Bounded model checking by SAT-based temporal

induction

Sami Liedes

November 13, 2007

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Problem statement

» Intuitively, we want to verify, or find a counterexample (trace)
disproving the hypothesis, that our model Behaves
Correctly™.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Problem statement

» Intuitively, we want to verify, or find a counterexample (trace)
disproving the hypothesis, that our model Behaves
Correctly™.

» In practice we are limited to requiring that some mathematical
quality (invariant) holds for all execution paths.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Problem statement

» Intuitively, we want to verify, or find a counterexample (trace)
disproving the hypothesis, that our model Behaves
Correctly™.

» In practice we are limited to requiring that some mathematical
quality (invariant) holds for all execution paths.

» For the purposes of symbolic model checking (or at least
SAT-based temporal induction), we only consider finite
models, i.e. models with finite state space.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites

Problem statement, part 2: Formalism
Symbolic model checking
Definitions

Prerequisites

Some things we assume the audience has a good understanding of:

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Prerequisites

Some things we assume the audience has a good understanding of:
» The boolean satisfiability (SAT) problem
» Mathematical induction
» Finite state machines (FSM)

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Problem statement, part 2: Formalism

» Since we have restricted ourselves to finite problems, the
models being verified can be specified as finite state machines.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites

Problem statement, part 2: Formalism
Symbolic model checking
Definitions

Problem statement, part 2: Formalism

» Since we have restricted ourselves to finite problems, the
models being verified can be specified as finite state machines.

» But with FSMs we can trivially find all reachable states.
Problem solved?

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites

Problem statement, part 2: Formalism
Symbolic model checking
Definitions

Problem statement, part 2: Formalism

» Since we have restricted ourselves to finite problems, the
models being verified can be specified as finite state machines.

» But with FSMs we can trivially find all reachable states.
Problem solved?

THE END

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites

Problem statement, part 2: Formalism
Symbolic model checking
Definitions

Problem statement, part 2: Formalism

» Since we have restricted ourselves to finite problems, the
models being verified can be specified as finite state machines.

» But with FSMs we can trivially find all reachable states.
Problem solved?

THE END

» Not so. With n state bits, we have 2" states, which is way too
much to go through.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Symbolic model checking

Symbolic model checking: good when it works. But how to make it
fast?

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Symbolic model checking

Symbolic model checking: good when it works. But how to make it
fast?

» No one-size-fits-all solution

» Some approaches already presented on this course

» Perhaps most approaches based on BDDs (Binary Decision
Diagrams)

» One more approach: SAT-based temporal induction

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Some definitions
Let

» M be the finite state machine implementation of the model
being examined

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Some definitions
Let
» M be the finite state machine implementation of the model
being examined

» | be a predicate satisfied by exactly all the possible initial
states of the program (automaton M)

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Some definitions
Let

» M be the finite state machine implementation of the model
being examined

» | be a predicate satisfied by exactly all the possible initial
states of the program (automaton M)

» P be a property being checked against, which we would like to

hold for all reachable states, in which case we call the program
P-safe;

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Some definitions
Let

» M be the finite state machine implementation of the model
being examined

» | be a predicate satisfied by exactly all the possible initial
states of the program (automaton M)

» P be a property being checked against, which we would like to
hold for all reachable states, in which case we call the program
P-safe;

» T be a (binary) transition relation on the states S of the
automaton M

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction Problem statement
Prerequisites
Problem statement, part 2: Formalism

Symbolic model checking
Definitions

Some definitions

Let

» M be the finite state machine implementation of the model
being examined

» | be a predicate satisfied by exactly all the possible initial
states of the program (automaton M)

» P be a property being checked against, which we would like to
hold for all reachable states, in which case we call the program
P-safe;

» T be a (binary) transition relation on the states S of the
automaton M

>

path(sp..sp) = \/ T(si,sit1)

0<i<n

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem

SAT solving
Representing the problem using induction

Some approaches to solving the problem

> Check that
Vso..si € S : I(s0) A path(sp..s;)) = P(sj),

first for i =0, then for i =1, i = 2 and so on. If P holds for
all reachable states, this formula is always true.

