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Theorem 10.6
Let P=(pjj) and P = (pi’j) be regular transition matrices over finite state space
S, with the same stationary distribution If pj; > pi’j foralli # j, then

v(f,P ) <v(f,P’,m

holds for all functions £ S— R.
Proof: E.g. Brémaud page 300,

Corollary 10.7
For a given candidate-generation matrix Q, the Metropddiastings algorithm
has optimal asymptotic variance in the class of Hastingsialgms.

Proof: Since theaj; are probabilities, the upper bound gp given in condition
(10) cannot be exceeded. The Metropolis-Hastings alguaritiatches the upper
bound.;

11 Genetic Algorithms

Genetic algorithms (GA) are a general-purpose “black-taptimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

The method has attracted lots of interest, but its theorgilisrcomplete and the

empirical results somewhat inconclusive. Advantages eftéthnique are that
it is general-purpose, parallelisable, and adapts inangatlg to changing cost
functions (“on-line optimisation”). Disadvantages, oe tither hand include that
GA's are typically very slow — thus the technique should bedusith moderation

for simple serial optimisation of a stable, easily evaldatest function.

Some claim that GA's typically require fewer function ewations to reach com-
parable results as e.g. simulated annealing. Thus the chetlhy be good when
function evaluations are expensive (e.g. require someahphiysical measure-
ment).

11.1 The Basic Algorithm

We consider the so called “simple genetic algorithm”; alsmgnother variations
exist.



11. Genetic Algorithms 113

Assume we wish to maximise a cost functiodefined om-bit binary strings:
c:{0,1}" - R.

Other types of domains must be encoded into binary stringgshws a nontrivial
problem. View each of the candidate solutians {0,1}" as anindividual or
chromosomeAt each stagegeneration t the algorithm maintains population
of individualsp; = (s1,...,Sm).

There are three operations defined on populations:

e selectiono(p) (“survival of the fittest”)

e recombinatiorp(p) (“mating”, “crossover”)

e mutation |{p)

The Simple Genetic Algorithns then as follows:

function SGA(o, p, W):
p < random initial population;
while p “not convergeddo
P —a(p);
P —p(p);
p— u(p’)
end while;
return p (or “fittest individual” in p).
end.

Selection

DenoteQ = {0, 1}". The selection operatar: Q™ — Q™ maps populations prob-
abilistically: given an individuas € p, the expected number of copiessh o(p)

is proportional to thditnessof s in p. This is a function of the cost afcompared
to the costs of othes' < p.

Some possible fitness functions are:

¢ Relativecost(=- “canonical GA"):

f(S) — 1 C(S) é C(S)‘
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o Relativerank

r(s) 2
SrE) mi1 "

f(s) = 1
ms’ep

wherer (s) is the rank of individua$in a worst-to-best ordering of &l € p.

Once the fitness of individuals has been evaluated, sehectin be performed in
different ways:

¢ Roulette-wheel selectidtstochastic sampling with replacement”):

— Assign to each individua € p a probability to be selected in propor-
tion to its fithess valud (s). Selectm individuals according to this
distribution.

— Pictorially: Divide a roulette wheel intan sectors of width propor-
tional to f(s1),..., f(Sm). Spin the wheemtimes.

e Remainder stochastic sampling

— For eacls e p, select deterministically as many copiesas indicated
by the integer part of (s). After this, perform stochastic sampling on
the fractional parts of thé(s).

— Pictorially: Divide a fixed disk intan sectors of width proportional
to f(s1),...,f(sm). Place an outer wheel around the disk, with
equally-spaced pointers. Spin the outer wheel once.

Recombination

Given a populatiorp, choose two random individuasss' € p. With probability
Pp, apply acrossover operatop(s,s’) to produce two new offspring individuals
t,t’ that replaces, s’ in the population. Repeat the operatiop2 times, so that on
average each individual participates once. Denote thédfiect on the popula-
tion asp’ = p(p). (A practical implementation: choo§’§ -m random pairs from
p and apply crossover deterministically.) Typicafly ~ 0.7...0.9.

