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Markov Chains and Stochastic
Sampling

1 Markov Chains and Random Walks on Graphs

1.1 Structure of Finite Markov Chains

We shall only consider Markov chains with a finite, but uspakry large,state
space S={1,...,n}.

An Svalued(discrete-time)stochastic procesis a sequencg, X1, Xp,... of S
valued random variables over some probability sgacee. a sequence of (mea-
surable) map¥;: Q - St=0,1,2,...

Such a process isMarkov chainif for all t > 0 and anyig, i1,...,it_1,i, ] € Sthe
following “memoryless” (forgetting) condition holds:

PriX 1=j[Xo=lio, X1 =l1,..., %1 =lit-1,% =1)
= Pri%s1=j|X%=1i). (Y]

Consequently, the process can be described completelywingdgis initial distri-
bution (vector)

P = [phpil = [Py, wherep = Pr(Xo =)

1By a somewhat confusing convention, distributions in Markhain theory are represented
as row vectors. We shall be denoting the: b columnvector with componentss,...,pn as
(p1,--.,pn), and the correspondingx 1 row vector asps,..., pn] = (P1,..- ,pn)T. All vectors
shall be column vectors unless otherwise indicated by tembtation.

2

1. Markov Chains and Random Walks on Graphs 3

and its sequence érfansition (probability) matrices
P~ (b)), . wherep]’ =PriX = [ X-1=1).
Clearly, by the rule of total probability, the distributieector at timet > 1
pY = P& = )]},
is obtained fromp(t~1 simply by computing for eaciy
t il t—1 t
p! = i;pf 'y,
or more compactly
pt) = pt-1p®),
Recurring back to the initial distribution, this yields
pt) = pPPWP@)...pH), )

If the transition matrix is time-independent, i) = Pforallt > 1, the Markov
chain ishomogeneoyotherwiseinhomogeneoushe shall be mostly concerned
with the homogeneous case, in which formula (2) simplifies to

We shall say in general that a vectpe R" is astochastic vectoif it satisfies
g>0 Vi=1...,n and g=1
2

A matrix Q € R™" is astochastic matrixf all its row vectors are stochastic vec-
tors.

Now let us assume momentarily that for a given homogeneoukdvaChain
with transition matrixP and initial probability distributiorp? there exists a limit
distributiontt € [0,1]" such that

tIim p<t> =T (in any norm, e.g. coordinatewise) ?3)
Then it must be the case that
= lim pOPt = lim p°pt+1

~ (imee)p-re
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Figure 1: A Markov chain for Helsinki weather.

Thus, any limit distribution satisfying property (3), ifcduexist, is a left eigen-
vector of the transition matrix with eigenvalue 1, and cacdaputed by solving
the equationt= 1iP. Solutions to this equation are called #guilibriumor sta-
tionary distributionsof the chain.

Example 1.1 The weather in Helsinki.Let us say that tomorrow’s weather is
conditioned on today’s weather as represented in Figure ih dre transition
matrix:

P |rain sun

rain| 0.6 0.4
sun| 0.7 0.3

Then the long-term weather distribution can be determiirethis case uniquely
and in fact independent of the initial conditions, by sotyin

P =T, ZTI]':].
I

0.6 0.4
& [T T {0.7 0.3} =[], mim=1

T, = 0.61% + 0.7175 _
had {nszo.4m+o.3ns’ T +Te=1
% = 0.64
< {nszo.sa

Every finite Markov chain has at least one stationary distiim, but as the fol-
lowing examples show, this need not be unique, and evensf then the chain
does not need to converge towards it in the sense of equ&jon (

Example 1.2 A reducible Markov chainConsider the chain represented in Fig-
ure 2. Clearly any distributiop = [p1 py] is stationary for this chain. The
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Figure 2: A reducible Markov chain.
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Figure 3: Periodic Markov chains.

underlying cause for the existence of several stationasifidutions is that the
chain isreducible meaning that it consists of several “noncommunicatingheo
ponents. (Precise definitions are given below.)

Any irreducible (“fully communicating”) chain has a unigstationary distribu-
tion, but this does not yet guarantee convergence in thesdregjuation (3).

Example 1.3 Periodic Markov chains.Consider the chains represented in Fig-
ure 3. These chains aperiodic, with periods 2 and 3. While they do have unique
stationary distributions indicated in the figure, they oodyverge to those distri-
butions from the corresponding initial distributions; etWise probability mass
“cycles” through each chain.

So when is a unique stationary limit distribution guarad®@&he brief answer is
as follows.

Consider a finite, homogeneous Markov chain with stat&Ssetd transition ma-
trix P. The chain is:

(i) irreducible, if any state can be reached from any other state with pesitiv
probability, i.e.

Vi, jeS 3t>0:R;>0;
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(i) aperiodicif for any statei € Sthe greatest common divisor of its possible
recurrence times is 1, i.e. denoting

Ni={t>1|P >0}
we have gctNi) =1, VieS

Theorem (Markov Chain Convergence)A finite homogeneous Markov chain
that is irreducible and aperiodic has a unique stationargtdbutionTt, and the
chain will converge towards this distribution from any ialtdistribution @ in the
sense of Equation (33

Irreducible and aperiodic chains are also catieglilar or ergodic

We shall prove this important theorem below, establishirgy the existence and
uniqueness of the stationary distribution, and then cagemge. Before going
into the proof, let us nevertheless first look into the stitedf arbitrary, possibly
nonregular, finite Markov chains somewhat more closely.

Let the finite state space I8and the homogeneous transition matrixte
A set of state€ C S,C # @ is closedor invariant, if pj =0 VieC,j¢C.
A singleton closed state absorbing(i.e. pij = 1).

A chain isirreducibleif Sis the only closed set of states. (This definition can be
seen to be equivalent to the one given earlier.)

Lemma 1.1 Every closed set containsmainimal closed set as a subset.

Statej is reachablefrom state, denoted — j, if F’i‘j > 0 for somet > 0.
Stated, j € S communicatedenoted < j, if i — jandj —i.

Lemma 1.2 The communication relation<" is an equivalence relation. All the
minimal closed sets of the chain are equivalence classége@gpect to -". The
chain is irreducible if and only if all its states communieat

States which do not belong to any of the minimal closed sslet calledran-
sient

One may thus partition the chain into equivalence classm@ipect to +”". Each
class is either a minimal closed set or consists of transtates. This is illustrated
in Figure 4. By “reducing” the chain in this way one obtainsA®like structure,
with the minimal closed sets as leaves and the transient aoems as internal
nodes. (Actually a “forest” if the chain is disconnectedr) itreducible chain of
course reduces to a single node.
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Figure 4: Partitioning of a Markov chain into communicataigsses.

Theperiodof statei € Sis

ged{t > 1| P} > 0}.
—

A state with period 1 isiperiodic

Lemma 1.3 Two communicating states have the same period. Hence, ewery
ponent of the £ relation has a uniquely determined periogh

Define thefirst hit (or first passaggprobabilities for states— j andt > 1 as:

fi(jt> = Pr()(j|_7'é J.,X27'é j. ./Xt,l?é J«XI — ] | Xo = I),
and thehitting (or passaggprobabilityfor i — j as

fr=5 flV.
1] t; 1]

Then theexpected hittingpassaggtimefori — j is
tfY i £ =1
W = t; ij ij
0 if fj <1
Fori = j, Wi is called theexpected return timend often denoted simply.

Statei € Sis recurrent(or persistenyif f =1, otherwise it igransient (In infi-
nite Markov chains the recurrent states are further dividegpositive recurrent
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with i < e andnull recurrentwith p = oo, but the latter case does not occur in
finite Markov chains and thus need not concern us here.)

The following theorem provides an important characteiosabf the recurrent
states.

ion:Px — (p)"
Notation:P* = (pIJ )L,j:l'
Theorem 1.4 State ic S is recurrent if and only if o pfik) = o0, Correspond-
ingly, i € S'is transient if and only if .~ pi(ik) < 0o,

Proof. Recall the relevant definitions:

A = PiOG=11X=1),
£V = PrXy#£i,... X 1AL X=1]Xo=1).

Then it is fairly clear that

k k-1
(k) t) (k=) (k=t) ,()
pi’ = f.. Pi = f.. pi’-
n t; I n tZO 1} n
Consequently, for ani:

K k-1
k—t t
fii( ) pi(i )

K
LAY
—1t=
K-1 K
_ N0 S gk
22,

&)
gop” fii

< )
<1+tzi Pi > fii

SinceK was arbitrary, we obtain:

IN

N e (K _ s
(1-1) > mi < fi.
[} & 1} 1]

Now if i € Sis transient, i.eff < 1, then
i
p;: S " < 00,
k; R
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Conversely, assume thiat Sis recurrent, i.eff = 1. Now one can see that

Pr(X =iforatleasttwd > 1|Xo=1)

Il
M
V
=0
=
Il
R
MM
=
~
N

and by induction that
Pr(% =i for at leasstimes|Xo = i) = (f;)*=1.
Consequently,
P = Pr(X = i infinitely often| Xo = i) = SIiﬂn’;}(f”*)s =1
However, ify -0 pi(ik) < oo, then by the Borel-Cantelli lemma (see below) it should

be the case thad = 0.

Thus it follows that iff = 1, then alsdy .o pf = 0. O

Lemma (Borel-Cantelli, “easy case”)Let Ay, Ay,... be events, and A the event
“infinitely many of the 4 occur”. Then

k; Pr(Ay) < o= Pr(A)=0.

Proof. Clearly

A= UA

m>0k>m

Thus for allm> 0,

Pr(A)<Pr(U Ak> < 3 Pr(A) —0asm— o,

k>m k>m

assuming the surfi,-q Pr(A¢) convergesg
LetCy,...,Cm C Sbe the minimal closed sets of a finite Markov chain, ané
S\ (C1U---UCn).

Theorem 1.5 (i) Any state ic C;, for some r=1,...,m, is recurrent.
(i) Any state ie T is transient.
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Proof. (i) Assumei € C, C minimal closed subset & Then for anyk > 1,

becaus€ is closed andP is a stochastic matrix. Consequently,

DL

and because€ is finite, there must be somjg € C such that

(k)
E pii. = co.
& 1o

Sincejo < i, there is soméy > 0 such thapgz?) = po > 0. But then

Kk k— k—
> > }Ropi(,-o o) pl) = ( }Ropi(,-o k‘”) po=co.
K& kS kS

By Theorem 1.4 is thus recurrent.

(i) DenoteC = C1 U - - UCny. Since for anyj €Y the set{l € S| j — 1} is closed,
it must intersecC; thus for anyj € T there is somé& > 1 such that

K & (k)
P = P: > 0.
iC I; il

SinceT is finite, we may find &p > 1 such that for anyj € T, pf'é") =p>0.

Then one may easily compute that for ary T,

Pt <1-p, pF < (1-p)? pF < (1-p)3, etc.

and so
(k) (k) (rko) r
Pi’ <Y Py <N kopr <ko y (1-p) < oo
k;l li kgl T r; T r;

By Theorem 1.4i is thus transientg

1.2 Existence and Uniqueness of Stationary Distribution

A matrix Ae R™"js
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(i) nonnegativedenotedA > 0, ifaj >0 Vi, ]j
(i) positivg denotedA 2> 0, ifa; >0 Vi, janda; > 0 for at least onéj

(iii) strictly positive denotedA > 0, if g >0 Vi, ]j
We denote alsé > Bif A—B >0, etc.

Lemma 1.6 Let P> 0 be the transition matrix of some regular finite Markov
chain with state set S. Then for sorgertlitis the case thatP>0 Vvt > to.

Proof. Choose somee Sand consider the set
N={t>1]p" >0}

Since the chain is (finite and) aperiodic, there is some faggt@f numbers, ... ;tn€
N;i such that

gcdN; = gedfty,... . tm} =1,
i.e. for some set of coefficients, ... ,am € Z,
aty +aoto + - -+ amtm = 1.

Let P andN be the absolute values of the positive and negative partgo$tim,
respectively. Thu® —N = 1. LetT > N(N —1) and consider ang > T. Then
s=aN+r, where 0<r < N-1 and, consequentlg > N — 1. But thens=
aN+r(P—N) = (a—r)N+P wherea—r > 0, i.e.Scan be represented in terms
of ty, ..., tm with nonnegative coefficients, ... ,bm. Thus

b; b: bmtm
pi(iS) > pi(i 1t1) pi(i ZtZ)"'pi(i ) > 0.

Since the chain is irreducible, the claim follows by choggisufficiently larger
thanT to allow all states to communicate withy

Let thenA > 0 be an arbitrary nonnegativex n-matrix. Consider the set
A ={\ € R | Ax> Ax for somex > 0}.

Clearly 0 A, soA # @. Also, it is easy to see that the values/irare upper
bounded by the maximal rowsukh of A. ThusA C [0, M], and we may define

A = supA.
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To see that the supremum Afis actually attained by somg" € A and vector
X* > 0, observe that one may also defikieas
(AX);

A= max min —=,
xe[0, " i=1,..,n X

where in the case of =0, the quotieanX‘—),‘)i is defined as the appropriate limit to
maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix A- O there
exist a positive real numbér* > 0 and a strictly positive vectorx> 0 such that:

(i) AX* = A*x*;
(i) if A # A* is any other (in general complex) eigenvalue of A, ther< A*;

(iii) A* has geometric and algebraic multiplicity 1.

Proof. DefineA* as above, and le¢ > 0 be a vector such thatx* > A*x*. Since
A> 0, alsor* > 0.

(i) Suppose that it is not the case thet* = A*x*, i.e. thatAx* > A*x*, but not
AX" = N*x*. Consider the vectgy* = AxX*. SinceA > 0, Ax> 0 for anyx 2 0; in
particular NOWA(Yy* — A*X*) = Ay* — A AX* = Ay —A*y* > 0, i.e.Ay* > A*y*; but
this contradicts the definition of*.

ConsequentlyAx = A*x*, and furthermore* = A%Ax* >0.
(i) Let A # A* be an eigenvalue oA andy # 0 the corresponding eigenvector,
Ay = MAy. Denotely| = (|yil,. .., |yn|). SinceA > 0, it is the case that

Al > A= Ay = A]lY]-
By the definition ofA*, it follows that|A| < A*.

To prove strict inequality, Ieb > 0 be so small that the matrif = A— dl is still
strictly positive. Then for any eigenvaldeof A, A — d is an eigenvalue of;
and vice versa. Sinc8s > 0, its largest eigenvalue ¥&" — 9, i.e. for any other
eigenvalue\ of A, |]A — 3| < A* —2d.

But this implies thatA cannot have any eigenvalugsz A* on the circlelA| = A*,
because such would hajle— 3| > |A\* — §|. (See Figure 5.)

(iii) We shall consider only the geometric multiplicity. Sjpose there was another
(real) eigenvectoy > 0, linearly independent of*, associated td*. Then one
could form a linear combinatiow = x* 4+ ay such thatw = 0, but notw > 0.
However, sincé > 0, it must be the case that aleo= A%AW> 0. o
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A -0

Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix (4 0) such that some power of A is
strictly positive (A > 0), then the conclusions of Theorem 1.7 hold also for-A.

Note: In fact every nonnegative matri> 0 has a real “Perron-Frobenius” eigen-
valueA* > 0 of maximum modulus, i.e. such that < A* holds for all eigenvalues
A of A. But in this general case there may also be complex eigeesafiequal
modulus, and\* itself may be nonsimple, i.e. have multiplicity greaterttume.

Proposition 1.9 Let A> 0 be a nonnegative r n matrix with row and column
sums

n=>aj C=3)aj iLj=1....n
] T
Then for the Perron-Frobenius eigenvaliieof A the following bounds hold:

minri <A* <maxri, minc; <A* < maxc;.
i i j ]
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Proof. Let x* = (x1,%2, ... ,X,) be an eigenvector corresponding\tg normalised
so thaty; x; = 1. Summing up the equations fAx" = A*x" yields:

Xy + aXe + ...+ am¥n =AXg

apiXy + axXe + ... + am¥n =AX

auXt + apXe + ...+ @ =AX

X1 + CX2 + ... + CXn =N (Xg+-+X) =A*F
N————

1

ThusA* is a “weighted average” of the column sums, so in particularjg) <
A* < max; c;.

Applying the same argument #', which has the samg* asA, yields the row
sum bounds.g

Corollary 1.10 Let P> 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution veatsuch thatP = 1i(< PTIT =10).

Proof. By Lemma 1.6 and Corollary 1.8 has a unique largest eigenvahfec R.
By Proposition 1.9\ = 1, because as a stochastic matrix all row sunB @fe.
the column sums d?T) are 1. Since the geometric multiplicity df is 1, there is
a unique stochastic vecton(i.e. satisfyingy; 4 = 1) such thatiP =1t o

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chdth transition ma-
trix P has a unique stationary distribution vectosuch that® = 1t

By elementary arguments (page 3) we know that starting fnayriritial distribu-
tionq, if the iterationq, P, gP2, . .. converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain dateed byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let Ae C™" be any matrix with eigen-
valueshy,... A € C, | <n. Then there exists an invertible matrix¢JC"™" such
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that
J O .. 0
vau-t— | O %
P ¢
0o - 0 J

where each;Js a k x k; Jordan block associated to some eigenvahief A:

A10--00
OA1 . 00
= oo
000 A1
000 - 0A

The total number of blocks associated to a given eigenvak@responds ta'’s
geometric multiplicity, and their total dimensighk; to A’s algebraic multiplicity.
O

Now let us consider the Jordan canonical form of a transitiatrix P for a regular
Markov chain. Assume for simplicity that all the eigenvaaf P are real and
distinct. (The general argument is similar, but needs monegdicated notation.)
Then the rows o) may be taken to be left eigenvectors of the ma@jand the
Jordan canonical form reduces to the familiar eigenvalwea@osition:

A 0 -0
uput=p=| 0 M

Do 0

0 - 0 A

In this case one notes that in fact the columnblof =V are precisely theight
eigenvectors corresponding to the eigenvalhes.. ,A,. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalde = 1, and the other eigen-
values may be ordered so that-1]A;| > |Az| > --- > |A|. The unique (up to
normalisation) left eigenvector associated to eigenvaligethe stationary distri-
butionTt, and the corresponding unigue (up to normalisation) riggegre/ector is
1=(1,1,...,1). If the first row ofU is normalised tat, then the first column of
V must be normalised tbbecaus®&)V =UU 1=1, and hencgUV)11=uivi =
v = 1.
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Denoting
10 -0
A 0 A ’
0
0 0 A
we have then:
1 0 - 0
2
P?= (VAU)?=VAZU =V 0 A u,
. .0
0 -~ 0 A
and in general
10---0
t ..
Po— vau = v|%% u
P 0
0--- 0 A,
-0 Vi1U1 I
. V12U s
v “Hluo 1%1 _
0---00 VinU1 I

To make the situation even more transparent, represenea giitial distribution
g=q?in the (left) eigenvector basis as

4 = G+ U2+ +Galin
= T+GoUz+---+Galln,  Wheregi=(q",v) = qu.
Then
qP = (Tt+ Gouz + - - - + Gnlin) P = T+ GoA2uz + - - - + GnAnUin,
and generally

n
qY =qP = 7T+i;di7\fui,

implying thatq) — , and if the eigenvalues are ordered as assumed, then

t—oo

llg® — | = 0 (]A2]").
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1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Matan?

A moment’s thought shows that the transition matrix of ariteaty (finite) Markov
chain can be put in the followinganonical form

Py 0

0 P

R Q

where ther square matriceBy, ... ,P in the upper left corner represent the tran-
sitions within ther minimal closed classe®) represents the transitions among
transient states, ariRirepresents the transitions from transient states to orfesof t
closed classes.

In this ordering, stationary distributions (left eigeniars of P corresponding to
eigenvalue 1) must apparently be of the fams [y --- . 0 --- 0]. (Note that
sinceQ has at least one row sum less than 1, by the proof argumenboBir

tion 1.9 also all of its eigenvalues have modulus less thdis the only solution
of the stationarity equatiopnQ= pisp=0.)

Consider then theundamental matrix M= (I — Q)1 of the chain. Intuitively, if
M is well-defined, it corresponds ¥ = | + Q+ Q2+ ..., and represents all the
possible transition sequences the chain can have with@irtgeQ.

Theorem 1.12 For any finite Markov chain with transition matrix as aboveet
matrix | — Q is invertible, and its inverse can be represented as theergent
series M=14+Q+Q%+...

Proof. Since for anyt > 1,

(1-QU+Q+--+QH=1-Q,
andQ! — 0 ast — o, the result follows g

A transparent stochastic interpretation of the fundamemrix may be obtained
by considering any two transient stategin a Markov chain as above. Then:

Pr(X = | | Xo=1) = Qj £ qf .
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@1 sl Qe w W
/8 Aloses ¢ q q A wins

Figure 6: A Markov chain representing the geometric distitm. . . . P
Figure 7: A Markov chain representing a coin-flipping game.