» Problem: This is not a complete algorithm: It will eventually
find all counterexamples, but otherwise it never terminates.

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem

SAT solving
Representing the problem using induction

Some approaches to solving the problem, continued

» Due to the finiteness of M, at some point it will be safe to
stop incrementing i and declare our program P-safe. But how
do we know when?

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem SATIEoinE

Representing the problem using induction

Some approaches to solving the problem, continued

» Due to the finiteness of M, at some point it will be safe to
stop incrementing i and declare our program P-safe. But how
do we know when?

» Solution: We only need to consider loop-free paths, i.e. paths
where the same state never repeats.

» Clearly there is a longest loop-free execution path in any
model. Therefore if we incorporate this into our algorithm, it
will become complete. We call the length of this path the
diameter of the state transition graph, diam(M).

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem

SAT solving
Representing the problem using induction

SAT solving

» Now our algorithm can be expressed as boolean SAT if we
know the length of the longest loop-free path.

» Loop-freeness for paths of length n can be represented by n?
inequality constraints.

» So, if we just find the length of the longest loop-free path,
represent our problem as SAT and give it to a solver, it will
finally tell us what we want to know.

» Problem: SAT solvers are good and quite magical, but their

magic is not (yet) always powerful enough to consider the still
exponential number of states in reasonable time.

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem SATIEoinE

Representing the problem using induction

Representing the problem using induction

» Crazy idea: Try to help the SAT solver by using induction and
using the solver just to prove the induction base and induction
step. But how do we induct on this problem?

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem SATIEoinE

Representing the problem using induction

Representing the problem using induction

» Crazy idea: Try to help the SAT solver by using induction and
using the solver just to prove the induction base and induction
step. But how do we induct on this problem?

1. Induction base hypothesis: There are no paths of length n
from any of the initial states that contain bad states (ones for
which P does not hold).

2. Induction step hypothesis: After n valid execution steps, the
next step is guaranteed to land us in a valid state (one for
which P holds).

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem SATIEoinE

Representing the problem using induction

Representing the problem using induction

» Crazy idea: Try to help the SAT solver by using induction and
using the solver just to prove the induction base and induction
step. But how do we induct on this problem?

1. Induction base hypothesis: There are no paths of length n
from any of the initial states that contain bad states (ones for
which P does not hold).

2. Induction step hypothesis: After n valid execution steps, the
next step is guaranteed to land us in a valid state (one for
which P holds).

» Obviously, these constraints will hold for some n < diam(M).
Turns out they are provable for perhaps surprisingly small n for
at least some real-world models.

Sami Liedes Bounded model checking by SAT-based temporal induction



Some approaches to solving the problem SATIEoinE

Representing the problem using induction

Algorithm 1

1i=0

2 while true do

if not Sat(/(sp) A loopFree(sp..s;)) or not
Sat((loopFree(sg..s;) A =P(s;))) then

4 return true

5 end

6 if Sat(/(so) A path(sp..si)) A =P(s;) then
7 return Trace ¢..¢;
8

9

0

w

end
i=i+1

10 end

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

. . . R i fi f
Improving on this solution emoving need to start from zero depth

Doing away with some loop-freeness constraints
Analysis

Improving on this solution - Tighter termination conditions
The termination conditions of Algorithm 1 can be made tighter:

» Consider only paths from an initial state through good
non-initial states to a bad non-initial state.

> viz.
P — IP - IP - ... — IP — 1IP

S0 S1 S2 Sn—1 Sn

> Intuitively, we do not want to go back to an initial state, since
then there would be a shorter path to be found. The same
holds for a bad state in the middle.

» Formally, we replace /(sp) A loopFree(sp..s;) by

I(so) A all.=I(s1..si) A loopFree(sp..s;).

