Functions - 2
OPERATIONS

start(rr,cc) =
PRE
rr ∈ READER ∧ cc ∈COPY ∧ copyo f (cc) 6∈ hasread[{rr}]
∧ rr 6∈ dom(reading) ∧ cc 6∈ ran(reading)

THEN reading := reading ∪ { rr 7→ cc }
END ;

finished(rr,cc) =

PRE rr ∈ READER ∧ cc ∈COPY ∧ cc = reading(rr)

THEN hasread := hasread ∪ { rr 7→ copyo f (cc) }

‖ reading := { rr }J reading

END ;

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-10

B machine with Functions - 3
resp←− precurrentquery(rr) =
PRE rr ∈ READER
THEN
IF rr ∈ dom(reading)
THEN resp := yes
ELSE resp := no
END

END ;

bb←− currentquery(rr) =

PRE rr ∈ READER ∧ rr ∈ dom(reading)

THEN bb := copyo f (reading(rr))

END ;

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-11

B machine with Functions - 4

resp←− hasreadquery(rr,bb) =

PRE rr ∈ READER ∧ bb ∈ BOOK

THEN

IF bb ∈ hasread[{ rr }]

THEN resp := yes

ELSE resp := no

END

END

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-12

Sequences - 1

Sequences are very useful in modelling some situations where we have a list with a

definite order. B language provides a rich set of operations that are sequence specific,

which will be given in the following:

Sequences may be formed by simply listing the elements as follows:

prime1 := [Wilson, Heath, Wilson, Callaghan]

prime2 := [Thatcher, Ma jor]

To concatenate two sequences we may use the _ - operator:

prime1 _ prime2 = [Wilson, Heath, Wilson, Callaghan, T hatcher, Ma jor]

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-13

Sequences - 2

Sequences may be reversed as well:

rev(prime1) = [Callaghan, Wilson, Heath, Wilson]

If we want to append an element to the front of the list, we use the→ operator:

Callaghan→ prime2 = [Callaghan, T hatcher, Ma jor]

Similarly we may ask the f irst element and tail of a sequence:

f irst(prime1) = Wilson

tail(prime1) = [Heath, Wilson, Callaghan]

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-14

Sequences - 3
We have a ’dual’ operator pair for f irst and tail – namely f ront and last:

f ront(prime1) = [Wilson, Heath, Wilson]

last(prime1) = Callaghan

Appending to the back of the sequence is accomplished by← operator:
prime2← Blair = [T hatcher, Ma jor, Blair]

To extract the first n elements of a sequence we use the ↑ operator:
prime1 ↑ 3 = [Wilson, Heath, Wilson]

To extract all but the first n elements of a sequence we use the ↓ operator:
prime1 ↓ 3 = [Callaghan]

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-15

Sequences - 4
The set of all possible sequences on a set S is defined as seq(S) (in other words, the
infinite union of total functions from the set 1..N to the set S, where N grows without
bounds):

seq(S) =
⋃∞

N=0(1..N→ S)

A more restrictive sequence is the injective sequence iseq(S). Here we are not allowed
to repeat elements of S in the sequence, but we are not forced to include every element
of S there:

iseq(S) = seq(S) ∩ N �p S

Finally, a useful sequence is one where every element of set S appears exactly once
perm(S). For this to make sense, S has to be finite:

perm(S) = 1..N �� S, where S is finite

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-16

B machine with Sequences - 1
MACHINE Results
SETSRUNNER
VARIABLES f inish
INVARIANT f inish ∈ iseq(RUNNER)
INITIALISATION f inish := []
OPERATIONS

finished(rr) =
PRE rr ∈ RUNNER ∧ rr 6∈ ran(f inish)
THEN f inish := f inish← rr
END ;

rr←− query(pp) =

PRE pp ∈ N1 ∧ pp≤ size(f inish)

THEN rr := f inish(pp)

END ;

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-17

B machine with Sequences - 2
disqualify(pp) =
PRE pp ∈ N1 ∧ pp≤ size(f inish)
THEN f inish := f inish ↑ (pp−1) _ (f inish ↓ pp)
END ;

ss←−medals =

ss := f inish ↑ 3

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-18

Nondeterminism in B machines

Nondeterminism is very important concept when modelling and verification is considered.

A system has to work correctly on any input, and no matter what the sequence of correct

and incorrect signals between communicating entities, a protocol must not deadlock.

B introduces ANY , CHOICE and SELECT statements to help in specifying non-determinism.