Thus,
NowQ=(q),M=(1-qg)~t=1/p. Thus, e.g.
E[number of visitstgj e T | Xo=i e T| = qi(jo) +qi(,-l> +qi(j2) +...
= lij+Q +Qi21 +... E[number of visits to 2 before exiting to| Xg = 2] = M1 = %
= Mij 2 mj.
An elementary way to obtain the same result would be:
Furthermore,
E[number of moves il before exiting taC | Xo =i € T] E[number of visits = 2 Prinumber of visits= k] - k
K30

= E berofvisitstg e T [ Xo=i€eT -
J-zr [number of visits toj € T [ X =1 € T] Z}Pr[number of visits> K]
k>

€
= mij

Jgf S WU U .-
= (M1). 1-q »p

As another application, ldtj; be the probability that the chain when started in
transient staté € T will enter a minimal closed class via stafjec C. Denote

B = (bjj)ieT,jec. Thenin facB = MR, Example 1.5 Gambling tournament.Players A and B toss a biased coin with

A's success probability equal fpand B’s success probability equal te-Jp = q.

Proof. Forgiveni € T, j €C, The person to first obtaimsuccesses over the other wins. What are A's chances of
bi=pi+ Y pibyi winning, given that he initially hak successes over B;n < k < n? (A more tech-
e kgr kT nical term for this process is “one-dimensional random weitk two absorbing
barriers.”)
Thus, For simplicity, let us consider only the case- 2. Then the chain is as represented

B=R+QB = B=(1-Q) 'R=MR in Figure 7, with transition matrix:

|2 -1 012

Example 1.4 The geometric distributiorConsider the chain of Figure 6, arising -2/1 0 00O
e.g. from biased coin-flipping The transition matrix in thisse is -1 g 0 p0O
0/ 0 g O0poO

P_[l 0} 1/0 0 qoO0p
paj 2|0 0 001
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i.e. in canonical form:

\—22—101
-2(1 0 0 0O
210 1 0 00O
-1/ g 0 0 p O
0|0 O g 0p
110 p 0 g6O

Thus,M = (1 -Q)*

1 -p o], [pt?p P
—|q 1 —p| = 1
Oq —q 1p p2+q2 qZ P 2

and soB = MR
1 [ptd p P
- 1
p?+q? (?2 P

1.5 Reversible Markov Chains

w

TP+ | & pa+p’
~N =

Aloses Awins

ap+a®  p
] ; 2

o
o
+
e

We now introduce an important special class of Markov chaften encountered
in algorithmic applications. Many examples of these typeshains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred timeedition at equilibrium, i.e.
any given sequence of states is equally likely to occur iw&od as in backward
order.

A Markov chain determined by the transition matfix= (pij )i jcs is reversibleif
there is a distributiomt that satisfies thdetailed balanceonditions:

TR =Tpji Vi,jeS

Theorem 1.13 A distribution satisfying the detailed balance conditioassta-
tionary.

Proof. It suffices to show that, assuming the detailed balance tiondj the fol-
lowing stationarity condition holds for alle S:

= Z;T[jpji-
IE
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Pij

Pji
Figure 8: Detailed balance conditiogp;; = T1j pji.

But this is straightforward:
TiPji = ) TPij =T ) Pjj =Ti.
O

Observe the intuition underlying the detailed balance d@rd At stationarity,
an equal amount of probability mass flows in each step frémj as fromj to
i.(The “ergodic flows™ between states are in pairwise bataet. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graphy = {1,...,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbourteisiae as
the next state, uniformly at random. That is,

[ g if(ij)€eE o .
by = { 0, otherwise (¢ = deg())

Let us check that this chain is reversible, with stationasgribution
_[d d2 dn
= {H q T d)
whered = 3 ; d = 2|E|. The detailed balance condition is easy to verify:

! di e
Tlipu: %&:%:H]d%:njpjl, If(|7l)€E
0=mpj, it (i,)¢E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure & dgisy to verify that
this chain has the unique stationary distributios= [2 % 1]. However, for
anyi=1,2,3:
12 2 11 1
TGPi (i+1) = 339 > Ti1Pi+1),i = 3379
Thus, even in a stationary situation, the chain has a “peafa” of moving in the
counter-clockwise direction, i.e. it is not time-symmetri
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Figure 10: Hard-core colouring of a lattice.
2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) samplipgvhich is an
extremely important method for dealing with “hard-to-asgedistributions.

Assume that one needs to generate samples according toabpitytalistribution

1T, but Ttis too complicated to describe explicitly. A clever solutiis then to
construct a Markov chain that converges to stationary itligion 1t, let it run

for a while and then sample states of the chain. (Howeverpobr@®us problem
that this approach raises is determining how long is “for de¥® This leads to
interesting considerations of the convergence rates apid'mixing” of Markov
chains.)

Example 2.1 The hard-core model.

A hard-core colouringof a graphG = (V, E) is a mapping
&:v—-{0,1} (“empty” vs. “occupied” sites)

such that

(i,j)eE = &(i)=0VE&(j)=0 (no two occupied sites are adjacent)
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E.g. on a lattice graph, the hard-core colouring conditiaydets an exclusion
principle, whereby a “particle” at one site excludes thespree of “particles” at
neighbouring sites, cf. Figure 10. In computer science searhard-core colour-
ing of a graphG corresponds to an independent set of nodes fBom

Denote by the uniform distribution over all thég valid hard-core colourings of
G. We would like to sample colourings accordingug, e.g. in order to compute
the expected number of ones in a valid colouring:
1
EnX)= 5> n@ue@ =2 5> n@lisaid:
£c{0,1}v &e{0,1}v

wheren(&) denotes the number of ones in colourfng

However, the combinatorial structure of distributiafis quite complicated; it is
far from clear how one could pick a random valid hard-core@adhg of graph
G. (Even computing their total numbz2g is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless FP9 N

Given a graptG = (V,E), V = {1,...,n}, let us consider the following Markov
chain(Xp, X1,...) on the space of valid hard-core colouring<®f

o [nitially chooseXg to be any valid hard-core colouring 6
e Then, given colouring, generate colourin; 1 as follows:

1. Choose some node V uniformly at random.

2. If all the neighbours of have colour 0 inX;, then letX;;1(i) = 1 with
probability 1/2 andX;1(i) = O with probability 1/2.

3. Atall other nodeg, let X1(j) = X (j).

It can be seen that the chain thus determined is irreducéiihed all colourings
communicate via the all-zeros colouring) and aperiodisogifor any colouring
&, P >0).

To see that the chain hag as its unique stationary distribution, it suffices to
check the detailed balance conditions with respepttd_et €, &’ be two different
colourings. If they differ at more than one node, thifgn = Py = 0, so it suffices
to check the case whekgi) + &'(i) at a single nodé But then

The above hard-core sampling algorithm is a special caseSablas samplefor
a target distributiont on a state space of the forén=C".
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The general principle is to choose in step 2 of the state epdide: the new value
for X11(i) according to theonditionalre-distributiorn
Privc(Xer1(i) = ¢) = Pr(&(i) = ¢ [ €(J) = X (1), ] #1)-

(In addition, the chain needs to be initialised in a stéjethat has nonzeror
probability.) It can be seen that the chain so obtained isiegie and hagt as
a stationary distribution. Whether the chain is also irctdie depends on which
state< have nonzeratr-probability.

Example 2.2 Sampling graph k-colouringd.et G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in #aces= {1,...  k}V
of k-colourings ofG:

o Initially chooseXy to be any valick-colouring of G. (Of course, finding a
valid k-colouring is an NP-complete problem flor> 3, but let us not worry
about that).

e Then, given colouring, generate colourin; 1 as follows:

1. Choose some node V uniformly at random.
2. LetC' be the set of colours assigned Xiyto the neighbours df

C'={X(j)|(i.j)cE}

(Note that/C’| < k.) Choose a colour fax;+1(i) uniformly at random
from the sef{1,... .k} \C'.

3. Atall other nodeg, let X1(j) = X ().

Note that it is a nontrivial question whether this chain iediucible or not.

Another general family of MCMC samplers are tietropolis chains

Let the state spacghave some neighbourhood structure, so that it may be viewed
as a (large) connected graf® N). Denote byN(i) the set of neighbours of state
i, and letd; = [N(i)|. We assume that the neighbourhood structure is symmetric,

so thati € N(j) if and only if j € N(i).
Then the (basicMetropolis samplefor distributiontton Soperates as follows:

o [nitially chooseXg to be some statiec S.

e Then, given stat; = i, stateX;, 1 is obtained as follows:
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1. Choose somge N(i) uniformly at random.

. . . d . .
2. yvnh probability mi %T 1}, accepté1 = j. Otherwise lei, 1 =
i.

Thus, fully written out the transition probabilities are:

1 . (md; } . .
—ming ——,15, if jeN(
amn{mg 1 N0
pij=14 0, it jJEN(),j#i
1- % pi, if j=i
JeN()

To show that this chain hasas its stationary distribution, it suffices to check the
detailed balance conditions:

TR =TGP Vi,jeS

The conditions are trivial if = j or j ¢ N(i), so let us consider the cage N(i).
There are two subcases:

- T di . .
0] Casewl—dj >1: Then:

1
Tipij =T —-1
|
S L L
TiPji =T dj T[jdi_di
T i . .
(i) Casewl—dj < 1: Then:
L L
TiPij =T§ B! Tl'idjidj
”ipii=ﬂj'd—j-1

(Note that in both cases pij = T;pji = min{%,g—:}.) Hencerttis a stationary
distribution of the chain.
Furthermore, the chain is guaranteed to be aperiodic iktiseat least onec S
such tha ,jgi‘ < 1(= pi>0)i.e.itisnotthe case thatforalljc S

T

— = — = const

d d
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In the latter case the chain reduces to a simple random watkeograph(S,N)
with stationary distribution

_[di d2 dn
”’{d d d}

as seen earlier. Such a random walk is aperiodic, if and driheigraph(S,N)
contains at least one odd cycle, i.e(¥N) is not bipartite.

3 Estimating the Convergence Rate of a Markov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on stateSet{1,...,n}, with transition prob-
ability matrix P = (pij) and stationary distributiort

We would like to measure the rate of convergence of the cloain ¢.9. in terms
of thetotal variation distance

20)(t) = oy ('), ),
Wherertﬁi‘t) = pfp, and
(.70 = ap(A) ~T(A) = 3 3 Ipy 7.
c £
However, we get somewhat tighter results by using instedg tiferelative point-

wise distance

Ipj — ]

dY (p, 1) = max
I’p(p’ ) jeu T[j

Hence, we define our convergence rate function as:
(t)
i Ipij” —
Y (t) = maxds (Y, m) = max— .
ieu i,jeU T[j

When we consider convergence over the whole state spadd, €5, we denote
simply:

At) = AS(1).
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Proposition 3.1 For any two distributiong, 1, wherert; > 0 for all j:

ls
dy <= <
(pT[) — 2drp(p7n) — mln] T[J

dv (P, ).
Consequenthy) (t) < 1A(t) for all i t. o

Define themixing timeof a given regular chain as

1(e) =min{t | At)<e VvVt >t}
In algorithmic applications, the details of the chain atewnfdetermined by some
inputx, in which case we writéy(t), Tx(€) correspondingly.
A chain (more precisely, a family of chains determined byutsp) is rapidly
mixingif

x(€) = poly (\x|, In %) .

Our goal is now to establish some techniques for analysiegdmvergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and statiapalis-
tribution Ttis reversible, if and only if the matrix 2PD~1/2 is symmetric, where

DY2 = diag(\/Th, \/TR; - - . ,\/Th)-

:
Proof. DY2PD Y2 — (DU2PD12) " & DP=PTD.

Inspecting this condition coordinatewise shows that itigotly the same as the
reversibility conditionmg pij = p;iT; Vi, j. o

Now it is easy to see that the matie D¥2PD~1/2 has the same eigenvalues as
P: if A is an eigenvalue d® with left eigenvector, then for the vectov = uD~1/2

we obtain

VA= uD /2 (Dl/zpo—l/z) —UPD Y2 = \uD V2 = Ay,

Since matrixA is symmetric for reversibl®, this shows that reversible have
real eigenvalues. By the Perron-Frobenius theorem theyheerbe ordered as

AM=1>A>A3>--->A\g>—1.

DenoteAmax= max{|Ai| : 2 <i < n} = max{Az, —An}.
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Theorem 3.3 Let P be the transition matrix of a regular, reversible Maviahain,
and other notations as above. Then for anyls,

)\t

AU (t) < max
mlnn'.
ieU

Proof. Letel,... & be an orthonormal basis f&" consisting of left eigenvectors
of A, where vecto€ is associated to eigenvalde Especially,e! = iD~%2 =

ThenA has a spectral representation

A= _im(é)Té = _ima,

whereE; = (d)T€. ClearlyE? = E;, andE(E; = 0if i # j.
Thus, for anyt > 0, Al =51 ; AlE;, and hence

pt — p-l2ppl/2_ il)\} (D—l/Z(ei)T) (ei Dl/Z)
I+ gx‘ (o7¥2@)T) (p¥?).
In component form, this means:

Py, =Tic+ \E ix}éjdw

Computing the relative pointwise distance convergenas raé¢ thus get for any
ucs

S
I R — 4
jkeU  /THTK
g
N JkEU ; GL‘
< Amax
minTr;
jeu
)\l
< —mlnrlanx (by the Cauchy-Schwarz inequality and normality).
i
jeu
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Theorem 3.4 With notation and assumptions as above,

A(t) > Ainax

for all even t. Moreover, if all eigenvalues of P are nonnégatthen the bound
holds for all t.

Proof. Continuing from equation (4) above, wheis even or all eigenvalues are
nonnegative, the following holds:

Al (€))?

A(t) = AS(t) > max/'=
(t) ()_jes T

N1

jes T

> Abam

where€® is a normalised eigenvector corresponding to eigenvaltie atisolute
valueAmax Necessaril)(e'j")2 > m; for somej for otherwise

||e'°Hf Z"J*l

contradicting the normality a°. o

Negative eigenvalues are often a nuisance, but they calysilbearemoved, with-
out affecting the convergence properties of the chain mghdding appropriate
self-loops to the states. E.g.:

Proposition 3.5 With notation and assumptions as above, consider the cheain d
termined by transition matrix'P= %(I +P). This chain is then also regular and
reversible, has same stationary distributimpand its eigenvalues satisI\)'(] >0
andApac=A = 3(1+A2). O

With Theorem 3.3 and Proposition 3.5 in mind, it is clear thatkey to analysing
convergence rates of reversible Markov chains is to find gmeotiniques for
bounding the second eigenvaligaway from 1.

An interesting and intuitive approach to this task is via tie¢ion of “conduc-
tance” of a chain.

Given afinite, regular, reversible Markov chain on the state spac®={1,... ,n},
transition probability matri¥ = (pjj) and stationary distributiori= (15), we as-
sociate tox a weighted grapls = (S, E,W), whereE = {(i, }) | pij > 0}, and
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the weights, or “capacities” on the edges correspond tertpedic flowshetween

states:
Wij = T§Pij = T Dji.-

Given a state sé& C S, thevolumeof A is defined as

Va=T(A) = T,
and theergodic flowout of A as
Fa=) Tipij = ) Wjj =W(A,A_).
A iéA

(Note that 0< Fa <Va < 1))
Then theconductancef the cut(A, K), or the(weighted) expansioof A is

o FA o W(A7 A)

%’w’mm’

and finally theconductancef a , or G, is obtained as

Oy=>(G)= min  Pa
0<m(A)<1/2

Since clearlyFa = F5 for any@ # A ¢ S, this may equally well be defined as:

® = min max ®a, Py).
@%Ags X{®Pa, Pp)

Theorem 3.6 For a regular reversible Markov chain with underlying gra@
the second eigenvalue of the transition matrix satisfies:

0]
2
A <1- (D(;;) ;

(i)
A2 >1-20(G).

Proof. Later.o
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Corollary 3.7 With notation and assumptions as above, the convergenes i@t

the chain under consideration satisfy, for aay~ A¢ S and t> 0:

0
(1-0?/2)

minTg
icA

M) <

(ii)
A(t) > (1—20)".
Corollary 3.8 Consider a family of regular reversible chains where allexigal-

ues are nonnegative, parameterised by some input stringckwath underlying
graphs G. Then the chains are rapidly mixing, if and only if

1
p(Ix])’

for some polynomial p and all x.

P(Gy) >

Proof. According to Corollary 3.7 (i):

Alt) < ¢
. 1-92/2)"
if (mmiem) s €

(DZ
if t-In(l—?> < In g+In Timin

—_—
<-02/2

if —td?2/2 < Ine+In Tin
if t > Z(inl+mnl).

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

At) > €
if AL > ¢
if tinh, > Ing
i 1 1
it ting < Ing
i 1-A 1 1_ 1-A 1-A
ittt < Ing InX_In<1+T)§T,O<)\§1
; A 1
if t < %_—Z%-Inlg \
if t < SpIng 71—y increasing im, 1—2® < A,
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/4%

Figure 11: Random walk on a ring.

Consequently,

1-20(Gy)

20(G)

=0 = g (e g, ) 0

Example 3.1 Random walk on a ringConsider the regular, reversible Markov
chain described by the graph in Figure 11.
11 1

mn ol
The conductanc®a = Fa/Va of a cut(A,AT) is minimised by choosing to consist
of anyn/2 consecutive nodes on the cycle, ég- {1,2,...,n/2}. Then

Clearly the stationary distribution is= |

T4 pij
_Fa_ 233 L 1

D=Pp=—= =—.
Va ‘Z_\Tﬁ 5.1 1/2 n
i€

Thus, by Theorem 3.6, the second eigenvalue satisfies:

2
1-—<N<1——
n="2="" 2

by Corollary 3.7, the convergence rate satisfies

(1-2) <own (1-0%)

and by Corollary 3.8, the mixing time satisfies:
1-2/n
2/n

n 1 5 1
——1)In=< < = .
& (2 1) Insfr(s)fzn (Inn+|ns)

1 1
Ing <1(g) < 2n? (Ing + Inn)
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It is an intriguing, and nontrivial, exercise to work out theue ofA; exactly in
this case, in order to determine whether the mixing tirme$ are closer to the
given lower or upper bounds as a functiomof

Let us now return to the proof of Theorem 3.6, establishirggabnnection be-
tween the second-largest eigenvalue and the conductarcklafkov chain. Re-
call the statement of the Theorem:

Theorem 3.6Let &« be a finite, regular, reversible Markov chain aig the
second-largest eigenvalue of its transition matrix. Then:

i) \<1-%,

(i) Ap>1—20.

Proof. (i) The approach here is to boundtlin terms of the eigenvalue gap af ,
i.e. to show thath?/2 < 1— Ay, from which the claimed result follows.

Thus, consider the eigenvalde= A,. (The following proof does not in fact de-
pend on this particular choice of eigenvalue: 1, but since we are proving an
upper bound of the forrb?/2 < 1— A, all other eigenvalues yield weaker bounds
thanAz.)

Let e be a left eigenvectoe # 0 such thaeP = Ae. Now e must contain both
positive and negative components, siffGe; = 0 as can be seen:

eP=\e & Zapijz)\e,- Y j
|

= YYepi=Yeaypi=Aye
I ! J J
=1
Azl Yea=0
]

DefineA = {i | & > 0}. Assume, without loss of generality, thatA) < 1/2.
(Otherwise we may replaceby —e in the following proof.)

Define further a fenormalised” version oé | A:

U — a/m, ifieA
"1 0, if i ¢A

Without loss of generality we may again assume that thesstaiteindexed so that
Up>Up>...> U >Uy1=...= Uy =0, wherer = |A|.
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In the remainder of the proof, the following quantity will beportant:

2 2
ZWij(ui )
i<]

W
I

We shall prove the following claims:

(@) <D,
(b) D?/2<1—A,

which suffice to establish our result.

Proof of (a): DenoteA, = {1,...,k}, for k=1,...,r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out ofAhas
follows:

2 2
S wij (U —uf) = Y w Z (U — Uic1)
i<) i<k<j

i<]

r
2 2
= > (U—Uir1) Y Wi
k=1 €A,
A

(U2 — U2, 1)Fa,.