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

Removing need to start from zero depth

Doing away with some loop-freeness constraints
Analysis

Improving on this solution

Algorithm 2: Improved termination conditions

1 i=0
2 while true do

3 if not Sat(/(sp) A all.=I(s1..si) A loopFree(sp..s;)) or not
Sat((loopFree(sp..s;) A all.P(sp..si—1) A = P(s;))) then
4 return true
5 end
6 if Sat(/(so) A path(sp..s;)) A —P(s;) then
7 return Trace ¢..¢;
8 end
9 i=i+1
10 end

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

. . . Removing need to start from zero depth
Improving on this solution

Doing away with some loop-freeness constraints
Analysis

Removing need to start from zero depth

» When a model requires a high induction depth, it quickly gets
expensive to iterate from zero depth.

» It turns out we can modify the algorithm to start from any
depth.

» We modify the algorithm to check for bad paths of length up
to i and not just exactly J.

» |t also turns out to be convenient to switch the order of the
two checks.

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

Removing need to start from zero depth

Doing away with some loop-freeness constraints
Analysis

Improving on this solution

Algorithm 3: An algorithm that need not iterate from 0

1 i=some constant which can be greater than 0
2 while true do

3 if Sat(/(so) A path(sg..si)) A —all.P(sg..s;) then
4 return Trace ¢..c;
5 end
6 if not Sat(/(sp) A all.=I(s1..si+1) A loopFree(sp..si+1)) or not
Sat((loopFree(sp..si+1) A all.P(sp..si) A —=P(si+1))) then
7 return true
8 end
9 i=i+1
10 end

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

Removing need to start from zero depth

Doing away with some loop-freeness constraints
Analysis

Improving on this solution

Algorithm 4: Rewritten to look more like an induction proof

1 i=some constant which can be greater than 0
2 while true do

3 if Sat(—(/(so) A path(sp..s;) — all.P(sp..s;))) then

4 return Trace ¢..c;

5 end

6 if Taut(—/(so) < all.=/(sy..5i1+1) A loopFree(sp..sj11)) or
Taut((loopFree(sp..si+1) A all.P(sp..s;) — P(si+1))) then

7 return true

8 end

9 i=i+1

10 end

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions
Removing need to start from zero depth

Improving on this solution Doing away with some loop-freeness constraints

Analysis

Doing away with some loop-freeness constraints

One limiting factor appears to be adding the n? loop-freeness
constraints. Two things can be done to help this:

1. It is possible to analyze the FSM to prune some of the
constraints, i.e. it is only necessary to consider the beginnings
of basic blocks.

2. Examine the models returned by the solver in the induction
step and add inequality constraints only as needed. This way
we need to rerun the solver after adding the constraints. Turns
out this method performs better in general anyway.

Sami Liedes Bounded model checking by SAT-based temporal induction



Tighter termination conditions

Removing need to start from zero depth

Doing away with some loop-freeness constraints
Analysis

Improving on this solution

Analysis

> All presented algorithms are suitable for SAT solvers.

» It is possible to constrain the algorithms to shortest paths
between states. However this moves it to the QBF (Quantified
Boolean Formula) domain, which is not so nice. As the peer
papers did not show any results with this method, we will not
discuss it further here.

» Middle ground can be found: Check that the paths are locally
shortest, i.e. between no ¢ non-neighbors in the path there is a
transition (¢ = 2 is the simplest case). This makes the
problem still stay in boolean clause satisfiability domain.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Incremental approach: Introduction

» One expensive thing in our algorithm is incrementing the
depth always by 1 and redoing the computation.

» The induction depth can be incremented by a higher value
than 1 at each step; however then the found counterexamples
are not necessarily shortest ones.

» |t would be beneficial to be able to incrementally solve the
SAT instances of different depths.

» This turns out to be possible with a very modest modification
to general SAT solvers (probably already integrated to the
newest solvers).

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Incremental SAT: Analysis

> It is fairly easy to add new clauses (constraints) incrementally
to SAT instances being solved in a DPLL-based solver with
conflict analysis and clause recording.