ANY has the least restrictions on non-determinism, CHOICE narrows down a potentially

huge amount of alternatives by introducing many branches of alternatives, and SELECT

allows one to control when particular ’branches’ of alternatives are active.

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-19

ANY x WHERE Q THEN T END

x is a new variable disjoint from any other variables defined in the system. Q is a predicate

which must contain the type of x and how it may/may not relate to other variables in the

system. T is a B statement that can use the value of x and other variables inside the

machine. Notice that the value of x that is used in T is nondeterministically picked, but

the choice must respect the predicate Q.

For example,

ANY n WHERE n ∈N1 THEN total := total×n END

This statement multiplies the machine variable total by some nondeterministically picked

natural number.
Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-20

Weakest Precondition for ANY

The proof obligation for the ANY statement will involve universal quantification, so that we

prove that the invariant will be preserved no matter what value for x is chosen out of the

possible ones:

[ANY x WHERE Q THEN T END]P = ∀ x. (Q⇒ [T]P)

For example, we see that the following precondition is identically true:

[ANY n WHERE n ∈N ∧ n < 50 THEN total := n×2](total < 100)

∀ n .((n ∈N ∧ n < 50)⇒ [total := n×2](total < 100))

∀ n .((n ∈N ∧ n < 50)⇒ (n×2 < 100))

∀ n .((n ∈N ∧ n < 50)⇒ (n < 50))

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-21

ANY e WHERE e ∈ S THEN x := e END
This construct is very heavily used in B, and sometimes it is called nondeterministic as-

signment.

It has a special symbol in B, written as follows: x :∈ S

The proof obligation for this is derived from the general ANY clause and it’s the following:

[x :∈ S]P = ∀ x . (x ∈ S⇒ P) x not free in S

For example:

[x ∈ S](x 6= 3) = ∀ x. (x ∈ S⇒ x 6= 3)

= 3 6∈ S

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-22

CHOICE S OR T OR . . . OR U END

This allows us to make a non-deterministic choice of a statement to execute. Each S, T ,...

is a valid B statement, and we could use such a construct e.g. to send a correct message

or an incorrect message in a protocol.

For the proof obligation we get:

[CHOICE S OR T END]P = [S]P ∧ [T]P

For example, the following weakest precondition is identically false:

[CHOICE x := 3 OR x := 5 END](x = 4)

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-23

SELECT statement

This statement allows us to control which ’branches’ of the options are active at one time,

rather than having all branches active as in the CHOICE statement. The optional ELSE
clause will be executed if none of the conditionals Qn are satisfied. The syntax is as fol-

lows:

SELECT Q1 THEN T1

WHEN Q2 THEN T2

WHEN ...

WHEN Qn THEN Tn

ELSE V

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-24

Weakest Precondition for SELECT













SELECT Q1 THEN T1
WHEN Q2 THEN T2
. . .
WHEN Qn THEN Tn
END













P =









Q1⇒ [T1]P
∧ Q2⇒ [T2]P
...
∧ Qn⇒ [Tn]P









Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-25

B machine with Nondeterminism - 1

MACHINE Jukebox

SETST RACK

CONSTANTS limit

PROPERTIES limit ∈ N1

VARIABLES credit, playset

INVARIANT credit ∈N ∧ credit ≤ limit ∧ playset ⊆ T RACK

INITIALISATION credit := 0 ‖ playset := {}

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-26

B machine with Nondeterminism - 2
OPERATIONS

pay(cc) =
PRE cc ∈ N1
THEN credit := min({ credit + cc, limit })
END ;

select(tt) =

PRE credit > 0 ∧ tt ∈ T RACK

THEN

CHOICE credit := credit−1 ‖ playset := playset ∪ { tt }

OR playset := playset ∪ { tt }

END

END ;

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-27

B machine with Nondeterminism - 3

tt←− play =

PRE playset 6= {}

THEN

ANY tr

WHERE tr ∈ playset

THEN tt := tr ‖ playset := playset−{ tr }

END

END ;

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-28

B machine with Nondeterminism - 4

penalty =

SELECT credit > 0 THEN credit := credit−1

WHEN playset 6= {} THEN

ANY pp

WHERE pp ∈ playset

THEN playset := playset−{ pp }

END

ELSE skip

END

END

Teemu Tynjälä

T-79.5303: Case Study 4: B Method - Functions, Sequences and Nondeterminism 4-29

References

The material in this presentation has been obtained from

1. the b-method - an introduction. Steve Schneider. Palgrave, 2001. (This book belongs

to the cornerstones of computing series by the same publisher)

Teemu Tynjälä