M -~

k=1

Now the capacities of they satisfyT(A) < T(A) < 1/2, so by definitiord®a, >
® = Fa > ®-m(Ay). Thus,

ZW” fu): Z Uk+1

i<

Y

Py (uf—ug, )TA)

uk+l ZLTE

2 2
5 ) (Ug—Uigq)

M-‘

=
[l

1

Il
©

Il
e &
™ EM*”M"

[
o7
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Hence,

zw.J u —u

LS

LT

Proof of (b): We introduce one more auxiliary expression:

2 Wiy
i<)

77211;“'2 s
]

and establish that: (b2 < 2E, (b”) E < 1— A. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b"): Observe first that

Zw”(u.+u, <22w”(uI +u) < ZZ\WU%
i€

i<

Then, by the Cauchy-Schwartz inequality:

2

3 (-

i<)
3
1

ZWij(ui+uj)2 ZWi,-(u
i<) i<) <2E

3 s |
I I

D? =

Proof of (b”): DenoteQ =1 —P. TheneQ= (1—A)eand thus

eQU = (1-MNed = (1-2) i 2.

i=1
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On the other hand, writingQU' out explicitly:

eQu = lequeiu] Gij = —Rij = i #]
> lelQijQUj gi = 1— pi :i; pij
= — WijUilj + Wil |e=mu, icA
3,3 3 S |8

= —ZZWijuin + ZWij(ui2+u]2)
i<) i<)
=3 wij(ui—uj>
i<)

hus,
E~§mu Ew Ui — Uj 2<e Q (2-N)- Erqu = E<1-A.
4 i 1] l i

i<

(i) Given the stationary distribution vectore R", define an inner produgt, -}
inR" as:

(U, V)= iin’iuivi.

By (a slight modification of) a standard result (the Courigiseher minimax the-
orem) in matrix theory, and the fact thais reversible with respect tm, implying
(u, PV)r= (Pu, V)5, one can characterise the eigenvalueB at:

A= max{<< >> |u;£0}

Ao = max{tju u>> |uJ_nu;£O}, etc.

In particular,
(u, Pu)
<U, u>T[

Given a set of state8 C S, 0 < T(A) < 1/2, we shall apply the bound (5) to the
vectoru defined as:

A2 >

for anyu ## 0 such thatz iy = 0. (5)
I

1 s
- @, ifieA
Ui = 1 if i A—

_ﬁ7 ifie
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Clearly
ZTI]U|:Z ZT[' =1-1=0, and
T[ icA T[(A

i g 1 1
(= 3 E =3 SR SAr A A

so let us compute the value @f, Pu).

The task can be simplified by represent@sP = I, — (I, — P), and first com-
puting (u, (I — P)u):

(u, T[*zn-lulz |]U]
= ,z ZTEU|p|JU]+zZTﬁUipijUi

;T[Ipu —Uiuj)
= > Tipij(u
i<

- (%+%)2FA.

Thus,

() (s )
(
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Since the bound (6) holds for adyC Ssuch that O< Ti(A) < 1/2, it follows that
it holds also for the conductance

d®= min P,
0<m(A)<1/2

Thus, we have shown thap > 1 — 2d, which completes the proof;

Despite the elegance of the conductance approch, it canrbetisoes (often?)
difficult to apply in practice — computing graph conductaoae be quite difficult.
Also the bounds obtained are not necessary the best pgssitparticular the
square in the upper boud < 1 — ®?/2 is unfortunate.

An alternative approch, which is sometimes easier to aplg, can even yield
better bounds, is based on the construction of so calledbtdaal paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain withi@tatry distributionrt,
represented as a weighted graph with nod&seid edge séE = {(i, j) | pij > 0}.
The weight, or capacityye associated to edge= (i, j) corresponds to the ergodic
flow 15 pjj between stateisand j.

Specify for each pair of statés| € Sa canonical pathyy connecting them. The
paths should intuitively be chosen as short and as nongerig as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

Denotel’ = {yk | k,| € S} and define the unweighted and weighesifje loading
induced byl on an edge € E as:

1
Pe = — > TTy

) Vieszae

— 3 Tyl

We yiiSe

Pe

wherelyy| is the length (number of edges) of pagh. (Note that here the edges
are considered to hariented so that only paths crossing an edge (i, j) in the
direction fromi to j are counted in determining the loadingesf The maximum
edge loadingnduced byf" is then:

= p(I =
o = o) = maxee
= p(l = .
p = p(M) = maxpe
Theorem 3.9 For any regular, reversible Markov chain and any choice afica-

ical paths,

1
>
¢_2p
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Proof. Represent the chain as a weighted gr&plwvhere the weight (capacity) on
edgee= (i, ) is defined as:

Wij = Tiij = TG Pji-
Every set of stateA C Sdetermines a cuiA, A_) in G, and the conductance of the
cut corresponds to itelative capacity

WA A 1
Dp = =— Wij.
VAR

Let thenA be a set with G6< I(A) < % that minimisesb,, and thus ha®p = O.
Assume some choice of canonical pafhs: {yjj}, and assign to each paj a
“flow” of value T415;. Then the total amount of flow crossing the ¢AtA) is

TG = T[(A)T[(K),
icAJeA
but the cut edges, i.e. edges crossing the cut, have onlb/m;l)acityw(A,A_\).
Thus, some cut edgemust have loading
1 TATA) _ T(A) 1
= (T > > =—_.
Pe= e Wzse’m ZWAA T 2wAA) 20

The result follows
Corollary 3.10 With notations and assumptions as above,
1
A<1l-_—.
2> 8p2

Proof. From Theorems 3.6 and 3.9.
A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:
1
() A<1—=
p

_ t
(i) A®) < %.;f)
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_ 1 1

i) T(e)<p(In=+1In ).g

(i) @ <p(nZ+im L
Example 3.2 Random walk on a ringLet us consider again the cyclic random
walk of Figure 11. Clearly the stationary distributiorris= [, 1..-- 1] and the
ergodic flow on each edge= (i,i+1) is
SRR O D §

e =TiPiji+1= n'a"an
An obvious choice for a canonical path connecting nddéss the shortest one,
with length

IVia| = min{|1 —K|,n— |1 —k|}.

It is fairly easy to see that each (oriented) edge is now liedy 1 canonical
path of length 1, 2 of length 2, 3 of length 3, , 5 of length 5 (actually the last
one is just an upper bound). Thus:

n/2

B 1 15
po= max— Y Ty <any Sor
e Weyk%e ) rzln2
4 1 n /n 1
- ﬁ.é.§.<§+1)~(n+1)76(n+1)(n+2)

1(¢)

I IA

1(n+1)(n+2)(In n+ind)
gnz(ln n+3)+0(n(In n+Ini)).

Example 3.3 Sampling permutationslet us consider the Markov chain whose
states are all possible permutationgrdt= {1,2,...,n}, and for any permutations
ste S

Pst = {

Thus, e.g. fon = 3 we obtain the transition graph in Figure 12.
., &], and the

, if s=t,
. (';) _l, if scan be changed toby transposing two elements,
otherwise

O NIk NI

Clearly, the stationary distribution for this chainmis= [}, &, ..

ergodic flow on each edge= (s,t), with s#t, pst > 0, is:

11 /m\?!
Wr:T[spstza'é' > .
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Figure 12: Transition graph for three-element permutation

A natural canonical path connecting permutatfoto permutatiort is now ob-
tained as follows:

S=9 =9 =S — - —>S1=t.
where at eack, sc(k) =t(k). (Thus, eaclsy matches up to elemenk, s¢(1...k) =
t(1...k).)
Thus, e.g. the canonical path connecting (1234) tot = (3142) is as follows:

W of
—N T

(1234) — (3]214) — (31/24) — (3142).
Now let us denote the set of canonical paths containing angremsitiont : w —
o by I'(1). We shall upper bound the size Bft) by constructing an injective

mappingoy : I (1) — S,. Obviously, the existence of such a mapping implies that
[P (D) <nl.

Supposé transposes locatiors+ 1 andl, k+ 1 < |, of permutatiorw. Then for
any(s,t) € I'(1), define the permutation= o(s,t) as follows:

1. Place the elements in(1...Kk) in the locations they appear & (Note that
permutatiorw is given and fixed as part af)

2. Place the remaining elements in the remaining locatiorike order they
appear irt.
Thus, for example in the above example case:
0:((1234,(3142) — (- - 3 ) — (1432
N——

z

w=(3214, k=1
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Why is this mapping an injection, i.e. how do we recosandt from a knowledge
of Tandz = o¢(s,t)? The reasoning goes as follows:

1. t=w(1...k)+ “other elements in same order aszin

2. s="elements inw(1...k) at locations indicated id" + “other elements in
locations deducible from the transposition pathsy —> s — - —» =W’

This is somewhat tricky, so let us consider an example. Gay(3 12 4),
k=2,z=(1 4 3 2.Then:

Lt=3 1. )+ J4 2= 14 2

2.
s = =(1 .3 s =1 -3 )
s =@ - - ) =>s =0 21)
w = = 3 1 2 4 s = (3 1 2 4
s = s = (L 2 3 4 0 = (L 2 3 4
s =3 21 4 = s = (3 2 1 4
w=s=31 2 4 2 =3 1 2 4

Thus, we know that for each transition
ror<n

We can now obtain a bound on the unweighted maximum edgerigadduced
by our collection of canonical paths:

p = maxi TETg < lE-(n>71 l-nl-<1)2
T€E G <st>§r(r) —\nl 2 \2 S An
n 1, n
= | n-(—=)¥=2. = —
2n.<2> n! (n!) 2 (2> n(n—1).

By Theorem 3.9, the conductance of this chain is thus W{” and by Corol-
lary 3.8, its mixing time is thus bounded by

IN

2 in

= <2(2n(n—1))2 n< 4 inn!
= O(n“(nlnn—i—lni))). ( 8 )

2 1
Tn(€) — (In . +In—
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3.2 Coupling

An important “classical” approach to obtaining convergenesults for Markov
chains is thecoupling methodAs a simple case, letr = (Xo,X1,...) anda =
(Yo,Y1,...) be two independent Markov chains with the same state sBaee
{1,...,n} and the same regular transition matfix= (pjj), and consequently the
same stationary distributiom

Thus, if one considers the Markov chain x a¢ with random variableZ; =
(%, Y:), one obtains transition probabilities

P =Przi=(kD)|Z-1=(.}))
=P =Kk[X-1=0)-Pri=1[Y%-1=)
= PikPjl -
Moreover, sincev anda. are regular with stationary distributian then so is
a0 x ¢ with stationary distribution? = 7t' 1t (i.e. T = T47).

Note once more that “projected” (marginalised) to its firstecond component,
M x «¢ yields realisations of the same process, i.e.

PHZt = (K, #) | Zo = (Ko,lo)) = PI(X = k| Xo = ko)
= pf;)k, independent offy;
PHZ = (+,1) | Zo = (Ko.lo) = PO = | | Yo = o) ©

= pl((t)l), independent oko.

Now define a random variablk that for any realisation ofr x «¢ indicates the
first time at whichX; andY; have the same value, i.e. theoupling time

T =inf{t > 0% = Y%}

One can in fact modify the chaim x « so that after coupling th¥- andY-
components not just have the same distributions, but instaictly the same val-
ues (i.eX =Y; Vt >T), yet the marginal properties (6) stay the same. Simply
defineX{ = (X/,%), where

! __ Xt’ t < T7
X _{ Y, t>T.
Let us denote the resulting nonhomogeneous chain fyy . Now the projections

of ar |a¢ to its X- andY-components are surely not independent, but viewed in
isolation, as marginals of |« , they have exactly the same stochastic properties.
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In particular, in a coupled chaim |, let us fix an arbitrary initial stat¥y = ko
for ar , and similarlyYy = lp for a¢ , and denote the respective timdistributions

asp®) = (pit} )k andg® = (p{});. Then foramyAC S

pU(A) = Pr(X € A)

Prit e AAX =Y)

= 1-Pr(% ¢ AVX #¥)
1-Prt ¢ A) —PrX% # 1)
=Pr, e A)—Prt<T)
=q¥A) —Prt<T),

(Y

Y

i.e.qV(A) — pO(A) < Pr(t < T). A similar argument shows that algf) (A) —
gV (A) <Prt<T),and soforanAC S |p® (A) —q®(A)| < Pr(T >1), implying
that

dv(p" ") = suplp!) (A) — o (A) < PI(T > 1). )

If one establishes the coupling bound (7) so that it holdsafbitrary pairs of
initial states, then it also holds for arbitrary initial tibutions.

In particular, if the initial state of the chaiis chosen according to the stationary

distributionTt, theng® = rtfor all t > 0, and one obtains the convergence bound:

dv(p(t)J):%zmi(t)frq\gPr(T>t). ®)

Example 3.4 Random walk on a ringConsider again the cyclic random walk
of Figure 11 withn states,n even. To obtain an upper bound on the coupling
probability P(T > t), consider two independent copi€%), () of the walk,
initiated atXo = 1 andYp = 5 + 1.

DenoteD; = min{|% — X|,n— % — X|}. ThenDg =3, 0< D < J for all t,
Pr(Dys1 < D¢ | Dy > 0) > %, andT = inf{t | Dy = 0} (cf. Figure 13). Thus for any
k>0,

n 1
< - > (ZyV2 _ (Zyn
Pr(T_k+2\T>k)_(4) (2),
and consequently

PHT >t) < (1—2 MW m2l,
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0 T

Figure 13: A realisation of théDy) chain.

Hence we obtain a geometric bound on the convergence ratéesafalk:
oy (p,m < (127",

The bound is not very tight, mainly because there is no syatiertdrift” effect
that would bring the chaing) and(Y;) closer to each other: they just eventually
coalesce by random “fluctuation”. A much more interestingligation of the
coupling technique will be presented below.

Generally speaking,@uplingof two Markov chaingX;) and(Y;) (or any stochas-
tic processes) is a procegs= (X/,Y/) that has(X;) and(Y;) as its marginal dis-
tributions.

In the case of finite Markov chains this means that:

PriX 1 =KX =i,Y = j) =PrX1 =KX =i) = pﬁ((7 o
PIYy =X/ =1, = ) = PriXe = )% = ) = p. ®)

The coupling conditions (9) are trivially satisfied by thel@pendent coupling,
wherepf; ,; = PP}, but the more interesting couplings are the non-independen
ones.

In the following Lemma, and also later in this section, mgtimes are considered
with respect to the total variation distance, i.e. for now

() =1"(e) = min{t |dv(p®¥,m) <e Vs>tandVinitial states'} .

Lemma 3.12 (“Coupling lemma”) Letar be a finite, regular Markov chain and
Z = (%, Y), t >0, a coupling of two copies ofr (i.e. (Z) is a Markov chain
whose X- and Y -marginals satisfy the coupling conditi@)svith respect to the
transition probabilities ofar ). Suppose further that:t(0,1] — N is a function
such that given anyg € (0,1], Pr(% # Y;) < € holds for all t> t(¢g), uniformly
over the choice of the initial stat€Xp,Yp). Then the mixing time(g) of o is
bounded above byt).
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Proof. Let Xp =i be arbitrary, and choos@ according to the stationary distribu-
tionTtof ar . Fix € € (0,1] and lett > t(g). Then for any set of statés

p'V(A) = Pr(X% € A)
> Pr(Y € AAX =Y)
> 1-Pr(Y ¢ A) —PriX% # %)
>PrieA)—¢
=T(A) —&,

and similarly for the seA = S\ A. Thus
1Pt —mA) <e Vixt(e),
and becausA was chosen arbitrarily, also

(0 ) = (D (p) —
v (", 1) = max|p ™) (&) —m(A)| <& V> t(e).
Thust(e) <t(e). o

Example 3.5 Gibbs sampler for graph colouringd.et G = (V,E) be an undi-
rected graph with maximum node degie Without loss of generality assume
thatV = {1,...,n}. A g-colouringof Gisamapo:V — {1,...,9} = Q such
that

(i,j)eE = a(i) # a(j).

According to so called Brooks’ Theorer®,has ag-colouring for anygq > A+ 1.
(In fact, already forg > A unlessG contains aA + 1)-cliqueKa,1 as a compo-
nent.)

Forq > A+ 2, one can set up the following Gibbs sampler Markov chairto
sampleg-colourings ofG asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colourings € QV:
(i) selecta nodéec V uniformly at random;

(i) select a legal colouc for i uniformly at random ¢ is legal fori if ¢ #
o(j)Vier()

(iii) recolouri with colourc (i.e. move fromo to o', whered’ (i) = candad’(j) =

o(j) for j ).
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Let us verify thatyv is regular forg > A+ 2:

1. Irreducibility: Any colouring can be reached from anyetby recolouring
the nodes in increasing order; becagse A+ 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numteeighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loophataility, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibilityr has as its stationary distributionthe
uniform distribution over the set of legal colourings Q.

Let us then consider how quickly the chain converges tar, in terms of thedy
distance. To introduce the ideas, consider first the troaakE = @ (= S=QV).

In this case one can effect a coupling between two copies afs follows: in a
transition(X, %) — (Xi4+1, Yi41):

(i) selectanodéc V uniformly at random;

(i) select a colourc € Q uniformly at random and recolouiwith colourc in
both X; andY;; let the resulting colourings b& 1 andY; 1.

Now clearly(X;) and(Y;) are both faithful copies aofr , i.e. the marginal transition
probabilities work out OK:

Pr(X1=0"| % =0,% =n) = Pr(o,0"),
Pr(Ys1=n"| X% =0, =n) = Pr(n,n’).

On the other hand, it is clear that the time required for thared(X;) and(Y;) to
coalesce is not very much larger tharbecause at each step of the coupled chain,
a randomly chosen node is coloured similarly in both and(Y;).

More precisely, introduce the random variable
Dy = #{i € V[X (i) # Y (i)}

ThusD;=0 & X =Y & T <t.
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Furthermore,

7Dt n— D¢ . 71.
E(Di1 | D) = - (D= 1)+~ Dt_<1 n) Dy
1 t
= E(Dt | Do) = (l— ﬁ) ~Do

1 t
(Markov) pr(py > 0 | Do) < E(Dy | Do) < (17 ﬁ) n<net/n,

Thus, choosing > ning suffices to guarantee that (R # Y;) < &, which by
Lemma 3.12 implies that the mixing time satisfi¢s) < nin .

For the general case we need a more complicated couplingdér o take into
account the constraints on colour choice caused by the édges

We observe that by a simple construction, it is possible tolmae two finite state
setsA andB to a single state s& so that there are random variablg and Xg
such that

(i) Pr(Xa=x) = { é{‘AL i; 2;
Pr(Xg =X) = { é{‘BL o : 0
(ii) Pr(Xa = Xg) = %

Denotel (i) = {j € V | (i,]) € E}, X(i) = colour of nodsd in colouringX, and
X(U) ={X(i) |ieU}.
Consider the following couplingX, ;) — (Xt+1, Yi4+1):

(i) selecta nodéec V uniformly at random;

(i) select colourex € Q\ X (I'(i)), oy € Q\ Y (I (i)) uniformly (but not inde-
pendently) at random, using the joint sample space indidatéL0);

(iii) recolour node with colourcy in X to yield X 1; similarly with colourcy
inY; to yield Y.
DenoteA=A; = {i €V | X (i) = ¥(i)}. ThusD; = A = VA

Now clearlyDy 1 € {Dt+1,Dt, Dy —1}. Let us compute the probabiliti®D; .1 | D)
for each of these cases:
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(i) Dty1 =D+ 1. Inthis event the chosere A, andcx # cy.
Denote by = [Q\ X (T (1))|,n = [Q\Y(F ()], = [Q\ (X (T () UM (T (i)))]

the number of legal values fax, cy, and their overlap, respectively. Thus,
the probability that the same colour is chosenifor both X1 andY;1 is
¢/max{&,n}. Denoted’(i) = | (i) \ Al (recall thati € A). Then

q—-A<E&n<{+d(i).
Hence:

L 14 max{&,n} —d'(i)
Priox = ov) = maxg.n] ~  maxg.n)

(0

Y

and consequently:

d
Pr(DH_]_ = Dt +1) < - =
2

wherem' = Sicad'(i).

(ii) Dty1=D¢—1. Inthis eventthe chosere K andcy = cy.
Denoteg,n,Z as in case (i), and”(i) = | (i) NAl. Now

q—A<En<{+(a—-d"(i).
As in case (i), we obtain:

¢ max{&n}—(A—d"(i)

PO =) = maxen) = max{z,n}
> 1_Afd”(|) _g-2A+d"(i)
q—A q—A

and consequently:

1 —2A  d"(i
Pr(Dty1 =Dy —1) > *Z(Zj“rq_(i)

nieA
_g-2A m
ECE R N

wherent = 3, xd" (i) = Sicad (i),
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Denoting for brevity

gq-2A m
a= , b=b(m)= ,
@-a)n ™= =2
we see that

Pr(Diy1=Dt+1) <b, PrDit1=D;—1)>ab;+b.
Assume thad > 0, i.e. thatg > 2A. Then

E(Dt+1/Dt) < b(Dt +1) + (@b +b) (Dt — 1) + (1 — ab; — 2b) Dy
(l—a)Dt.

Thus,E(Dy) < (1—-a)!Do < (1—a)'n, and hence by Markov's inequality
Pr(D; > 0) < (1—a)'n< ne ™.