Some possible crossover operators are illustrated in &igur
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11010011001><01100011001
01101011011 11011011011
(a) 1-point
11010011001><11101011001
01101011011 01010011011

O 0O

(b) 2-point
11010011001><01011011001

011010110112 11011011001
(c) uniform

Figure 1: Typical crossover operators.

Mutation

Given populationp, consider each bit of each individual and flip it with some
small probabilityp,. Denote the total effect on the population pls= p(p).
Typically, py = 0.001...0.01. It appears that fon-bit strings a good choice is
Pu=1/n.

Theoretically mutation is disruptive. Recombination ametestion should take
care of optimisation; mutation is needed only to (re)introel “lost alleles”, al-
ternative values for bits that have the bits that have theesaatue in all current
individuals.

In practice mutation plus selection equals local searchtaltan, even with quite
high values ofy, can be efficient and is often more important than recomtzinat

Analysis of GA's: Hyperplane sampling

The notion of hyperplane sampling presents a heuristic \wéWwow a genetic
algorithm works.

A hyperplane(actually subcube) is a subset@f= {0,1}", where the values of
some bits are fixed and other are free to vary. A hyperplanebeagpresented by
aschema He {0,1,%}". E.g. the schema 91« «’ represents the 3-dimensional
hyperplane (subcube) ¢D, 1}° where bit 1 is fixed to 0, bit 3 is fixed to 1, and
bits 2, 4, and 5 vary.
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c(s)

| | | | | | | |
000% | 001 | 010% | o011* | 100% | 101% | 110% | 111% | o

Figure 2: A population sampling hyperplanes.

An individual s € {0,1}" sampleshyperplaneH, or matcheshe corresponding
schema if the fixed bits di match the corresponding bits én BY some abuse
of notation, this situation is denoted as< H”. Note that a given individual gen-
erally samples many hyperplanes simultaneously, e.gvithekl '101’ samples
"10+’,'1 x1’, etc.

Define theorder of a hyperplandd as:

o(H) = number of fixed bits irH
=n—dimH.

Theaverage cosbf hyperplaneH is then:

c(H) = 2”‘7](;('4)3;(:(3)'

Denoting bym(H, p) the number of individuals in populatigmthat sample hy-
perplaneH, theaverage fitnesef hyperplaneH in populationp is defined as:

1
D) ey P

A heuristic claim is then that selection drives the searevatds hyperplanes of
higher average cost (quality).

f(H7p):

Consider e.g. the cost function and partition»into hyperplanes (in this case,
intervals) of order 3 presented in Figure 2. Here the curpapulation of 21
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c(s)

| | | | | | | |
000% | 001 | 010% | 011* | 100% | 101% | 110% @ 111% | o

Figure 3: A sampling population after selection.

individuals samples the hyperplanes so that e.g.G0@nd '010x «’ are sampled

by three individuals each, and '18&’ and '101x «’ by two individuals each.
Hyperplane '01& «’ has a rather low average fitness in this population, whereas
111« x” has a rather high average fitness.

The result of e.g. roulette wheel selection on this poporatnight lead to elimi-
nation of some individuals and duplication of others, as@néed in Figure 3.

Then, in terms of expected values, one can show that

E[m(H,a(p))]=m(H,p)- f(H,p).

The effect of crossover on schemata
Consider a schema such as

H=%%11++01x1xx
—_—
A(H)=7

and assume that it is represented in the current populayicoimes € H.

If sparticipates in a crossover operation and the crossovet igdocated between
bit positions 3 and 10, then with large probability the offsg are no longer if.

In this case schentd is said to bedisrupted On the other hand, if the crossover
point is elsewhere, then one of the offspring stayl jrandH is retained

Generally, the probability that in 1-point crossover a scadéd = {0,1,%}" is
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retained, is (ignoring the possibility of “lucky combinaris”)

H ( )
Pr(retainH) ~ 1 — ——
r(retainH) 1

whereA(H) is thedefining lengthof H, i.e. the distance between the first and last
fixed bitinH.
More precisely, iH hasm(H, p) representatives in populatignof total sizem:

Pr(retainH) > 1— ﬁ(_Hi <1_ m("r:; p)) _

The Schema “Theorem”

The Schema Theorem, proposed by J. Holland (1975), proad#suristic esti-
mate of the changes in representation of a given sch¢ifin@am one generation to
the next.