» However, removing clauses fundamentally conflicts with clause
recording.

» For many interesting problems, removing clauses is simply
necessary.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

A solution for clause removal

» |dea: Permit the user to force some literals to true or false for
the duration of a single search.

» This has the nice benefit of making all learnt clauses safe to
keep, and thus there is no need for extra book-keeping.

» The authors of the paper implemented this in 5 lines of added
code in some SAT solver.

» Using this approach, general clause deletion can be largely
simulated.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Incremental induction

» Our BMC algorithm can be divided in two independent parts
that can be run in parallel: The base case (“bug finder”) and
the induction step (“upper bound prover").

» These algorithms can be nicely implemented incrementally.

» We note that the problem is inherently symmetrical: We want
to find a path from an initial state to a bad state through good
non-initial states. That can be done forwards or backwards.

» Base case we want to search forwards, since that allows us to
keep the often strong formula /(sp) in the solver. Analogously,
the induction step should be done backwards for maximum
efficiency.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Some more notation

We define some more notation for our incremental SAT solving.
Let

> [©]P be a set of clauses such that p is the literal representing

the truth value of the whole formula. We call p the definition
literal of .

> [l = el Up.
> Ip = 1(sp), Pn = P(sp) and To = T(sp, Sp+1)-

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Algorithms 5 and 6: Incremental base and induction step

1 addClauses([Po])
1 addClauses([/o]) 2 for ne —1.. — oo do

2 for n € 0..00 do 3 solve({})
3 addClauses([P,]P") 4 if Unsatisfiable then
4 solve({pn}) 5 return Ind. step holds
5 if Satisfiable then 6 end
6 return Property fails 7 addClauses([T,])
7 end 8 addClauses([P,])
8 addClause({pn}) 9 for i€ 0..n+1do
9 addClauses([T,]) 10 addClauses([s; # sn])
10 end 11 end
12 end

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Further analysis

» These algorithms can be run in parallel.

» As soon as the induction step succeeds, an unsatisfiable base
case of that length will constitute a proof of P.

» Could we still improve uniqueness constraint handling?

» We do not need to consider inputs: If two states are equal
except for inputs, we could have fixed the inputs to be same.

» This way we only need to require all delayed elements in the
model to be the same, which is a much stronger condition.
This is important: each extra state bit can double the depth
needed to prove the step.

Sami Liedes Bounded model checking by SAT-based temporal induction



Introduction
Incremental SAT: Analysis
A solution for clause removal

Incremental approach Incremental induction
Further analysis

Further analysis, continued

» On the other hand, sometimes we cannot separate inputs,
perhaps we are just given two propositional formulas / and T.
» One solution:

1. Include only variables occurring both in the current and the
next state of T.

2. Do not add uniqueness constraints including the first or the
last state of the trace.

» If the correctness of this approach is not obvious, refer to the
original paper.

Sami Liedes Bounded model checking by SAT-based temporal induction



Experimental results

Experimental results

» The ideas were implemented in a prototype tool called Tip
which was integrated with the SAT solver Satzoo.

» Empirical results show that SAT-based induction can be a
valuable complementary method to BDD-based methods.

» Tip was able to solve some instances where the BDD-based
methods failed.

» On the other hand there were instances where the BDD-based
methods were better.

Sami Liedes Bounded model checking by SAT-based temporal induction



Conclusion

All is well that ends in a cliché.

Sami Liedes Bounded model checking by SAT-based temporal induction



	Introduction
	Problem statement
	Prerequisites
	Problem statement, part 2: Formalism
	Symbolic model checking
	Definitions

	Some approaches to solving the problem
	SAT solving
	Representing the problem using induction

	Improving on this solution
	Tighter termination conditions
	Removing need to start from zero depth
	Doing away with some loop-freeness constraints
	Analysis

	Incremental approach
	Introduction
	Incremental SAT: Analysis
	A solution for clause removal
	Incremental induction
	Further analysis

	Experimental results
	