Thus PtX #Y;) <efort > %In 2, and so by Lemma 3.12, the mixing time of the
chain satisfies
q—A n n
< nin=< z
1(g) < q_2n nlns < (A+1)n|n£

forg> 2A.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing mdtfar producing
samples from a Markov cha@xactlyaccording to its stationary distribution. This
exact samplingor “coupling from the past”) technique eliminates the néed
compute Markov chain convergence rates for quality contrblen the algorithm
stops, itis guaranteed to produce a perfect sample. Hok@v&pwly converging
chains stopping will take a long time, so convergence ratestil of importance
from the point of view of algorithm efficiency. (There are@lsome other effi-
ciency caveats in the method besides slow convergence dcfinidated chain.
These are discussed below.)

Letar be aregular reversible Markov chain with stateSet {1,...,n}, transi-
tion probability matrixP = (pjj), and stationary distributiort
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Consider an explicit simulation off by the following method: at each stépa
uniformly distributed random numb& € [0, 1) is chosen, and the state transition
of ar is determined aX;1 = s(%,R), where

1, ifrel0,pi),
_ 2, ifr € [pi1, Pir+ Pi2),
s(i,r) =9 .
n, ifrepiat...+pn-1,1)-

It is clear that transition probabilities according to thein 4 can equivalently
be computed with respect to sequen@d&g and the above deterministic transition
rule, e.g.

Pl = PriX = j[Xo =) = Prg(sV(i.R) = j).
where

SO, (ro,ra,...,re 1)) = s(s(---8(s(i,ro),r1) -+ ), f_1).-
t

Now let us consider the following curious simulation metHodthe chainas ,
from further and further away in th@ast(t = —T, T =1,2,4,8,...) to the present
(t=0):

Algorithm PW (Propp-Wilson):

setT «— 1

generate random numbersr, ... ,r_1 € [0,1) uniformly at random;

(1) simulate the chains as above, using the random numbers
r_r,...,r_1, from every possible initial staté_r € S;

if all the simulations lead to the same stXte= ig, then outpuig
and stop;

otherwise generafé more random numbersor,...,r_t_1 € [0,1)
uniformly at random;

setT «— 2T; goto (1).

For a three-state chain, a run of the PW algorithm might loeklastrated in
Figure 14. Here the algorithm has required two restartsthrithird run from
T = —4 has resulted in all the simulated realisations of the cba@escing, with
common resulig = 2.

In the following, we shall assume that the PW algorithm alsvegnverges with
probability 1. Ensuring this may require some care in vanifithat the determin-
istic update rules(i,r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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T=-4 T=-3 T=-2 T=-1 T=0

Figure 14: A Propp-Wilson simulation of a 3-state Markovioha
Theorem 4.1 Let Y be a random variable indicating the eventual outputestd
the PW algorithm, under the above assumptions and notatitmn

Pr(Y=i)=m, VieS
Proof. Fix some valug € S. To prove the Theorem, it suffices to show that for
anye >0

PRr(Y =i)—mg| <e.

So fix an arbitrare > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value ©fsuch that

Prr(PW simulation converges for chains of length> 1 —«. (11)

Now consider running the actual chain from tim& to time 0, starting with the
stationary distribution:

PF(X,T = I) =Ti.

In this case, of course also the varialfigs distributed according to the stationary
distribution:

PR(Xo =1) =T
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However, if the coalescence event (11) occurs for a givenesgzeR of random
numbers, theiXo =Y, and so Rg(Xp #Y) < €. Thus,

PriY =i) -1 = Pr(Y =i) — Pr(Xo =)
< PHY =i, X0 #1)
<g

and by a similar argument
—Pr(Y =i)<e.

Thus,|Pr(Y =i) — 15| < ¢, and the claim is provedy

Note that the PW algorithm cannot be “simplified” by simutgtithe chains for-
wards from timeT = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcgsnin

1. The need to store long sequences of random numbers fa (eas be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possititial states (in-
feasible in many applications where the number of systetesia expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modifidatitne algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a soluticat ttan be applied
when the states of the system have a suitable partial afderspected by the
update rule.

Specifically, assume that the states of the system to be afetform a partial
order(S= {01,...,0n},C) with a unique largest elemerit (“top”) and unique
smallest element. (“bottom”), and satisfying the condition

oCo = s(o,r)Cs(d,r), Vo, €Sandrel0,1). (12)

Then it suffices to simulate the “top” and “bottom” chainsilihiey couple, since
their coupling implies the coalescence of all the other mhais well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulatfpsay, 2 parallel
chains to just 2.
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Part Il

Figure 15: Coalescence of an ordered Propp-Wilson sinoulati

Combinatorial Models

% 12 Q 12 @ 12 L. 1/2@

Figure 16: A one-dimensional random walk with semi-reflegtbarriers.

5 A Sketch of Basic Statistical Physics

So what systems admit this simplification?

A simple example would be a one-dimensional random walk @nstlate set

S={1,...,n} with, say, semi-reflecting barriers to ensure regularitthefchain Statistical physics= Thermodynamics (macroscopic)

(Figure 16). Assume the state transition rule is: + Statistical mechanics (microscopic)
si,r) = max{i—1,1}, ifo<r<3,
T U min{i+1n}, ifi<r<i 5.1 Thermodynamics
The the natural ordering of states fulfills the condition)(12 A thermodynamic systeis characterised by (macroscopic, observable) variables
. . . . T (“temperature”) andXy,...,X,. These variables determine “all interesting”
i<j=sin<sin Vi.j=1...,nre(01). properties of the system.

E.g. in the classical ideal gas model a sufficient set of éemisT, p, V andN.
(N ~ the number of molecules is here for simplicity thought of aatinuous
quantity. This might be easier N was replaced by = N/Np, the amount in
moles of gas, wherbg = 6.02- 10?3 is Avogadro’s number.)

Interestingly, also complicated systems such as the Igilggdass model admit
such orderings. In the case of the Ising model, the orderdmtvetates, o’ €
{—1,+1}"is determined simply by

oCd if ogi<o Vi=1,...,n The system is intherma) equilibriumif it satisfies a characteristiatate equation
Clearly L = (—1,...,—1)and T = (1,...,1) with respect tc_, and also condi- g(T,X,..., %) =0
tion (12) can be verified.

E.g. ideal gaspV — NKT = 0, wherek = 1.38- 1023 /K is Boltzmann's constant
or pvV —nRT =0, whereR = 8.32J/Kmol is thegas constant

A potentialor energy functiorior the system is some sufficiently smooth function
F=F(T,Xy,...,%Xn)-

55
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In classical thermodynamics, a key role is given toftibtal energyfunction de-
termined by thd-irst Law of Thermodynamics

dU =dQ+dW, 1)
wheredQ is the amount of “heat” added to a system aW is the amount of

“work” performed on it.
Integrating the potential given e.g. the state equatioh®ideal gas yields

1+f/2
U(T,p,N) =Uo+ (%mefso) (T—To)—NTlIn ((IO) i’f)

whereUy, S, To and pg are reference values arfig2 a constant (“specific heati).

In classical thermodynamics, the system variables arelelivintoextensiveand
intensive depending on whether their values depend on the “size”@Eyistem
or not. E.g.T andp are intensivey andN extensive.

Two systems at the same temperature may be “combined”, &isibtherwise a
function of extensive variables only, then itis linear, i.e

F(T,Xa+X{,..., X0+ X,) = F(T,Xq, ..., Xn) + F(T,X{,..., X))

By the total derivative formula:

dF — (Z#) dT+§1 (ZTZ) dx;. @)

State variables areonjugate(with respect td), if

oF oF
X= Y or Y= X
In classical thermodynamics conjugates of extensive basaare intensive, and
vice versa. The conjugate dfw.r.t.U,

ouU

S=57

is called theentropyof the system.

1To be precise, sincE andp are not “natural” variables of the energy functidrarising from
its differential definition (1), this equation refers to aiaat of U expressed in terms df, p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged vialtbgendre transformyielding
new forms of a given potential function. E.g. in the case @&f ifeal gas with
fixedN,U =U(SV) and

dU = TdS— pdV.

Here we may interchang&for T by considering instead & the Helmholz free
energy F=U — ST. This satisfies:

dF =dU —-SdT-TdS=TdS— pdV—-SdT—TdS= —SdT— pdV.

For this potential function the “natural” variables arendV, i.e.F = F(T,V).

In the classical setting, it is a law of nature (tBecond Law of Thermodynanjics
that in equilibrium processes (evolutions) entropy neareases:

ds>0.

Processes for which entropy stays constd®=£ 0) are callecadiabatic

5.2 Statistical Mechanics

Let us consider a thermodynamic energy function framed imgeof extensive
variables:

U=U(SXs....%n),

and assume that the valueibexpresses in fact only tleverageof a large number
of microscopic potentials:

U=(H)=Y puH(w).

The micropotential functiod (w) is also called théHamiltonianof the system.
We shall furthermore assume, motivated by the additivity pthat the Hamilto-
nian of a system consisting of two independent subsystethsiahal equilibrium
can be decomposed as:

H (w1, 02)) = H(wn) +H(wz).

What is now the distribution of the microstates, given the constraint thadH ) =
U? We assume that all microstates with the same value of theltdaran are
equally probable, so thg, has the formp, = g(H(w)).

2There is an unfortunate sign difference here as compareniimda (2). We could have fixed
this by defining= = ST— U, but this would have been against convention.
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Figure 1: A heat bath.

To further specify the functional form of the distributicthjnk of our systeny
as being in thermal equilibrium with, but otherwise indeghemt of, a much larger
system or “reservoir’z . Denote the total system consistingofandx by 7
(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote B(u) = |[H~(u)| the number of its microstates
at potentialu. (Whether we are referring to, # or ¢ should always be clear
from the context.) Fix some reference potential ldwed> U for the total system
7 , and observe that by our assumption, all microstates with potentialE have
the same probability.

Now for every microstateo of s, there are exactlf2(E — H(w)) microstatesy’
of # such that the combined staf®, w') of 7 has potentiak. Since all of these
are equally probable, it follows thak, 0 Q(E — H(w)). Taking logarithms and
applying Taylor’s formula yields:

Inp, = INQ(E — H(w)) +const.
=InQ(E)— <M%E(’E,)>E/,EH((D)+W
—QE)—BH(®) +,

wheref3 = 0InQ/0E is a parameter whose value is to be determined later.

Taking exponentials again, we obtain the so calébs(or Boltzman distribu-
tion

po 0 e PH®@ ©)
with normalisation constant (actually, function)
Z=2= %e‘BH@, @)
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known as thepartition function 3 Now the value of3 is in principle determined
implicitly by the condition

1

(H)=>Y e P H@w) =U,

NI

but we shall obtain a more transparent representation e dw.

The (logarithm of the) partition function (4) can be useddmpute several macro-
scopic quantities:

First:

dlnz 10z

o~ zop
19 — g
:ZB_B%eBH()
23 e O (CH(w)

*zpwH((‘))
= -U.

Second: Consider an extensive varial§land its conjugate; = oU /9.

OALNZ _ %%aixie—wwm
_ %ge—smwm (,B"Hg‘%’fxi))
_ fs;pw"’“f,‘;i’“)
_ *B<0HE;2X')>
= —Bu

3In fact, Z = Z(B,X1,...,%). Note also thaf is a kind of agenerating functiorfor the
sequence of valued(u), sinceZ(B) = 5, Q(u) - (e B)Y.
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Third:

d0lnz N dInZ
dinZ = ——dp+ Y ———dX
o P2, ax

= UdB-—p 3 udX
= —d(BU) +BdU — B»iu;d)q.

BTdS

1
:.TdS:Bd(InZJrBU)
=KkT, dS=kd(InZ+pU), k:BiT:constant
U U
=kT, S= kInZ+?+const.~ kInZ-i—?

T DIk ™I

=-—, —kTInZ~U-TS=F (Helmholz free energy)

Conversely, let us expand the entropy variable as a micpiseverage:

S=kInZ+kpu
— leBH(w)

= KINZA+KT peBH (w) Po = 7€

% © = BH(w) = —In(Zpw)
= k(InZ—pr(anJrln pw)>

W
= k3 polnpe. SPo=1

) )

One more, simplified expression for entropy: partition thege of possible po-
tential values into narrow bands (of widJ, say), and denote the number of
microstates falling in bandas

Q) = ‘{w: Ur <H(w) < U, +AU}
Then the partition function is approximately

Z~Y QU)e P
Z '
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In fact, since the number of microstates in a typical systehuge, the microstate
potentials are highly concentrated around the avelthge(H), and so in fact

Z~QU)e P,
whence

S= %(—F +U) :k|n2+¥zkan(U)—BkU+¥ ~kinQ(U).

0

6 The Ising Model, Spin Glasses and Neural Net-
works

6.1 The Ising Model

The following model was introduced by Ernst Ising in 1925x%plain magnetism
in materials.

At a microscopic level, Ising’s model system consistdldSitesarranged in a lat-
tice, either 1-D, 2-D I = L2), or maybe even 3-D. At each site=1,... N is
located a magnetic ion @pinpointing eitherup or down(S = +1). Neighbour-
ing sites(ij) are related by aimteraction coefficient;J, which in Ising’s model
is uniformly either a positivd > 0 (“ferromagnetic case”) or a nonpositive< 0
(“antiferromagnetic case”). A system whose internal iat¢ions are all weak
(Jij = 0) is “paramagnetic”. In addition, there may beexternal field hinfluenc-
ing the orientation of each of the spins. (More generallg oould have separate
fieldsh; for each spirg.)

The Hamiltonian of spin state= (S;,... ,Sv) is

H(0) =3 §8-hy S,
{5

where the sum is taken oveearest neighbour pair§j) and periodic boundary
conditions are assumed for simplicity.

Stateso yielding the global minimum value dfi (o) are calledground state®f
the system. For a ferromagnetic system, the ground stateithas all§ = +1 if
h>0,orall§ =-1if h<O0. If h=0, these two states are both equally good.
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As a very simple example, let us compute the partition fumctor a trivial Ising
paramagnet witlN spins and) = 0. DenoteQ = {+1,—1}N. Then:

ZB — Z}e*BH(U>
-5 empny S
°S . S e,

sSsS sS0
ef4+eX
=3 ehhs coshx= &
s

=(2 cosmBh))N

Define the(total) magnetisatioof statec as
N
M(o) = i;s.
The corresponding thermodynamic average at gi/en

(M)

7 3 M(@) el ~6H(0)
_ %agﬁ(lzs)exp(—BH(c)).

(%)

However now in fac{¥) = %, so fortuitously:

1 0Z dInZ
Zo(ph) ~ a(ph)
dIn(2coskph))
o(Bh)
_ \ 2(0costBn)/a(Bn)
2cosHph)
N 2sinh(Bh)
2cosHhph)
= Ntanhh).

(M) =
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<M>/N
1
0.5

h/kT
-3 -2 -1 1 2 3

0.5
-1

Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisagosity” of a totally
decoupled Ising paramagnet at external flelthd temperaturé = 1/kp equals

(M) = tanh(%) .

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solkalwith somewhat
more work. The 2-D ferromagnetic case wiih= 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. ZHe case with
h +# 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glassegeneralise the Ising model with more general interactidiso the
spins may be nonbinary, in which case such models are dafittd glasses

The general form of the (binary-state) spin glass Hami#orns
H(o) = *;)JHSS]‘ - hs,
i [

whereJ;j, hj € R. Also the neighbourhood relation may correspond to anranyit
graph, not necessary a lattice.

Several varieties of spin glass models have been introdecgd
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Figure 3: Frustrated spin glass configuration.

e The Sherrington-Kirkpatrick model: Hamiltonian as abax@nplete inter-
connection graph, coefficieniy according to a specific probability distri-
bution.

e The Edwards-Anderson model: Hamiltonian

H(o) = —;)JijSSj,
i
regular lattice topology (e.g. cubic); independent Gaussian variables.

A phenomenon that makes spin glass models even less tedtet the Ising
model isfrustration E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by thmiltmian can have a
very complicated structure, with large numbers of localimen and no obvious
location for the globally minimal ground state.

In fact, the_problem of determining the ground state of a i%K-spin glass
instance(J, h) is NP-completeeven withh = 0.

This can be seen by reduction from the well-known NP-conepMAX CUT
problem: Given a grap = (V, E), determine the partitiod = V3 UV, that max-

imisesw(V1,Vo) = [{(i,j) e E:i e VIA | €Va}|.
The reduction is as follows:

Given a graplG = (V,E), let J be an SK system with sites corresponding/to
andJ;j determined by

171 0, otherwise.
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Let thenC = (V41,V2) be a cut inG, and divide the edges i@ corresponding as
El = {<I7J> € EIvJ EVl},
E, = {(I,]> € Eii,j €V2}7
Ec = {(i,j) eE:ieViA ] €V},
Consider the spin glass staieletermined as
1 ifiewv,
S-= { + 1,

~1, ifieV,
For this,
H(o) = -% JiSS= 3 S§
(i]) (in)eE
= 285+ 5 s+ 5SS
(ii)€Ex (i])€E2 (ij)€Ec
= |E1| +|Ez| — |Ec]
= |E[ - 2|Ec]|
= |E[—2w(C).

Conversely, given any spin glass stateone obtains a cu€ satisfyingw(C) =
1E|-1H(0)

2l 2 :

Thus, graph cuts and spin glass states correspond oneetovithw(C) 0 —H (o),
and minimising one is equivalent to maximising the other.

The result means that the SK spin glass ground state problenaisense “univer-
sal” difficult problem, i.e. it contains as special casegtal~2000 other known
NP-complete problems.

ForJj > 0 and arbitraryr the problem reduces to network flow, and can be solved
in polynomial time. For plana& andh = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 198®&)wever, for planar
Gwith h=0, and for 3-D lattices the problem is NP-complete (Baral®&2). It

is also NP-complete for every other nonplanar crystaldatgjraph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to tbenplexity of the
ground state problem; the key is rather the planarity of titerconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, totheeSK model as
a basis for “neural associative memories”. The idea is tateranN-site SK
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system whose local potential minima correspond to a sét-bit vectors to be
stored. These local minima are also stable states of thersigsstleterministic
(O-temperature) “Glauber dynamics”. When such a systemitiglised at a state
which is “close” to one of the stored stable states, the dyosifpresumably)
tends to return it to the nearby local minimum. Thus smaltyreations in the
stable states tend to get corrected, and the system has-termrecting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a systeas follows: at a
given discrete time instant, a randomly (or in a round-rahanner) chosen site
is updated according to the local rule:

S( = Sgﬂ( z KiSi +hk>
(k1)
—_—

It can be seen that each time a site changes state, the valligdfdecreases:
Assumes, # S,. Consider

H(d') —H(o) = f%JajSSrZhiS
ij !
+2JijSSj+zhiS|
(i) !
= —%JHS(S,’ +%ka3<51 —h(S—S0)
J ]
= (S~ %) (Z kasj+hk>
Y \&D

S ——
v

<0,

wherev anda have the same sign.
Thus, since the value &f (o) is lower bounded by

He)> =5 3= Ihil,
&2

the system converges eventually to a local minimum of its Htaman.
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How should one then craft the interaction coefficients sodtggven set of patterns
become stable states of the system’s dynamics? This caintiple be done in
various ways, of which Hopfield proposed the following addiph of “Hebb’s
rule”:*

Consider first a single pattern = (S;,...,Sy) € {+1,—1}N and choose) =
oo’ —| = [SSjlij —I,h=0. Then the dynamics operates as follows:

sgrJo) =sgn((oa’ —1)o) = sgn((||0]|*~1)0) = o,

i.e.0 is a stable state of the dynamics.
Given then a (smallish) set of pattems ... ,om, choose

m 1
J=7YS 0p0f —ml or normalised = = S opo! — 1 | .
3 0w ST

If the patterns are random, independent identically distad bit vectors, and
there are onlyn < N of them, they are “almost orthogonal”, and we may approx-
imate:

sgrnJoy) = sgn< ( g Op0p — m|> Gk)
p=1

~0
2 T
= sgn| (J|oy/|* — m)oi+ Xk(ﬁ Ok) Op
—_——
p#

“signal”
“noise”
= 0k7

“with high probability”.

This analysis has been performed rigorously many timesnatitferent assump-
tions, and the number of pattermgthat can be reliably stored has been estimated
under different criteria. Typically, the “reliable” staya capacity comes out as
m~ 0.14N...0.18N.

The deterministic Glauber dynamics of SK spin glasses lssaher computa-
tionally interesting features. One can e.g. show that cgieree to a stable state

4In a 1949 book, D. O. Hebb suggested as a basic mechanismmframemory that simul-
taneous activity reinforces the interconnections betwemmons. Physiologically this suggestion
is still controversial, but mathematically the idea hasrbased as a basis of several learning
mechanisms in artificial neural networks.
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can require a number of spin flips that is exponentiaNigA. Haken et al. ca.
1989), and that one can in fact embed arbitrary computaiionle dynamics
(Orponen 1995). (More precisely, determining whether @mgitoutput spin” is
+1 or—1 in the local minimum reached from a given initial state iPSPACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable familfitness land-
scapes”.

A fitness landscapis a triple (X, R, f), whereX is the configuration(or statg
spaceR C X x X is aneighbourhood relatioon X, andf : X — R is afitnesgor
objective function.

A pointx € X is alocal optimum(of f on X) if
fly) < f(x) VyRx

and aglobal optimum(maximuny if
fly)<f(x) vyeX

Questions of the “ruggedness” of landscapes (correlatiorctsire), number and
height of local optima, sizes of “attraction basins” of Iboptima with respect to
“hill-climbing” algorithms etc. are of great interest foatural landscapes.

In Kauffman’s NK modelsX = AN (usually justX = {0,1}V) andK is a tun-
able neighbourhood size parameter that influences thedapdscharacteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic intereciio chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, a&hromosomés anN-vector ofloci (genes “positions”),
each of which has a value from a setaifeles A(usually justA = {0,1}). A
“filled-in” chromosomen € AN is called agenotype

The fitness of each geres {1,...,N} in a genotypex = (ay,...,an) € AN de-
pends on the allela andK other allelesi), ... , a} via some local fitness function
f'(a) = f'(a;a),...,ay), usually normalised so thdt(a) € [0,1]. The total fit-
ness of a genotype € AN is the normalised sum of its genes’ local fitnesses:

N

f(a)zlzfl(ahallvai() 6[01]
N &
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(@K <N (b)K~N

Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

" VYV 1 N

o NS

Figure 5: An NK interaction network withl =5, K = 2.

Figure 5 illustrates an NK network with five loci and two “epitgtic interactions”
per locus.

In Kauffman’s versions of the model, th€ loci affecting locusi can either be
systematically selected as ei.g-1,... ,i+K(modN), or the chromosome can be
simply “randomly wired”. Thef are usually determined as randomly generated
2K+1_element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model Migipins can be seen
as anN2 network wheref'(S;S_1,S11) = %(3,13 +SS4+1), and an SK spin
glass with coefficients;; and local fielddy as anN(N — 1) network where

W&owsnzggmﬁa+na
i)

Basic properties of the NK model, for binary alleles- {0, 1} and varying values
of K, include the following:

K=0:
If £1(0)# fi(1)Vi=1,...,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hilirbing” algo-
rithm.
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Expected length of the hill-climbing path /2. (Half of the alleles are [Gilbert:] ¢ (n, p) = all G € g, taken so that each edge has occurrence probabil-
“right” in the beginning, after that one allele gets fixed atle step.) ity p, 0< p <1, independently of the other edges, i.e.
Neighbouring genotypes, o’ are always highly correlated, as necessarily M.
1 (00) — f ()] < /N, PGp=H)=pM(1-pNM, if H hasM edges.
q
I<K<N-L
ForK = 1, a global optimum can still be found in polynomial time. For These spaces are in a precise sense “clodd”™if pN, and are often both referred
K> 2, global optimisation is NP-complete. However, for adigcaffect- to (unfairly to Gilbert) as the “Erdés-Rényi random grapbdel”, or alternatively
ing loci (i ~i+1,...,i+K), the problem can be solved in timg2¥N) as theg (n,M) andg (n, p) random graph models.
(Weinberger).

LetQ,,n=0,1,2,... be a sequence of probability spacesafode graphs. Say
K=N-1 thatalmost everya.e) graph inQn has propertyQ if

Neighbouring genotypes are totally uncorrelated.
= Probability that a given genotype is a local optimum is equal to the

prqbability th_ata_ has the highest rank within its 1-mutant neighbourhood. Converselyalmost nograph inQ,, has propertyQ if a.e. graph i, has property
This probability is equal to A(N + 1). -Q, i.e.

= The expected number of local optima /2N + 1).

The expected number of improvement steps for 1-mutanthitibing to hit
a local optimum is proportional to IgéN (each improvement step typically

Pr(G € Qn hasQ) — 1, ash — co.

Pr(G € Qn hasQ) — 0, asn — co.

halves the rank of the genotype within the neighbourhood). Theorem 7.1 Let H be a fixed graph and p a constaft< p < 1. Then a.e.
The expected waiting time for finding an improvement stegrépprtional G € g (n, p) contains an induced copy of H.
to N.

Remark: an “induced copy” means here a subset of nodes whdsedd sub-
graph is isomorphic tédl.

7 Random Graphs Proof. Let k = |H| = number of nodes itl. Then a graptG with n = |G| > k

P nodes can be partitioned inta/k| disjoint sets ok nodes (with some left over).
7.1 The Erd6s-Renyi Model(s) For each of these sets, the probability that it forms an iadwopy ofH isr > 0.
Preciselyy = K peH)g(z)-eH),
Two closely related “uniform” random graph models introdddn 1959 by P. ( Y= TP )
Erd6s & A. Rényi and E. N. Gilbert. Thus, the probability that none of these sets forms an indlaopy ofH is

Consider the family; , of all (labelled, undirected) graphs ennodes. Denote

1-r)l"K 0, asn — oo.
N = (3); then|gn| =2V. ( ) - %0

Define the following two probability spaces Letk,| € N. Say that a graps = (V, E) has propertyy if VU, W, |U| <k, |W| <
I,UNW =@, Gcontains a nodec V \ (UUW) such thavis adjacent to alli e U

Erd6és & Rényi: n,M) = all G € ¢, with exactlyM < N edges, taken with ;
[ Vil g (M) o0 yM= g and now € W (cf. Figure 6).

uniform probability, i.e.

Ny—1 .
Pr(Gu=H) = (w)  ifH hasM edges Lemma 7.2 For every constant p0 < p< 1, and all k|l € N, a.e. G€ g (n,p)
0; otherwise. has property @
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Figure 6: Propertyy.

Proof. For a fixedU,W,v € V \ (UUW), the probability that the condition is
satisfied is
plU‘qlw‘ 2 pkql

The events are independent for differenso the probability that no appropriate
exists is

(1, p\u\q\W\)"flU\f\W\ < (17 pkq'>n7k7| .

There are at mostt' (U, W)-pairs to be considered, so the probability that some
pair has no good is bounded by
N (21— gk = 0, asn — o.
1
<

Thusina.eG € ¢ (n, p) all (U,W)-pairs have some appropriater

Corollary 7.3 Let p,0 < p < 1, be a constant. Then (i) a.e. &g (n,p) has
minimum degree> k, for given constant k (ii) a.e. @ g (n, p) has diameter 2
(iii) a.e. Ge g (n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(ii) In a.e. G € g (n,p), no two nodesus, uy can be separated by a cutset of
sizek — 1, because we may choose in Lemmal.2 ug,up, W = wy, ... ,Wk_1

for arbitraryws, ... ,wx_1, and obtain a patliy—v—uy connectinguy, u; and
avoidingws, ... ,\Wk_1. O
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Corollary 7.4 Let @ be any first-order sentence about graphs (i.e. quantificatio
over nodes, relations @, v) + identity). Then either G= @ or G = —¢ for a.e.
Geg(np).

Proof. Skipped.q

Thus, all the first-order properties af(n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes diedws®d/or the prob-
ability p depends om.

Given graphG, denote:

independence numberG)
cligue numbew(G)
chromatic numbeg(G)

size of the largest independent se@Gn
size of the largest clique I8,

smallest number of colours needeed for
colouring nodes i so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n> k > 2, random Ge g (n, p):
Pria®) k) < (i0)o.

Proof. Probability that giverk-set of nodes irG is independent isq(g). Total
number ofk-sets is(f). o

Theorem 7.6 Let p0 < p < 1ande > 0 be constant. Then for a.e. &g (n, p):

X(G)>In1/q n _Q< n

= 2+¢’Inn "\inn

) = large!

Proof. By Lemma 7.5, for any fixed > k > 2:

(Dq@ < kg

_ qk{%+%k(k—l)

_ q‘g[—lﬁ%ﬂel]

— O forklarge,

Pr{a(G) > k)

IN

i.e. when
If 72Inn
2| Inl/q

+k,1} — 00,
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A sufficient condition for this to hold is th& > k(n,€) = (2+s)|r2”l?q. Thus for
largen, almost no grapl® € ¢ (n, p) can have a colouring that would assign the
same colour t(n,€) or more nodes. Hence, a proper colouring of almost any

G € g (n, p) requires at Ieasfg(l?—s) = % - = colours.

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. &g (n, p):
w(G) € {d,d+1},

where d= d(n, p) is the largest integer such that

(2) p(g) >Inn.

(This implies d= 2log, /,(n) + O(loglogn.).) o

A graph property Qs an isomorphism-closed family of graphs, i.eGf Q (or
“GhasQ”) and G ~ G, then alsdG’ € Q.

A threshold functiorfor a graph property Q is a functidn N — R such that

1,if p=t,
Pr(G € ¢ (n, p(n)) hasQ) —— { 0, if E«
where:
. p(n)
p-t<e Ml,ﬁ =,
im P _
p<te r!mot(n) =0
Further notation:
im P _
P tél!mf’t(n) =1

p~t < p(n)=0(t(n)).

Denote:Pr?(p) =PrG € g (n,p) hasQ).

For technical reasons, we will actually use the followiniglstly stronger defini-
tion for a threshold functiont(n) is a threshold function for graph propeyif
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Figure 7:Pr9(p) for (a) small, (b) intermediate and (c) large

for any sequence; < n < ... of graph sizes ang(n1), p(n2),... of associated
edge probabilities,

kﬂ:%:‘” = PR(p(n) =1, (%)
o, f((::)) =0= PR(P(N) =0.  (x)

A graph property isnonotonef it is preserved under addition of edges, i.e. if
G = (V,E) andG' = (V,E’) are graphs such th& C E’ andG hasQ, then also
G’ hasQ. For monotond) it is the case thap; < pr = Pr?(pl) < Pr(?(pz), so the
inverse oﬂi}?(p) is well-defined:

pS(a) = the smallesp such thaP{(p) > a.

In fact for monoton& one can show thzﬁnQ( p) is a continuous, strictly increasing
function of p, so actuallyp?(ar) = unique psuch thaPR(p) = a.

Figure 7 illustrates the evolution of the functiBff, and a corresponding threshold
functiont(n), for a monotone graph proper§yfrom small to large values af.

Lemma 7.8 A function {(n) is a threshold for monotone graph property Q if and
only ift(n) =~ pr?(a) forall0<a < 1.

Proof. Suppose thatt(n) is threshold function foR, butt(n) % pg(u) for some
0 < a < 1. Denoting for brevityp(n) = pr?(or), this means that either there is a
sequencay, Ny, ... such that

P(Ni) /t(Nic) — oo,
or there is a sequenceeg, n, ... such that

p(nk) /t(ng) — O.
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However, since for alh it holds thatP,?(p(n)) = P,?(pg(a)) =a,0<a<1,
the former case violates condition (*) and the latter casaditmn (**) in the
definition of a threshold function.

“<«<" Assume then that(n) is nota threshold function fo®. Then there are either
a sequencas, ny,... and a constard < 1 such that

P(nK)/t(mk) — 0 but P(p(ny)) < a,
or a sequencay, Ny, ... and a constard > 0 such that
P(nK)/t(m) — 0 but PR (p(ny)) = a.
In the former case,
t(mi) < p(mi) < PR (@),
and in the latter case
t(n) > p(mk) = Py, (a).

Thus in either case(n) 5 pr(a) for some 0< a < 1. g
Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denotepr?(a) = p(a). Choose some arbitrary9a < % The
goal is to prove thap(a) ~ p(1— a), thus establishing e.g.

t(n) = p(%) = py (%)

as a threshold function for Q. (Singéa) < p(%) <p(l-a).)

Letme N be such thatl—a)™ < a. Let p= p,(a) and consider a sample of
mindependent graphBy,...,Gmy from ¢ (n,p). Then the grapiG; U--- UGy €
¢ (n,g), whereq=1—(1—p)™ <mp and so

Pr(G1U---UGm hasQ) < Pr(G € g (n,mm(a)) hasQ).

On the other hand, sind@ is monotone, if anys; hasQ, then so doe&1 U ---U
Gm. Thus,

Pr(G1U---UGp does not hav®) < (1—Pr(Gj hasQ))™
=(1-a)"<a.
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Hence,
PR(mm(a)) > PrGU---UGnhasQ) > 1—a,
and so

Pn() < pn(1—a) < mp(a),
i.e. p(a) ~ p(1—a). (Sincemdepends only on, not onn.) O
Consider a graph propery defined as G hasQ” if X(G) > 0, whereX >0is a
random variable og (n, p).
E.g. if X(G) denotes the number of spanning treessothen propertyQ corre-
sponds to connectedness.
Recall the two properties characterising a threshold fan¢tn):
(i) p(n) <t(n) = almost naG € ¢ (n, p(n)) hasQ.
(i) p(n) > t(n) = almost allG € ¢ (n, p(n)) haveQ.
If X is integral, then one can aim to verify conditions (i) anjl lfly the so called
“first-moment method” and “second-moment method”, redpelst
The first-moment method consists simply of upper-boundiegipectatiof[X]
and applying Markov's inequality:
Pr(X > 1) <E[X] ( more generally, foa > 0
p(X > a) <E[X]/a).
More specifically, one aims to show that if the choice of edubabilities satisfies
p(n) < t(n), thenE[X,] — 0. By Markov's inequality it then follows that also
PR(P(M) = Pr(X) > 1) — 0.
The second-moment method is based on lower-bourtiXgandupper-bounding
Var[X].
Denotepy, = E[Xn], 02 = VarX,] = E[(Xn — Wn)?] = E[X2] — 2. Recall Cheby-
shev’s inequality (a simple consequence of Markov's inétyafor any A > 0,
2

O
PIIX — 1 2 A) < 5.

Lemma 7.10 If gy > O for n large, and%ﬁ — 0 as n— o, thenPr(X, > 0) — 1
as n— oo,

Proof. If X, = 0, then|X, — pn| = pn. Hence

2
(¢}
PI(Xa =0) < Pr([X— | 2 p) < 5 —~0asn— . 0
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For the next result, denote the number of nodes in a g&pi |G|, the number
of edges bye(G), and define itslensityasd(G) = % Aay that a graplG is
balancedf d(G') < 8(G) for all subgraphss’ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function’®)

Proof. DenoteX(G) =number ofH-subgraphs of a given gragh Letk = |H]|,
| = e(H), so3(H) =1/k, and letG € ¢ (n, p), wherep = yn~ /%) — yn—¥/! for
somey = y,. Let us first apply the first-moment method to show that i O,
then almost n@ contains a subgraph isomorphicHo Denote

st = {all copies ofH on vertex-set 0G}.

Then|s | = (Ph< (PK < nk, whereh is the number of different arrangements
of H on a set ok verticesh =k! /|Aut(H)|. Thus

EX|= ¥ P{H' CG)=|x|-p
H'ex
< nkpl _ nk(yn—k/l V _} 0,

and by Markov’s inequality the desired result follows.

For the other part, we wish apply the second-moment methahoéw that if
y — oo, then almost every grap® contains a subgraph isomorphicHio For this,
we need to verify that = E[X] > 0 for all sufficiently largen, and then show that

2
o}
2 HZ(E[XZ] ) -0 asn— o,
The first condition is easy to check: without loss of gengralissume thay =

Yo > 1foralln. Then:

b= E[X] = || -p

(i

> constnk-h.yl.n7¥
> 0.
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For the other requirement, let us try to compute:

E[X?] = Pr(H'UH" C G)
H/ H" e
_ pe(H’)+e(H”)7e(H’mH”)
H H"exn
< p2l—i5(H)7
H H"ex

wherei = |H'NH”|. (Note thatd(H'NH") < 3(H).)

Denote then;? = {(H’,H”) € s 2: [H'NH"| = i} and compute separately for
eachi the sum

A= ZPr(H/UH”gG)

i

Case i=0:
Ao = ZPr(H’UH” CG)
g

ZP ((H'CG)-PH” CG)  H',H” independent
o

Pr(H' C G)-PrH" C G)

2
( H’CG)
u

IA
W 5
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Casei> 1

A

Pr(H'UH" C G)

i

Z Pr(H' UH" C G)

H'es H™:
[H'NH"|=i

- |}["<Ii(> <r|1:|i(>hp2Ip—il/k h:MuIt(ﬁ

< |j_[ ‘ i C:LnkfihpZI (ynfk/l)fil/k
= clnk‘ihp'y‘"/kni
= Clnkhply—il/k

= He <E> hply "/
——

[ |

=cy
<y k

il /k

Thus, denotings = ke, we get the estimate

EXY <@+i—?> <1toy K

p2 p2
and hence
o? EXI-y2 1k

The desired result then follows by Lemma 7.10.

Corollary 7.12 For k > 3, the property of containing a k-cycle has threshold
t(n) = n~L. (Note that the threshold is independent ofk.)

Corollary 7.13 For k > 2, the property of containing a specific tree structure T
on k nodes has threshold functigm} = n*/(k-1), o

Corollary 7.14 For k> 2, the property of containing a k-cliqgues(K) has thresh-
old function (n) = n~%/«1 4

Denoted*(H) = max{d(H’)|H’ is subgraph oH}.

Theorem 7.11' The graph property “G has a subgraph isomorphic to H” has
threshold function n?/3 (H) o

7. Random Graphs 81

Threshold functions for global graph properties

Also known as the “phase transition”.

The “epochs of evolution”: Consider the structure of randpaphsG € g (n, p),
asp = p(n) increases. The following results can be shown (noterthataverage
node degree):

0. If p<n~2, then a.eG is empty.
1. Ifn2 < p<n~1 then a.eGis a forest (a collection of trees).

e The threshold for the apperarance of &ayode tree structure ig =
nk/(k=1)

e The threshold for the appearance of cycles (of all constaes¥is
p=n-1l

2. If p~cntforanyc<1 (i.e.np— c< 1asn— «), then a.eG consists
of components with at most one cycle a@@dogn) nodes.

3. “Phase transition” or “emergence of the giant componahf ~ n~1 (i.e.
np—1).

4. If p~cnlforanyc> 1 (i.e.np— c> 1), then a.eG consists of a unique
“giant” component witt®(n) nodes and small components with at most one
cycle.

5 Ifnl<p=< '“T“ then a.eG is disconnected, consisting of one giant com-
ponent and trees.

6. If p> '”T“ then a.eG is connected (in fact Hamiltonian).
Theorem 7.15Let n(n) = w, pu(n) = w wherew(n) — c. Then

(i) a.e. Ge g (n,p) is disconnected;

(i) a.e. Ge g (n,py) is connected.

Proof. We shall use the second moment method on random varixplesx(G)
= number of components da with exactlyk nodes.

Assume without loss of generality thafn) < Inlnn andw(n) > 10.
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(i) Setp= p and computg = E(X;), 02 = Var(X;). By linearity of expectation,

L= E(X)=n(1—p)"t=ndn-Dini-p)
< ne P = e NNHem) — gom) o

noo
Furthermore, the expected number of ordered pairs of sblabdes is
E(Xu(X — 1)) =n(n—1)(1—p)>"2.
Hence,
02 = Var(Xy) = E(X}) — 2

= E(X (X1 — 1)) + -
=n(n=1)(1-p)*"*+n1-p"t-n*1-p*?

< n(1-p)" 4 pré(l—p)2
< u+ (lnn_ w(n))ne—zlnn+2w(n) (1_ p)73
<2

< P+ L:nez‘*’(”) <p+1  forlargen.

Thus,%ﬁ < “—le — 0 asn — o, and by lemma 7.10,

Pr(G is disconnected> Pr(X;(G) > 0) — 1 asn — co.

(ii) (Here basic expectation estimation, of*inoment method” suffices.)
Inn+-w(n)
n

Setp=py= and compute

[n/2]

Pr(G is disconnected= Pr( 2 X > l)
K=1

[n/2] ) [n/2]

Y %)=y EON)
= k=1

< E(
k=1
/2l
< 1-p)kn 5
< k; (k>( p) (5)

7. Random Graphs

Split the sum (5) in two parts:

m>ggﬁ(®u—mmb

< ﬂ‘)"ekm—k)(—p)
1<k<nd/4 k

= @) g kg
1<k<n3/4

< k—Knkekek(n n+w(n))ek242Inn/n
1<k<n3/4

_ k—ke(l—a)(n))kezkzln n/n

1<k<n3/4
) »Inn
<e . z exp| —kInk+k+ 2k*—
1<k<n3/4 n
<3
< 3@,
n _
© (§)a-pre
n3/4<k<n/2
<3 @)kekm—k)(—p)
n3/4<k<n/2
k
< 5 enl/4> n—"/4
n¥/4<k<n/2
<n "5

< e for largen.

Thus, altogether

Pr(G is disconnectep< 4e~ M — 0.0

83



84 Part Il. Combinatorial Models

What happens at the “phase transitign* n*~1? For fixed values ofi andN =
(5), consider the space of “graph processesz (G;)N.,, where at each “time
instant’t a new edge is selected uniformly at random for insertion amto-node
graph. (Thus, picking grapB: from a randomly chosen proce&se ¢ (n,M),
whereM =t.)

Theorem 7.16 Let c> 0 be a constant ana(n) — . Denotel = (c—1—Inc)~*
andt=t(n) = |cn/2]. Then

(i) Atc< 1, every componentC of a.e; €atisfies

’|C\—B<Inn—glnlnn>

(i) Atc=1, for any fixed h> 1 the h largest components C of a.q.<atisfy

< w(n).

IC| = ©(n?3).

(iii) Atc> 1, the largest componenip®f a.e. G satisfies
1ol —yn| < co(n) -n*/2,
where0 < y=y(c) < 1is the unique root of

e¥=1-vy.

The other components C of a.a. $atisfy also in this case

‘\C|—B<Inn—glnlnn>

Thus, the fraction of nodes in the “giant” component of &efor t = cn/2 be-
haves as illustrated in Figure 8.

< w(n).

Let us prove one part of this result, the emergence of a ga@indmponent sizes
of Ge g (n,p) atp~n~L. (This corresponds to~ Np ~ n/2.)

Theorem 7.17 Let a> 2 be fixed. Then for large rg = €(n) < 1/3 and p=
p(n) = (1+¢€)n~2, with probability at leastl —n~2, a random Ge g (n, p) has
no component C that satisfies

8a €2
—Inn<|C| < —=n.
€2 <l ‘_12
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y(c)
T

1 2 3 4 c
Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider “growing” the componeddfu) of an arbitrary node in G
incrementally as follows:

1. (Stage 0:) Sedy = @, Bg = {u}.

2. (Stagei + 1:) If B = A, then stop withC(u) = B;. Otherwise pick an
arbitraryv € Bj \ Aj; setA; = AjU{v}, Bi11 = B;U{neighbours of/ in G}.

Now what is the probability distribution dB;| (=size of seB;)?

Consider any nodec G\ {u}. It participates iri independent Bernoulli trials for
being included irB;, each with success probability equalgoThus the inclusion
probability for any fixedr # uis 1— (1— p)', independently of each other.

Consequently, the size of eaBhobeys a simple binomial distribution

This gives also for eackan upper bound on the probability
Pr(|C(u)| = k) = Pr(|Bi| = kA process stops at stage

Denotingpy = Pr(|C(u)| = k) for any fixedu € G, itis clear that
Pr(G contains a component of sikg < npx,

and to prove the theorem it suffices to show that

ki
Z(O pe<n
K5
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whereko = [8ag~2Inn], k; = [€2n/12].
Since presumabli < k;, we may assume# > &nn > 1
We may now estimate

nk @ ke
i < Pr([Bi| = k) < (e o (kp)(1— p)<" ), )
because
n—l) nk k( j) nk
= 1-=-)<—e =, and
(")=en(h) <k
(1-p*=>1-kp

Applying Stirling’s formula
% L K\
V21K (5) <k < et®\/2rk (é>
and the boundky < k < k; to (6) we obtain

k2 3| 2
Py < exp(z—k—s—;+7k (1+E)>

A
[¢]
x
©
/N
|
‘MND
x~ =~
+
[
~

A

]

X

©
PN

|

ok
~

and consequently

k ky 2 2 2

ZO Pk < et k/4 < g€ ko/4 . (17978 /4)—1
KE [l

5 —£%ko/4 —2a
2 e <5yn-n

— pn—2a+l/2 a1

IN

for largen. 0o
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7.2 Nonuniform Models
Introduction

Obviously (in hindsight), most large “real-world” netwarkio not conform to the
Erdds-Rényi random graph model. Consider e.g. the Iatethe WWW, traffic

networks (airline connections, roads), collaboratiorwoeks (scientists, artistic,
business), etc. All these exhibit strong nonuniformitiekistering, nodes with
exceptionally high degree, (“hubs”) etc.

This was noted (vaguely) in the social sciences at leastarl@60’s (Milgram,
“six degrees of separation”) and also in popular culturengB worlds”, “the
Kevin Bacon game”).

Curiously, the first serious mathematical (physical) itigggion of the phenomenon
seems to have been Duncan Watts’ Ph.D. thesis (under Sténaga@) in 1998
(?), and the “letter” to Nature by Watts and Strogatz in Jud@81

The Watts & Strogatz paper set off a veritable avalanche aokwothe area —
fueled in no small part by the current interest in modeling thternet and the
WWW.

“Small World” Networks

Watts & Strogatz 1998 etc.

Empirical measurements of real networks vs. predictiotk®ER random graph
model showed that the ER model is not an adequate model diqaiagetworks.

Statistical measures on a gra@h= (V,E), V| =n:

e Characteristic path length = average distance between nodes:

£(G)= <g> 1U;Vdist(u,v),

where disfu, Vv) is the length of the shortest path betwesmndv.

e Clustering coefficient
c(G) =Y p(ry),
\

whererl, is the subgraph o& induced by the neighbours of nogtén G,



88 Part Il. Combinatorial Models

T

‘\‘!;ﬁ/

N~
N

Figure 9: The SW random graph model: circulant graph andreslrgraph.

and for a grapli with k nodes and edges, thelensityof I" is®

on)=1/(3)

Watts and Strogatz considered the following three empigcaphs 6 = number
of nodesp = average node degree; only the largest component of eaph gi@s
chosen):

e Hollywood film actors collaboration network: = 2252266 = 61
e Power grid of the western US: = 4941,6 = 2.67

o Neural network of nematodéaenorhabditis elegans1 = 282,56 = 14

Watts and Strogatz obtained the following comparisans(@ndcgr denote the
corresponding values for ER random graphs of comparabdeasid density):

L LER C CER
Film actors| 3.65 2.99 0.79 0.00027
Power grid| 18.7 12.4 0.08 0.0005
C.elegans| 2.65 2.25 0.28 0.05

The empirical conclusion is thus that “real networks” haathdength compara-
ble to ER random graphs (= short) but considerably highesteting. To model
such observations, Watts and Strogatz introduced a spésifiall world” (SW)
random graph model, whereby one starts with a “circulanplgi&, x, and then
randomly “rewires” some small fractiomof the edges. (Cf. Figure 9.)

5To be precise, the definition requires tkat 2. For nodes with 0 or 1 neighbours, it is most
convenient to stipulate that the neighbourhood densityesponds to the global density, i.e. that
p(rv) = [El/IVI.
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Figure 10: Path length and clustering coefficient in SW ramdoaphs.

Watts & Strogatz experimented on the effect of the rewirirappbility pon = (G)
andc (G) in this model and obtained results as indicated in Figurec@ifvés nor-
malised byc (C, k) andz (Cpx); n = 1000k = 5). Thus, the “small world” phe-
nomenon of smalt and larger seems to occur fop in the range M005...0.05.
Watts and Strogatz call all graph families with this quaiia property “small

world graphs”. The notion has also been quantified by Wal8B8g}1in terms of
the proximity ratio

c/c
H=——F—.
CER/LER
Thus, presumably > 1 for small world graphs. However, this quantity does

not seem to be very invariant over various SW graph famikeg. forC. elegans
p~ 4.8 and for the power grid graph~ 106, but for the actors’ netwogk~ 2400.

For analytical simplicity, Newman et al. (1999, 2000) maatifthe Watts-Strogatz
SW model to simply adding a fractiop of random cross edges, rather than
rewiring. This variant of the model is called the “solvabM/'S or SSW model.

Other Small World Models

e Kleinberg's (2000) lattice model: Basis is ans x s square lattice, with
Manhattan (1) metric:

d(u,v) =d((i, j), (k1)) = [k=i] + I = j].

Each nodes has local connections to all nodes within distadce p, and

in additiong > 0 directed “long distance” connections. The probability of
creating a long distance connection betwaemdyv is proportional to thei
distance, Pf(u,v)) Od(u,v)~",r > 0.
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Figure 11: A Kleinberg lattice.

e “Caveman graphs”: (Watts 1999; old idea?) Deterministic SW graph
model. Connect a collection af“k-man caves”K-cliques) together in a
systematic manner.

Figure 12: A collection of six 5-caves connected together @cycle.

Scale Free Networks

So are small world graphs a good model of real world networkie? always.
(Usually not?)

One aspect of real networks that SW graphs often do not moelelsithe degree
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exponentially
falling tail

36) K

Figure 13: Degree distribution of an ER random graph.

distribution. In an ER random gragh € ¢ (n, p), the degree distribution is al-
most binomial with parameters— 1, p. For largen and smallp, the distribution
approaches PoissoY)( whereA = np.

More precisely, itXx = Xx(G) = number of nodes i with deg =k, then

k K
K(1_ p)n-1-k -, —np(NP) ~ —5%¢
K )p(l p) e re

P = = =

E(X) (n -1
whered = average degree of gragh Thus, the degree distribution of a typical
ER graphG looks as illustrated in Figure 13.

The degree distributions of SW graphs are typically evenenpmaked around
8(G). E.g. in WS graphs based on the circul&@t, approximately fraction
1— 2tp of the nodes has degree equal to(2call thatp <« 1 is the rewiring

probability).

However, many real world networks seem to have very healsdtdiegree distri-
butions, well matched by “power laws”

P(k) Ok,

wherey = 2...4. This indicates that there are some nodes with unreaspnabl
large (in the ER or SW models) degrees. Also, such networksalied “scale
free”, because there is no characteristic “scale” or nodgedevalue at which
large networks would concentrate.

On a log-log plot, the degree distributions of such netwdok& somewhat as in
Figure 14

For instance, the following values fgrhave been estimated for real world net-
works (Barabasi & Albert 1999)
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logX

slope =—y

logk

Figure 14: Degree distribution of a “scale-free” randonpdra

| n 5 y
Film actors 212250 28.8 2.3 0.1
WWW (local) | 325729 5.46 2.1 0.1
Power grid 4941 2.67 4

Barabasi & Albert (1999) proposed the following attraetigrowth and preferen-
tial attachment” model (BA model) to explain the emergentcsuzh power law
degree distributions in networks:

e The network is initialised at time= 0 with some small set of nodes and
edgesGo = (Vo, Eo)

e Attimet+1, a new nodel is introduced to the network, witty edges that
are preferentially attached to the existing nodesv; so that

Pr((u,v) € Ecy1) D deg(v).

Barabasi and Albert argue heuristically and experiménthht this growth pro-
cess yields networks with power law degree distributions

P(k) Ok=3.

They also claim that with nonlinear preferences the expbpean be adjusted
also to values different than 3.

These arguments have been made rigorous by Eriksen & Histr(8002) and by
Krapivsky (2000). (However some problems still remain wittmlinear prefer-
ences?)

Finally, note that the popular experimental graphs (Irégractors, power grid,
etc.) have both small world and scale free properties, shethe SW nor the BA
model (which are mutually contradictory) provides a fulliyisfactory explanation
for them.

Part Il

Stochastic Algorithms

8 Simulated Annealing

Global optimisation (say, minimisation) of an objectivenétion H(o), framed
as a Hamiltonian of a statistical mechanics system, via aeseg of Metropolis
samplers for the Gibbs distributions determinedhyp) at decreasing values of
the temperature paramefer— 0.

Let H : S— R be a function to be minimised over a finite (but typically very
large) state spacg@ Assume thaShas some neighbourhood struct®e (S N)
(cf. page 24).
In any specific application of the method, the algorithm gesr typically has a
lot of freedom in the choice of the most appropriate This choice can have a
significant effect on the efficiency of the algorithm: one \eblike to haveN such
thatN(o) is small for eaclo € S, yet the resulting Metropolis chains converge
rapidly.
The Gibbs distribution determined Iby at temperatur@ is (recall page 58):
T _ _ Lenox_ 1o

nﬁ, Prr (o) ZTe ZTe ,

wheref3 = 1/kT.

A relevant observation is that 85— 0 (or 3 — ), the distribution Pf(0) gets
more peaked according té. Denoting byS* = {c* € S| H(0") = min} the set
of global optima ofH, one observes that:

Prr(0) _ cBH©o-Ho) [0 0¢S
Prr(0%) T..0 l,oes

(B—co)
93
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Thus, in the limit one obtains:

. 0, 0¢Ss
T[Z:T“Topﬁ(c) - { 1/|S|,0e S

Of course, one cannot directly sample accordingttpbut the idea is that by
starting at a high value df and then slowly (but how slowly?) decreasing it, one
obtains a nonhomogenous Metropolis chain that convergsenably fast (?) to
.

As regards the convergence of the chains at each Tixed, we can appeal to the
general results concerning Metropolis samplers from pdgengvards.

Let us just check the form of the acceptance probabilitiggoposed move — T,
wheret € N(0), is accepted with probability:

. [ dg }
min ,1
e
. e*BH(T) ds
= mm{eBH(G) -d—r,l
min{e—smm—H(o)) o 1}

e
min{e—mH(r)—Hw»,l}?

Pot

if (SN)isregulari.e]N(o)| = |N(1)| for all o,T.

Thus, for a regular neighbourhood structure, and dendiidg= H(t) — H(0),
a proposed transitioa — T is accepted always H < 0, and with probability
e PoH if AH > 01

In summary, one obtains the following general method forimising a function
H over a state spac®with regular neighbourhood structuxe

Algorithm SA(H,S N):
T « Tinit;

O < Cinit;
while T > T¢jng do

L — sweep();
for L times do

1in the general case of nonregular neighbourhoods, poténtigasing transitions should be
accepted with probabilitg P2 . dg/d;.
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chooser € N(o) uniformly at random;

AH — H (1) —H(0);

if AH <0 theno «1;

else choose € [0,1) uniformly at random;
if r <exp(—AH/T)
theno —t;

end for;
T < lower(T);

end while;
result— g;

The obvious question is now how to choose appropriate fanstiower[) and
sweep(), i.e. what is a good “cooling scheduléTy, Lo), (T1,L1),...

In practice, it is customary to just start from some “highinggeratureTy, and
after each “sufficiently long” sweelpdecrease the temperature by some “cooling
factor’ a ~ 0.8...0.99:

Tkra =0Tk

Theoretically this is much too fast, as we shall see, buhasgems to work well
enough.

Consider an inhomogenous Markov chain with transition iwesP(@, PY, P3| .
Denote

P(mk) = pMp(m+1) . p(m+k-1)
i.e.Rj(mk) =PriXmk=] | Xm=1).
The chainw is weakly ergodidf for all m> 0:
lim supdy (M"P(mk),vTP(mk)) =0
—® v
andstrongly ergodidf there is some distributiort such that for alm > 0:
lim supdy (W' P(m.k), ) =0
—0

Let Q be ann x m stochastic matrix. Théobrushin) ergodic coefficiertf Q is
defined as:

Gi = (0, - - - » Gim)
= — ma i
P=p(Q) i,JXdV(j"q') gj = (a4, --- ,Qjm)
1
= ZMmaxy [~ k|

k=1
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The following key technical lemmas will possibly be provater. The proofs are
not exceedingly difficult.

Lemma 8.1 (“Dobrushin’s inequality”)
Given the stochastic matrices @ [0, 1]™™, Q, € [0,1]™":

P(Q1Q2) < p(Q1)P(Q2)-

Lemma 8.2 (“Dobrushin convergence rate bound”)
Given the stochastic matrix P and the distributions:u

dv (WP, VTP <dy (1 v)p(P)".

Lemma 8.3

An inhomogeneous Markov chain with transition probability matrices ),
P® ... is weakly ergodic if and only if either (and hence both) of fisleowing
conditions hold:

(i) forany m> 0: limy_.p(P(mk))=0;

(ii) for some increasing sequen@el mp < My < ---

[

> (1-p(P(m. M) =

Lemma 8.4
Let ar be a weakly ergodic Markov chain with transition probalyilinatrices
PO pM .. Suppose that there exists a sequence of distributidfsm?, ...
such that

(i) T™PM =™ for each m> 0;

(i i\\rﬂmﬂrﬂ"‘“>ul<m.

Thenas is also strongly ergodic, with limit distribution

v = lim ™.
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Theorem 8.5
Consider a simulated annealing computation on inpdt SN). Assume the
neighbourhood grapkS N) is connected and regular of degree r. Denote:

A=max{H(1)—H(0) |c € STe N(0)}.
Suppose the cooling schedule used is of the f@wL), (T1,L), (To,L), ..., where
> mi i ),
L> Or*rgg gr;agx dist(c,0"), 1)
wheredist(o, 0*) is the distance in grap{S,N) fromo to 6%, and for each cooling

stage I> 2:

T bu—0) @

Then the distribution of states visited by the computatamverges in the limit to
T, where

. 0, ifo¢S
"3:{1/\5*\, foes

Proof: Denote byP(©® P ... the sequence of transition matrices for the Markov
chain onS determined by the SA algorithm with the given parameters.sWl
show, based on Lemma 8.4, that this chain is strongly ergaitiicthe given limit
distribution.

Let us first verify weak ergodicity using Lemma 8.3 (ii). L&t € S* be some
ground state achieving the lower bound in condition (1). Wallsshow that for
anyo € Sandk > ko, wherekg is sufficiently large:

L
Pog+ (K, k+L) > (Flefﬂ/tk> . (3)

wherety = Ty = cooling temperature at stép

It then follows from condition (3) and from the falgt— g| = p+qg— 2min{p.q}
that

1-p(P(kk+L))
1
=1- En(}_a}xv;\Pw(k,k—&— L) — P (k k+L)|
= rQ‘Irnngmm{P”"(k’kJr L),Pw(k,k+L)}

> minPgg+ (k,k+L)
gesS

> rle Lo/
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and so (choosingy =1-L):

© [

I;(l— p(P(m,mq))) > |;0(1_ p(P(IL,IL+L)))

=9

hd 1
> ;Or*'-e*'-A/tk >rt Zol_ = oo,
1= 1=

Thus, let us check that condition (3) holds for some suffitydargeky. Observe
first that for anyo € Sandt € N(o):

1 1
— “minfe-HO-H0)/t 11 > Zab/k
Pot(K) ; min{e 1} > re .
Similarly, for anyc* € S* there is somég such that for alk > ko:
Pyeo- (K) > %e*ﬂ/tk.

Namely, letd = min{H (1) —H(c*) | 0* € S",T1 € N(c*) \ S'}. Now d > 0O, unless
H is a constant function. Thus for &> ko, wherekg is sufficiently large:

1—e > g/

and so

Porgr = 1— Z Po*r(k)
1eN(o%)

1 1 HEO-H©@) /4
1eN(o%)
> 17}(r—1+e’5/tk)
- r
1 5/
= —(1-e /t)
> }e*A/tk.

r
Thus, for anyo € Sandk > ko:

Pso+ (k,k+L)
=353 PoryoPur(k+1)--Pr_ior (k+L—1)

1 T2 T-1

Pooy (K)Poya, (K+1) -+ P30+ (k+L)

L
<}e*A/tk> ,
r

\Y

Y
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whereo, 01,02, ...,0.-1,0* is a shortest path frora to o* in (S N), with pos-
sibly statec™ repeated several times if the length of the actual path &thesn
L.

Having now established the weak ergodicity of our chainugetheck conditions
(i) and (ii) of Lemma 8.4 to complete the proof.

For condition (i) it suffices to observe that the stationasgrébution at stagé of
the algorithm:

1

) _ = aH(O)/T — ~H(0)/Ti
=_¢€ , 4=Ye )
ue Z | c;

satisfies the conditiont')P(™ = n"), for values ofmfromIL to (I + 1)L — 1.
For condition (ii), one can show by a somewhat tedious catmn (cf. Aarts

& Korst, “Simulated Annealing.. ”, p. 22) that for each of the intermediate
stationary distributions!):

e o 1) .

if 0¥ €S, thenaTrlf,* <0

. 9 -
ifo¢gs, thenﬁrrfj > 0 for| > I sufficiently large

As Tj;1 < T at each stagk it thus follows that:

>l forot e s
ot <l foro ¢ s andl > 1y

Thus, forl > I1:

-, - gl
| | | |
- 3 3

(2 n)
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Hence, denotingd™ = rél™L):

éo ﬁ(m)_ﬁ(mH)Hl:li ﬁ(|)_ﬁ(|+1)H1
L o
:,ZO f[(l)_f[(|+l>H1+,:%l ﬁ(|)_ﬁ(|+1)H1
<2142 (G;?ng* Gg?ngﬁl))
<2142 < .

This completes the proof, because according to Lemma 8ehtie has the limit
distributiontt*, where

1 Heym _f 0 ifog¢s
T = Jim " = lim 2 “\1s|, ifoes O

| —o0 A

9 Approximate counting

Let Z be an alphabet (without loss of generality= {0,1}) andRC =* x Z* an
NP relation ovel*, i.e.

o for some polynomiap(n), R(x,w) = |w| < p(|X|), where|z| denotes the
length of string z

e the conditionR(x,w) can be tested in polynomial time, for any giveqw)
Well-known examples of NP relations:

e SAT(@,t), wheregis (an encoding of) a Boolean formula ahdVary —
{T,F} is a truth assignment to its variables; relation holdgévaluates to
T undert.

e COL4(G,0), whereG= (V,E) isagraphand:V — {1,...,q} is a can-
didate g-colouring of its nodes; relation holds d is valid for G, i.e. if
(uv)€E = o(u)#o(v)YuveV.

DenoteR(x) = {w € Z*|R(x,w) holds}.
One may consider different computational problems reltiéi
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e existence problergivenx, determine ifR(x) # @
e counting problemgivenx, determineNg(x) = |R(X)]

e sampling problemgivenx, providew € R(x) uniformly at random

A randomised approximation scheme (r&s)the counting problem associated to
Ris a randomised algorith#(x, €) such that for anyx € Z* € > 0:

PH(1—€)Na(X) < AX.€) < (14 EINR(X)) > o,
where the probability is with respect to the random choicaderby the algorithm.
The ras idully polynomial (fpras)f its running time is polynomial irix| and Y/¢.
An almost uniform sampler (auf)r Ris a randomised algorith®(x, 8) such that
for anyx € *,§(x,8) € R(x) anddy (S(x,8),Ur(x)) < 8, whereS(x,5) denotes
(by slight abuse of notation) the distribution of the outptiS(x, ), andUgr(x)
denotes the uniform distribution ovBx). An aus isfully polynomial (fpaus)s
its running time is polynomial ifx| and In1/3.

It can be shown (Jerrum et al. 1986, Sinclair 1993) th& i “self-reducible”,
thenR has an fpras if and only if it has an fpaus.

Self-reducibility ofR means roughly (the exact definition is somewhat more gen-
eral) that there is a small collection of polynomial timedtionsf;,gi,i=1,... Kk,
such that for anx € Z*, |fj(x)| < |x| and

k

RO = [J gi(x R(fi(x)).

i=1

E.g. for the SAT relation SATH) = SAT(@r) U SAT(@=), where@r (o) is the for-
mula obtained fromp by substitutingl (F) for the first variable and simplifying.
Almost all “natural” NP-complete relations are self-reifle.

Let us see concretely, in the case of low-degree graph dotpurow an efficient
fpaus (pages 46-50) can be converted into an efficient fpras.

Given a graptG = (V, E) with maximum node degref < g, denote for brevity

Q(G) = COL4(G), and assume the existence of a fp&(S, d) for g-colourings.
(Actually, the fpaus-construction on pages 46-50 requitese strongly thaf\ <

a/2.)
One possible self-reduction for graph colouring is

Q(G) =9(G,Q(G)),



102 Part Ill. Stochastic Algorithms

whereG' ~ G with one edge (e.g. highest-numbered one) removed, and

(G,0) = o if oisvalid forG
99 =1 1 otherwise
where_L is a “null-value”(SU{_L} = Sfor anyS).

Assuming|E| = m, denoteG = G, G' = Gm_1,...,GM = Gg = (V,@). Now
clearly |Q(Go)| = g", wheren = |V|. Then the quantity we are interested in can
be expressed as:

_ 1Q©@)m|  [2(C)ma|  [QG)]

NE) =10 = 10 Gl [2(Cm2l " [2(G)o] 1
= Pm-Pm-1-+-P1-q", 4
where
_ 12K
P 10l

Now each of the ratios ipx and hence the product (4) can be estimated using
our presumed fpaus to generate a “sufficiently large” nuntbesamples form
eachQ(Gi_1) and seeing how many of those fall alsdGy). Some analysis is
needed to determine the appropriate numbers.

Before going into the analysis, let us note that the sameoaghpr combined with
more complicated samplers, has been used to provide fprasufh important
problems as:

e approximating the volume of a convex body (Dyer, Frieze, ian1991)

e approximating the partition function of a ferromagnetiagsmodel (Jerrum
& Sinclair 1993)

e approximating the permanent of a positive matrix (Jerruimgl&ir & Vigoda
2001)

Let us then complete the analysis of the graph colouringsfgReecall that
IQ(G)| = Pm-Pm-1---p1-",

where each

_ QG

STe (e P
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Now clearly eachQ(Gy) C Q(Gk_1), so thatpx < 1. On the other hand, each
colouringo € Q(Gk_1) \ Q(Gx) must be such that it assigns the same colour to
both endpoints, v of the edgee removed fromGy to obtainGk_1. Letu be the
lower-numbered of the nodes. Thercan be transformed to a valid colouring of
Gk by recolouringu with one of the> q— A > 1 colours free for it. On the other
hand, each colouring i®(Gy) is generated by this process in at most one way.
Thus

[Q(Gk-1) \ Q(GK)| < |Q(GK)I,

1
and sopg > 5.

Assume then without loss of generality that> 1 and 0< € < 1. (Recalle ~
error tolerance for the fpras to be constructed).

LetZ € {0,1} be a random variable obtained by running the presumed frmawus f
Gk_1 and testing whether the resulting colouring is also validGg (— Zx = 1)
or not (— Z = 0). Denotey = E[Z].

By settingd = &; in the fpaus one may ensure that
€ €
- — << —, 5
P g S M= Pt g ®)

and noting the bounds g, that

(1= o) P s (14 ) b (6)

Note also that by (S} > 3.

To decrease the variance of questimate, IerZ|<(l), ... ,Zlﬁs) bes= [74e2m] <
75¢~2m independent copies of variabfg, and let

= 13 )
Zkigi;Zk

be their mean. Thek([Z] = E[Z] = i and

Var(Z) _ s ?-s-Var(Zo) _ s 1) _ s (ut-1) <25t

T K K

We shall take as our estimator f@(G)| the random variabl¥ = q"p - - - pm.
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The variance o¥ can be bounded as:
Var(Y)  Var(Zy---Zm)
E(Y)2  (ba---Hm)?

_ ﬁ ( Var(Zk)>

2\" m 262 2
< 1+g -1 s_[74]és< = Tm
g2 \M
< (tigm)
2/37 x3
<é 1 e — 1_x+2|+3|+
small!
82
=36
Since by Chebyshev’s inequality:
1 Var(Y)

Pr(lY —E(Y)| = AE(Y)) <

Y
Pr( 7

Y_ ) L1
M- Mm | 2 AM1---Hm | < 3238
we obtain, by choosingy = €/3, the bound

A2 E(Y)?

Alw

P((l)ul <Y < (14 )ul---um>>
But from inequality (6) we obtain the bound
(1= ) o pm < b < (125 "pae -
1-5)p1Pm<HrHm< (1+5)p1-+Pm
= (1-3) (1+3)

Putting these two bounds together yields the desired famaditon:

w

Prl(1-g)d'pr- P <Y < (1+€)a"p1- P | = 7.
S—— — 4
2(G) 2(G)
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10 Markov Chain Monte Carlo Simulations

This is a very broad area and would actually merit a full maicti®n of its own.
Maybe later.

In many practical applications of Markov chains, one isties¢éed not just in sam-
pling according to the stationary distribution but also in computing expected
values of various quantities with respect to it:

Enf] = zsf(c)nc, (also denotedf)y)

E.g. one might want to compute the average magnetisatiorspineglass model
at a given inverse temperatusécf. page 62):

ZSM g PR /zB
GIbbS density

The task could be approached by producing many independeryle states
according tat, computingf (o) for each and controlling the estimation error.

However, it is customary to compute the estimates from aeifay a few) long
runs of the chain:

N
f]l~ %k;f(xk(w)), N large

(More precisely, maybe

1 N
o, 2,4

whereNp is an initial “burn-in” time to eliminate systematic effeabf choice of
the initial state.)

En[f] =

For this approach to work properly, the Markov chains mustagh-ergodic” in
the sense that the stationary distribution is sampled pipp&ng almost every
individual path of the chain.

In fact, if the word was not already so overused, we could dediiMarkov chain
m = (X1,X2,...) to beergodic with stationary distributiomt if for any initial
distributionp and for all states € S

lim — z lo =T M-almostsurely

N—o N
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( m a3 i )o,

wherelg is an indicator function for state:

1 if§=0
IG(E):{Q ifE£0

Luckily, all regular (finite) Markov chains are ergodic alsdhis strong sense. In
fact, even more is true:

Theorem 10.1 (Ergodic Theorem for Regular Markov Chains)
Letar = (X1,Xp,...) be aregular Markov chain with state space S, anésf- R
any function. Then for any initial distribution p:

1N
hll|inw Nk;f(xk) =Egn[f] p-almost surely

We do not have all the tools (or the time) to give a completeopad Theo-
rem 10.1, but here are the key components:

Theorem 10.2 (Kolmogorov's Strong Law of Large Numbers)

Let X, X2,... be a sequence of independent identically distributed ramdari-
ables defined on probability spa¢@, 7 ,P), and such that BXy|] = E[|X1]] <
for all k. Then

1
NI|m N(X1+...+XN) =E[X;] P-almost surely

Lemma 10.3 (Regenerative Cycle Lemma / Strong Markov Propéy)

Letar = (Xo,X1,...) be a regular finite Markov chain with state space S. Fix
any state0 € S. TherD is visited on any given sample pathsef infinitely often
(almost surely), and denoting, T3, Ty, ... the successive times of visit@the
sample path segments

{XTk7XTk+l7 s 1XTk+1—l}7 k Z 07

are independent and identically distributed.
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Proof of Theorem 10.1Recall that for any € S

T1
Y IXe=]
n=1

whereEy[-] = E[-|Xo = 0], 11 is the time of first return to 0, anah = E[14].

Given a sample path starting at state 01iet>, ... be the successive return times
to 0, and define

Ho Ho

P 1 1
=2 =""F Lzll[xncll[rpn]} = EEO

n=Tp+1

By Lemma 10.3, th&p’s are independent and identically distributed random-vari
ables. Assumindg > 0 we obtain:

- 3 1]
Eo[zl S 1(0)lxs

n=10€S

cgsf (0) Eo |:n211 I [Xn=0]

Ho Zf(c)m = HoEnf]

By Theorem 10.2 (Strong Law of Large Numbers), then:

I|m Xupr[Uo} MoEn[f] n-almost surely,

i.e.
1 Thi1
lim = z f(Xk) = WoEr[f] n-almost surely. 7)
nﬂmnk—'[ﬁ»l

Define then random variablesgn) as

n

v = 3 lxeo

k=1
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(~ number of returns to O by tim@). Clearlyt, ;) < n < Ty 41 for alln, so that

1 Ty(n) n 1 Tu(n)+1
— f almost surely.
7 & 0 <5 2, 100 <55 3 10%) amostsurely
Since by Lemma 10.3)(n) — o asn — oo, we obtain from equation (7):
Tn+1
n_mv z f(X) = rlmwm z f(Xk) = WoEn[f] almost surely. (8)

However, asymptotlcally also
v(n)—1
N~ Tym = Z} (Ti+1—T;) almost surely,
i=
so by Lemma 10.3 and Theorem 10.2:
n v(n)—1

v ~ v i; (Tiz1—Ti) =E[t1]) = o almost surely.

Thuspgv(n) ~ n, and by combining equations (7) and (8):

n
Amn z f(X) = Ml, O k;f(xk) almost surely
= Eq{f].

The case of generdl: S— R can be handled by treating separately the nonnega-
tive functions

f* =max{f,0} andf~ = max{—f,0}

and summing up the resulting equalities.

Convergence Rates of MCMC Simulation Algorithms

Letar = (Xo,Xy,...) be aregularfinite Markov chain with state sp&ee{1,...,r},
transition probability matri¥, and stationary distributiort Denote:

Ty TG
m-- Tk . -

M= . (i.e. for any distributions, u' M =1").
T T

Thefundamental matrixf chainar is defined as
Z=(1—-P-n)—*
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Proposition 10.4 For aregular chairws , the fundamental matrix Z is well-defined,
and

Z=1+7% (P"-N).

n>1

Proof: It is easy to verify that for alk > 1:
P =nkp=r.

Thus,
i ( ) )n—kpkppn-k
it
—n.

Therefore, withA=P -1,
(=AY +A+AZ+ . A" = | A = 4P T,

and consequently

(I=A) I+ZA”—I|m(+P" n=lI.
n>1
Hence the matrix— A=1— (P—N) is invertible, and
(I—P-M)1=1+S P-M"=I+
nZl nZl

The fundamental matrix has many uses (analogous to the fugrtal matrix of
transient states) in computing expected recurrence titices e

We, however, quote only the one of main interest to us (and thet without its
somewhat technical proof). Given a Markov chain with finite state spac§,
and any functiond,g: S— R, denote:

(f,g)n=En[f(X ]_an)f

Vary(f) = Ey[(f(X) —f)Z]:Eu[f( )= ( Eu[f(X)])2
f
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Theorem 10.5 (Asymptotic variance of Ergodic Estimates)
For a regular chainas , and any function f S— R,

'\I‘iinw%Varu (kglf(xk)> =2(f,Zf)n— (f, (1 + M) f)y

Denote vf,P)

for any initial distribution p.

Proof: E.g. Brémaud 1999, pages 232-234.
Since by Theorem 10.1,

1 N
fo= Q2 100 5 T=Edfl

by Chebyshev’s inequality we see that for @ny 0 and for “largeN":

oo 1 1 v(f,P,m)
Pr(|fN—f\25)<6Var(fN 62N2 <zf > SN

independent of the initial distributigm

Suppose then that the transition probability mafikxasr distinct eigenvalues
1=A1>A2>---> A > —1, with associated left and right eigenvectoss .. ,u
andvy,... v, respectively (normalized so thatvi =1V i). Then?

r r
_ [V Nyl
721)“ ViU; 7n+i;)\i Vil
and so
Z:I—&-Z(P”—I‘I):I-&-i%wuf.
i= i
Thus

VLR = 2(f.26n (.0 +I‘I)f>

= 2(f, f) n—&-222 (f,Vi)n u ) —(f, f)n— (f,Nf)
— _ Ai 1 T,
= (f,(I I'I)f)nJrZiZzl_)\i(f,v,)n(f Ui).

Varn(f (Xo))

2Cf. page 16. Also left eigenvectors are here representedlasia vectors, however.
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For a reversible chairD/2PD~/2 symmetric),u; = Dv; and thereforef Tu; =
(f,vi)n. Applying the decompositio = 3;(f,Vi)nvi we obtain in this case

14
v(f,Pm) = I(f,
LN

Let us then consider the task of designing good “Metropldtes-reversible Markov
chains with given stationary distributionand as good convergence rate as possi-
ble.

To achieve a given stationary distribution the detailed balance conditions re-
quire only that

Vi>,-[|2.

mpj =T;p;, forallstates,jeS 9)
There are potentially an infinite number of transition neesP satisfying condi-
tions (9). Let us focus on solutions of the form

Pij = Gij dtij »
whereQ = () is an irreducibleandidate-generation matrianda;ij € (0,1] are
theacceptance probabilitiefor given tentative state transitions.

W. Hastings (1970) proposed the following general classoéptance probability
matrices guaranteeing the validity of the detailed balawrelitions (9):

L _Si
i = 1+t
where
TG
tj=——.
TG Qji
andsj = s;j; are numbers chosen so that € (0,1], i.e.
0<sj < 1+minftj,ti} Vi, j. (10)

Enforcing equality in condition (10) results in the MetrdipeHastings algorithm

ajj = min{l, T4 }
T40j

(check this!), whereas always choosig= 1 defines the so calleBarker’s al-
gorithnm

TT; Glj
i + THGj
Let us then compare the various Hastings-type MCMC algmsthvith respect to
their asymptotic variance (Theorem 10.5). We quote thefohlg result without
proving it:

Qlj
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Theorem 10.6
Let P= (pij) and P = (pj;) be regular transition matrices over finite state space
S, with the same stationary distribution If p;; > p{j foralli # |, then

v(f,Pm) <v(f,P m)

holds for all functions f S— R.
Proof: E.g. Bremaud page 300.

Corollary 10.7
For a given candidate-generation matrix Q, the Metropdfiastings algorithm
has optimal asymptotic variance in the class of Hastingsaigms.

Proof: Since then;; are probabilities, the upper bound ap given in condition
(10) cannot be exceeded. The Metropolis-Hastings alguritratches the upper
bound.

11 Genetic Algorithms

Genetic algorithms (GA) are a general-purpose “black-laptimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

The method has attracted lots of interest, but its theortilisr&éomplete and the

empirical results somewhat inconclusive. Advantages eftéthnique are that
it is general-purpose, parallelisable, and adapts inonésiig to changing cost
functions (“on-line optimisation”). Disadvantages, oe tither hand include that
GA'’s are typically very slow — thus the technique should bedusith moderation

for simple serial optimisation of a stable, easily evaldatest function.

Some claim that GA's typically require fewer function ewvaions to reach com-
parable results as e.g. simulated annealing. Thus the ohethy be good when
function evaluations are expensive (e.g. require someahphiysical measure-
ment).

11.1 The Basic Algorithm

We consider the so called “simple genetic algorithm”; alsmgnother variations
exist.
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Assume we wish to maximise a cost functiodefined om-bit binary strings:
c:{0,1}" - R.

Other types of domains must be encoded into binary stringgshwis a nontrivial
problem. View each of the candidate solutians {0,1}" as anindividual or
chromosomeAt each stagegeneration t the algorithm maintains population
of individualsp; = (sq, ... ,Sm)-

There are three operations defined on populations:

e selectiono(p) (“survival of the fittest”)
e recombinatiomp(p) (“mating”, “crossover”)

e mutation |{p)

The Simple Genetic Algorithnis then as follows:

function SGA(o, p, W):
p < random initial population;
while p “not converged’do
P —o(p);
P —p(p);
p—H(p’)
end while;
return p (or “fittest individual” in p).
end.

Selection

DenoteQ = {0,1}". The selection operatar: Q™ — Q™ maps populations prob-
abilistically: given an individuas$ € p, the expected number of copiessif 6(p)

is proportional to thditnessof s in p. This is a function of the cost afcompared
to the costs of othes' € p.

Some possible fithess functions are:
o Relativecost(= “canonical GA"):

o9 a9

msgpc(sl)
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e Relativerank:

r(s) 2
f=1——= m~r(s),
aggpr(sl)

wherer (s) is the rank of individuasin a worst-to-best ordering of &l € p.

Once the fitness of individuals has been evaluated, setecéio be performed in
different ways:

e Roulette-wheel selectidfstochastic sampling with replacement”):

— Assign to each individua € p a probability to be selected in propor-
tion to its fitness valud (s). Selectm individuals according to this
distribution.

— Pictorially: Divide a roulette wheel inten sectors of width propor-
tional to f(sy), ..., f(sm). Spin the wheeintimes.

e Remainder stochastic sampling

— For eactse p, select deterministically as many copiesas indicated
by the integer part of (s). After this, perform stochastic sampling on
the fractional parts of thé(s).

— Pictorially: Divide a fixed disk intan sectors of width proportional
to f(s1),...,f(sm). Place an outer wheel around the disk, with
equally-spaced pointers. Spin the outer wheel once.

Recombination

Given a populatiorp, choose two random individuatss' € p. With probability
Po. apply acrossover operatop(s,s’) to produce two new offspring individuals
t,t’ that replaces, s’ in the population. Repeat the operatiop2 times, so that on
average each individual participates once. Denote thédfiect on the popula-
tion asp’ = p(p). (A practical implementation: choo§’§ -mrandom pairs from
p and apply crossover deterministically.) Typicatly~ 0.7...0.9.

Some possible crossover operators are illustrated in Eigur
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11010011001:><i011QO011001
01101011011 11011011011

(a) 1-point

11010011001:><i11101011001
01101011011 01010011011

DROESOR®

(b) 2-point

11010011001><01011011001
01101011011 11011011001

(c) uniform

Figure 1: Typical crossover operators.

Mutation

Given populationp, consider each bit of each individual and flip it with some
small probabilityp,. Denote the total effect on the population pls= H(p).
Typically, p, = 0.001...0.01. It appears that fon-bit strings a good choice is
pu=1/n.

Theoretically mutation is disruptive. Recombination aetestion should take
care of optimisation; mutation is needed only to (re)introel “lost alleles”, al-
ternative values for bits that have the bits that have theesaatue in all current
individuals.

In practice mutation plus selection equals local searchtakitin, even with quite
high values ofy, can be efficient and is often more important than recomiginat

Analysis of GA's: Hyperplane sampling

The notion of hyperplane sampling presents a heuristic ieWow a genetic
algorithm works.

A hyperplane(actually subcube) is a subset@f= {0,1}", where the values of
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some bits are fixed and other are free to vary. A hyperplanetreagpresented by

aschema He {0,1,«}". E.g. the schema 91« x' represents the 3-dimensional
hyperplane (subcube) gD, 1}° where bit 1 is fixed to 0, bit 3 is fixed to 1, and

bits 2, 4, and 5 vary.

An individual s € {0,1}" sampleshyperplaneH, or matcheshe corresponding
schema if the fixed bits dfi match the corresponding bits én BY some abuse
of notation, this situation is denoted as< H”. Note that a given individual gen-
erally samples many hyperplanes simultaneously, e.gviohail '101’ samples
10+’,'1 x 1, etc.

Define theorder of a hyperplanéi as:

o(H) = number of fixed bits irH
=n—dimH.

Theaverage cosof hyperplaneH is then:

c(H) = ﬁs;c(s).

Denoting bym(H, p) the number of individuals in populatigmthat sample hy-
perplaneH, theaverage fitnesef hyperplaneH in populationp is defined as:

f(H,m:ﬁxgwf(sm

A heuristic claim is then that selection drives the searetatds hyperplanes of
higher average cost (quality).

Consider e.g. the cost function and partitiontfinto hyperplanes (in this case,

intervals) of order 3 presented in Figure 2. Here the curpapulation of 21
individuals samples the hyperplanes so that e.g.4608nd '010x x" are sampled
by three individuals each, and '18G’ and '101x %’ by two individuals each.

Hyperplane '01& " has a rather low average fitness in this population, whereas

111« «" has a rather high average fitness.

The result of e.g. roulette wheel selection on this popaoirathight lead to elimi-
nation of some individuals and duplication of others, as@ntéed in Figure 3.

Then, in terms of expected values, one can show that

E[m(H,o(p))] =m(H, p)- f(H, p).
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c(s)

| | | | | | | |
ooo% ' oor | o010 | o1 | 100% | 101+ | 110+ | 1ue | g

Figure 2: A population sampling hyperplanes.

c(s)

| | | | | | | |
ooo% ' oor | o010 | o1 | 100% | 1017 | 110+ | 1uue | g

Figure 3: A sampling population after selection.
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The effect of crossover on schemata
Consider a schema such as

H = %% 11%+x01% Lxx*
—_
AH)=7

and assume that it is represented in the current populayicoimes € H.

If sparticipates in a crossover operation and the crossovet igdocated between
bit positions 3 and 10, then with large probability the offeg are no longer iid.

In this case schentd is said to belisrupted On the other hand, if the crossover
point is elsewhere, then one of the offspring stayd jrandH is retained

Generally, the probability that in 1-point crossover a sehdél = {0,1,+}" is
retained, is (ignoring the possibility of “lucky combinaris”)

. A(H)
Pr(retainH) ~ 1 — ——~,
r(retainH) T
whereA(H) is thedefining lengttof H, i.e. the distance between the first and last
fixed bitinH.

More precisely, iH hasm(H, p) representatives in populatignof total sizem:

Pr(retainH) > 1 — % (1_ m("r:{ p)> .

>

The Schema “Theorem”

The Schema Theorem, proposed by J. Holland (1975), proedesuristic esti-
mate of the changes in representation of a given schéifinram one generation to
the next.

Denote:

m(H,t) =number of individuals in population at generation
that sampleH.

Then:
(i) Effect of selection:

m(H,t") ~ m(H,t)- f(H)
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(i) Effect of recombination:

m(H,t") ~ (1— pp)m(H,t") + pp (m(H,t’) Pr(retainH) +m- Pr(luck))
——

>0

z(l—pMnKHJ®+pMWH¢W<1‘%g%< Eﬂiﬁg>)

i (12 (1Y)

n— m

(i) Effect of mutation:

m(H,t+1) ~ m(H,t") - (1— py)°H)

In summary, then:

!
M. 2) 2 miH - ) (1P 5] (10 ) ) et
n-1 m
The formula leads to so callé8uilding Block Hypothesis! In a genetic search,
short, above-average fitness schemata of low order (“Imgjidiocks”) receive an
exponentially increasing representation in the poputatio

The following criticisms have been expressed as regard$3tieema Theorem”
and the Building Block Hypothesis, however:

e Many of the approximations used in deriving the “Schema Téw®@d im-
plicitly assume that the population is very large. In patae, it is assumed
that all the relevant schemata are well sampled. This islgleat possible
in practice, because there aressible schemata of length

e The result cannot be used to predict the development of thelation for
much more than one generation, because:

— firstly, the long-term development depends on the coeaiubif the
schemata, and the “theorem” considers only one schemalatisy

— secondly, an “exponential growth” cannot in any case coetifor
long in a finite population.
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11.2 Genetic Algorithms as Stochastic Processes

A proper mathematical treatment of GA's would view them aclsastic pro-
cesses. Itis unfortunately very difficult to obtain any miwidl analytical results
in this direction. Here we outline a simple Markov chain miqatesented by Vose
& Liepins (1991) and Rudolph (1994).

Consider the “canonical GA', i.e. the Simple Genetic Algfom using the relative
cost fitness function and standard proportional (“routettesel”) selection, in the
form:

p < random initial population;

p < o(p); (selection)

while p “not converged’do
p —p(p); (recombination)
P’ — u(p) (mutation)
p—o(p’); (selection)

end while.

Encode a population efindividuals, each an-bit string, as an integer (in binary
representation)
pe{0,1}™={0,1,...,2™—1}.
N—— ——
Zomn

Then the CGA can be modeled as a Markov chain on state shaeewith the
transitions probability matri® = CMS where

C s the recombination (“crossover”) transition probalilibatrix
M is the mutation transition probability matrix
S isthe selection transition probability matrix

A stochastic matriP = (pjj) is:
(i) positive if pjj > 0 for alli, j;
(i) primitive, if PXis positive for somé > 0;

(iii) reducible if it can be converted to the form

= co

= [R7]
whereC andT are square matrices, by applying the same permutation to
the rows and the columns;
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(iv) irreducible if it is not reducible.

The interpretation of these definitions is that primitivetrites correspond to the
irreducible and aperiodic Markov chains defined before. redaicible matrix, the

upper rows correspond to a “closed” or “absorbing” classates, the lower rows
to “transient” states. Note that a positive matrix is triljigrimitive.

Theorem 11.1
Let P be a primitive stochastic matrix. Then the sequerfaeoRverges as k-
to a stochastic matrix Pwhich has the form

pOO
Pm = E b
pOO
where (¥ is a stochastic vector with all components positive. (Thatorep”
represents the stationary distribution of the chain.)

Theorem 11.2
Let P be a reducible stochastic matrix of the form

co

= [w1]
where C is primitive, and T does not contain an irreduciblbreatrix. Then the
sequence Pconverges as k- « to a stochastic matrix P of the form
pe 0
PP= i
p* 0
where [ is a stochastic vector with all components positive.

Lemma 11.3
The transition probability matrix B- CMS of the “canonical genetic algorithm”,
with mutation probabilityd < p, < 1is positive and hence primitive.

Proof: DenoteC = (ci),M = (my),S= (5j). ThenP = (pjj), where
pij = ;Cikmdsly

Observe:
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(i) Vi3ki:cy >0 (Becaus€ is stochastie=> Vi : 3Gk = 1)

(i) M is positive: denot& = mn, d(k,l) = Hamming distance between popu-
lationsk,|. Then:

d(k,| _
ma = pi’ - (1—pyNUkD > 0.

(iii) V j:sjj > 0 (Because with nonzero probability, selection does nohgha
the population.)

Thus:

pij = %kaxlslj > CilgMjSj; > 0. o

Theorem 11.4
The CGA with mutation probabilit§ < p, < 1 converges to a stationary distri-
bution of populations where the probability of every popigliais nonzero.

Proof: Follows from Theorem 11.1 and Lemma 11:3.

Assume the CGA is defined so as to maximize the funatiof0, 1} — R. Denote
c*=max{c(i) | i € {0,1}"},

and for a population= (iy,... ,im):

c'(1) =max{c(ix) | k=1,...,m}.

Denote byi) the population of the CGA at time The algorithmconverges to
global optimunif

lim Pric’(iV) =¢*) = 1.

Note that the simulated annealing algorithm convergesdbajloptimum in ex-
actly this sense.

Corollary 11.5
If nonoptimal solutions with respect to the cost functiorxist(i.e. if dj) < c*
for some je {0,1}"), then the CGA does not converge to the global optimum.
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Proof: Let | = (j, j,...,]) be a population such that(j) < ¢* By Theorem 11.2,

tIin;Pr(f(‘) = =¢e>0,
and thus

lim Pric’(iV)=c)<1-e<1lp

Theorem 11.6

On the other hand, if the best solution found is always keghépopulation
(“elitist” selection) and not mutated, then the CGA doesange to the global
optimum.

Proof: Simple corollary to Theorem 11.2: the transition prob&piatrix P re-
duces in this case to the form

co
althl

where the upper rows correspond to the unique closed clgsspoflations con-
taining a globally optimal solutiony

Note that for practical purposes, such (non)convergenseltseare of course
largely irrelevant. The important (but difficult) questsare:

e How fast does the CGA with elitist selection converge towaad optimal
solution?

e Does the CGA without elitist selection converge to a popoifatvith mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models
“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial time &verage” or
“with high probability” for reasonable-looking distribons of problem instances.
E.g. Satisfiability in timeo (n?) (Goldberg et al. 1982), Graph Colouring in time
o (n?) (Grimmett & McDiarmid 1975, Turner 1984).



124 Part Ill. Stochastic Algorithms

Where, then, are the (presumably) exponentially hardmessof these problems

located? Could one tell ahead of time whether a given instésmdikely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), étaann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell,ns&h & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logerasveland] (DP[LL])

procedure on randomly generated 3-cnf Boolean formulas.
E.g. satisfiable 3-cnf formula

(X1 VX2 VX3) A (X1 VX2V Xa)
The expressions in parenthesis el@isesand thex's areliterals.
Distribution of test formulas:
e number of variables

e m= anrandomly generated clauses of 3 literals; & < 8

TThe Davis-Putnam[-Logemann-Loveland] (DP[LL]) methad festing the sat-
isfiability of a set of clausex on the variable sét:

1. If Z is empty, return “satisfiable”.
2. If Z contains an empty clause, return “unsatisfiable”.

3. If Z contains a unit clause = x*, assign tox a value which satisfies,
simplify the remaining clauses correspondingly, and c&LD recursively.

4. Otherwise select an unassigned V, assignx < 1, simplify Z, and call
DPLL recursively. If this call returns “satisfiable”, theetarn “satisfiable”;
else assign < 0, simplify Z, and call DPLL recursively again.

For each set of 500 formulas, Mitcell et al. plotted the mediamber of DPLL
calls required for solution.

The results of this experiment are illustrated in Figuread & Discussion:
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4000 T

2(0-variable formulas -©—
4()-variable formulas —+—
50-varizble formulas =

3500 -

$000

2500

Number
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o 2000
callz

1500 -

1000

§00 -
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2 3 4 & [} i 8
Ratio of clauses—to—variablas

Figure 4: Number of DPLL calls required to determine satisfiiy (Mitchell et
al. 1992).
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7000 - §0%-satisfiable point - - |

Number

oF 6000

DP

or. 5000

4000
3000
3000
1000

Ratio of clauzez-to—variablaz

Figure 5: Number of required DPLL calls according to typearfifiula (Mitchell
etal. 1992).
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Thrmaholda £ox Z3AT, 32AT, 4387, 33AT, and S3AT
——T — T

ol

2
o

— . T
* Probability of being eatisfiable &— |
: 50%satisfiable point. -

Probability

uuE ey iy

[T

Fraction of wzatizfiable formulaz
T

00 I 1 & 1
2 3 4 H 6 T 8
Ratio of clanzes-to-variablas

=0 €0

Figure 6: Probability of satisfiability for random 3-cnf foulas (Mitchell et al. ) . N . .
1992). Figure 7: Probability of satisfiability for randokicnf formulas (Kirkpatrick &
Selman 1994).

o Aclear peak in running times (number of DPLL calls) near thpwhere ) ) )
50% of formulas are satisfiable. e variablesx ~ spins with states-1

o The “50% satisfiable” point or “satisfiability threshold"esas to be located o clauses: ~ k-wise interactions between spins
at roughlya = 4.25 for largen.

truth assignment ~ state of spin system
e The peak seems to be caused by relatively short unsatisf@bielas.

HamiltonianH (o) ~ number of clauses unsatisfied by
A fundamental question is whether the connection of theingitime peak and
the satisfiability threshold a characteristic of the DPLgaalthm, or a (more or
less) algorithm independent “universal” feature?

The “50% satisfiable” point or “satisfiability threshold”rf@-SAT seems to be
located atx ~ 4.25 for largen.

ac ~ critical “interaction density” point for “phase transitibfrom “satis-
fiable phase” to “unsatisfiable phase”

Estimates of¢ for various values ok via “annealing approximation”, “replica
theory”, and observation:

Oann  Orep Oobs
241 1.38 1.0
519 425 4.1%0.03
10.74 9.58 9.7 0.05
21.83 20.6 20.20.1
4401 428 43.20.2

12.2 Statistical Mechanics ok-SAT (“1st-Order Analysis”)

Kirkpatrick & Selman (Science 1994)

Similar experiments as above fR#SAT, k = 2,...,6, 10000 formulas per data
point. Results illustrated in Figure 7. Further observagio

oA WwWNX

e The “satisfiability thresholdt; shifts quickly to larger values af for in-

creasingc The “annealing approximation” means simply assuming tmatifferent clauses

are satisfied independently. This leads to the followingreste:
o For fixedk, the value ofi. drifths slowly to smaller values for increasing
e The probability that a given clauseis satisfied by a random: py=1—
A statistical mechanics model ofkecnf formula: 27K,
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e The probability that a random satisfies alm = an clauses assuming inde-
pendencepy".

o Total number of satisfying assignmert2"pi" £ S(a).

e For largen, §(a) falls rapidly from 2' tp 0 near a critical valuer = a.
Where iso.?

¢ One approach: solve f&(a) = 1.

K@) =1« 2p=1

! N2 2 g2k

= 0=— = — ~ — =
log, px In(1—2-%) 2k

Itis in fact known that:

e A sharp satisfiability threshold, exists for allk > 2 (Friedgut 1999).

e Fork=2,0.; =1 (Goerdt 1982, Chvatal & Reed 1982). Note that 2-SAT
P.

e Fork =3, 314 < ac < 4.51 (lower bound due to Achlioptas 2000, upper
bound to Dubois et al. 1999).

e Current best empirical estimate fer= 3: o¢ ~ 4.27 (Braunstein et al.
2002).

12.3 Local Search Methods for 3-SAT

Local search methods (e.g. simulated annealing, geneicidims) can be used
for finding (with high probability) satisfying truth assigrents to randomly gen-
erated 3-cnf formulas in the satisfiable phas¢(= a < ac).

Consider first a general objective functi@n= E(x) to be minimised. Then the
basic local search scheme is:

e Start with some randomly chosen feasible solutieaxo.

o If value of E(x) is not “good enough”, search for some “neighboxrdf x
that satisfie€(x) < E(x). If such anx’ is found, sek — x’ and repeat.

e |f noimproving neighbour is found, then either restart avmandomx = xp
or relax the neighbourhood condition [algorithm-deperien
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In the setting of the 3-SAT problem, the objective functioé minimised i€ =
Er (s) = the number of unsatisfied clauses in formilander truth assignmest
Whena < a¢, an assignmerx satisfyingE(s) = 0 exists with high probability,
and local search techniques are surprisingly powerful glifig such assignments.

The first systematically tested algorithm of this type waesftiilowing procedure
GSAT by (Selman et al. 1992):

GSAT(F):
s = initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then smallest increase);
- flip x.

An improvement to GSAT is to augment it with a fractignof random walk
moves, leading to algorithm NoisyGSAT (Selman et al. 1996):

Noi syGSAT(F, p):
s =initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- with probability p, pick a variable x
uniformy at randomand flip it;
- with probability (1-p), do basic GSAT nove:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then smallest increase);
- flip x.

A subtle butimportant change to NoisyGSAT idoausthe search on the presently
unsatisfied clauses. This leads to the current “industrydstial” WalkSAT algo-
rithm (Selman et al. 1996):

Vil kKSAT(F, p):
s =initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a randomunsatisfied clause Cin F;
- if some variables in Ccan be flipped w thout
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breaking any presently satisfied clauses,
then pick one such variable x at random el se:
- with probability p, pick a variable x
in Cat random
- with probability (1-p), pick an x in C
that breaks a mniml nunber of presently
satisfied clauses;
- flip x.

The focusing seems to be important: in the (somewhat unsgsie) experiments
performed by Selman et al. (1996), WalkSAT outperforms MBISAT by several
orders of magnitude.

Also other local search techniques can be applied to thefisddiity problem.
Good results have been obtained e.g. with the following Retm-Record Travel
(RRT) method first introduced in the context of the TSP prob{Bueck 1993):

RRT(E, d):
s = initial feasible solution;
s* = 5; B = E(s);
whil e moves < max_moves do
if sisaglobal min of Ethen output s & halt,
el se:
pi ck a random nei ghbour s’ of s;
if E(s’) <= E* +dthenlet s =5s";
if E(s') < E* then:
s* =s'; E* = E(s").

In applying RRT to SAT, one chooses agé&ifs) = number of clauses unsatisfied
by truth assignmers, together with single-variable flip neighbourhoods. Impos
ing thefocusingheuristic of always selecting the flipped variables fromatissied
clauses (precisely: one unsatisfied clause is chosen abtmgrahd from there a
variable at random) leads to the “focused RRT” (FRRT) altyomi for 3-SAT,
which is quite competitive with WalkSAT (Seitz & Orponen &)0

12.4 Statistical Mechanics oK-SAT (“Replica Analysis”)

The analyses in this area are rather technical, so we preseésbme basic ideas.

Consider again the statistical mechanics modé& 8AT formulas discusses on p.
126. l.e. we consider the ensemble of randeamf formulas withn variables and
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m= an clauses. The Boolean-valued variabteare mapped to binary-state spins
asx; € {trug false} — spin§ € {+1,—1}.

A formula consists of a set of claus€srepresented in terms of an “interaction
matrix” C = (Gjj):

-1, if G includesx

+1, if G includesx;
GCi=
0, otherwise

Thus,

_iCnS =-K

if and only if all the literals in claus€; are “wrong”, i.e. the clause is unsatisfied
by truth assignment (spin stat8}= (Sq,...,Sy).

We consider the Hamiltonian function

m n
E[SCl=53d (ZlCnS + K) = number of clauses i6 unsatisfied bys,
= \i€

1, ifu=0
o(u) = {O, otherwise

The ground state potential (minimum number of unsatisfiads#s) of a given
systemC is E*[C] = minsE[S,C|. For randomly generate@, Pr(E*[C] = 0)with
high probability whena is small, and we would like to approximate the value
o = a¢(K) where this property ceases to hold.

This is however a very difficult problem, so we approach iiriectly by consid-
ering rather the average &f[C] with respect tcC, denotedEgs = E*[C]. (Such
averages with respect to system parameters are called ¢hheéraverages”, as
opposed to the more usual “thermal averages” computed w@pect to system
states.)

For largen, the distribution of£*[C] is highly concentrated arouritgs= Egs(0, K).
(E* is said to be “self-averaging”.) In particular:

Egs ~ 0in the sat. phas@ < a¢(K)),
Egs > 0in the unsat. phasge > a¢(K)).

Thus, we use the behaviour B§s as a guide to determining the valueonf
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Itis known that
Ecs= —TInZ7[C]+ 0 (T?)
asT — 0, where
Zr[C] = ZEXP(*E[SC}/T)-
(This follows by averaging from the fundamental thermodyi@aformulaF =
E—TS=—kTInZ (p. 60).)

The important, but complicated quantityZ can be estimated using the so called
“replica method”.

Consider the Taylor expansion &Y as a function of) for smallv:
2V =e""2—14vInZ+0(V?)

Thus, for a fixedZ > 0:

2V -1
InZ = lim .
v—0 V

Applying this to InZt [C] and averaging ovet yields:

Egs=-T 5@0% (zT v — 1) +0(T?) (11)

asT — 0.
Now assume that the “small is in fact an integer. Then:

Zr[CP = <geXP(E[SC]/T)>

. g,._,;exp(riE[S,C]/T)>

Thus we have transformed the problem of compuﬂ_);\go the consideration of
interconnected “replicas” of the original system.

This modified structure can further be viewed as a singleegystonsisting of
n vector-valued sping; € {+1,—1}",i = 1,...,n, with (non-random) potential
function

Eet§[01,...,0n =—TIn [exp( iE[S,C]/T)] .
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One can easily check that with this choice:

=z > exp(—Eer[{S}]/T).

{ai}
This partition function may in some cases be so concenttatdor largen:
=2 e ") 1 nfr(v),

wherefr (v) is some nonlinear function witfir (0) = 0.
Plugging this estimate in formula (11) yields

Eos~ —T lim — T _ 4 (0),
v—0 \Y

The replica method has been partially mathematically eaidid, i.e. the requisite
“analytic continuation” from integer to real is justified under some conditions,
although not generally.

From an application point of view, approximating the funatift (v) is the diffi-
cult part of the technique.
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