Denote:

m(H,t) =number of individuals in population at generation
that sampleH.

Then:

(i) Effect of selection:

m(H,t") ~ m(H,t)- f(H)

(if) Effect of recombination:

m(H,t") ~ (1— pp)m(H,t") + pp [ m(H,t") Pr(retainH) + m- Pr(luck))

—
> (1— pp)M(H,t') + pom(H, t) ( —~ % (1_ m(:t/)))
— m(H,t) (1— ppﬁ(_Hi <1_ m“:n’t/)))

(iii) Effect of mutation:

m(H,t+1) ~ m(H,t") - (1— py)°H)



11. Genetic Algorithms 119

In summary, then:

m(H,t+1) > m(H,t)- f(H)- <1— ppﬁ(m (1— m(':n’t/>)) - (1—pp)°H).

-1

The formula leads to so calléBuilding Block Hypothesis! In a genetic search,
short, above-average fithess schemata of low order (“mgldiocks”) receive an
exponentially increasing representation in the poputatio

The following criticisms have been expressed as regardsSitizema Theorem”
and the Building Block Hypothesis, however:

e Many of the approximations used in deriving the “Schema Té@d im-
plicitly assume that the population is very large. In pate, it is assumed
that all the relevant schemata are well sampled. This islgleat possible
in practice, because there are@ssible schemata of length

e The result cannot be used to predict the development of thelaton for
much more than one generation, because:

— firstly, the long-term development depends on the coevaiubf the
schemata, and the “theorem” considers only one schemalati®o

— secondly, an “exponential growth” cannot in any case caomtifor
long in a finite population.

11.2 Genetic Algorithms as Stochastic Processes

A proper mathematical treatment of GA's would view them axcksastic pro-
cesses. It is unfortunately very difficult to obtain any mol analytical results
in this direction. Here we outline a simple Markov chain miq@esented by Vose
& Liepins (1991) and Rudolph (1994).

Consider the “canonical GA’, i.e. the Simple Genetic Algom using the relative
cost fitness function and standard proportional (“routetteel”) selection, in the
form:

p <— random initial population;

p— o(p); (selection)
while p “not converged'do
P —p(p); (recombination)
p’ —up) (mutation)
p—o(p’); (selection)

end while.
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Encode a population ahindividuals, each an-bit string, as an integer (in binary
representation)

pe{0,1}"={0,1,...,2""-1}.

-~

Zomn

Then the CGA can be modeled as a Markov chain on state $paeewith the
transitions probability matrife = CMS where

C isthe recombination (“crossover”) transition probayilmatrix
M is the mutation transition probability matrix
S isthe selection transition probability matrix

A stochastic matri® = (pjj) is:
(1) positive if pjj > 0 for alli, j;
(i) primitive, if PKis positive for somd > 0;

(i) reducible if it can be converted to the form

~ (O0)

=R
whereC andT are square matrices, by applying the same permutation to
the rows and the columns;

(iv) irreducible if it is not reducible.

The interpretation of these definitions is that primitivetrits correspond to the
irreducible and aperiodic Markov chains defined before. riedaicible matrix, the

upper rows correspond to a “closed” or “absorbing” clasgates, the lower rows
to “transient” states. Note that a positive matrix is triljigorimitive.

Theorem 11.1
Let P be a primitive stochastic matrix. Then the sequerfoeoRverges as k-
to a stochastic matrix P which has the form

PP=1 11,
pOO
where [F° is a stochastic vector with all components positive. (Thetorep™
represents the stationary distribution of the chain.)



11. Genetic Algorithms 121

Theorem 11.2
Let P be a reducible stochastic matrix of the form

CO
st
where C is primitive, and T does not contain an irreduciblbreatrix. Then the
sequence ©converges as k> « to a stochastic matrix ® of the form
p* 0
POO — . .

p 0
where 7 is a stochastic vector with all components positive.

Lemma 11.3
The transition probability matrix - CMS of the “canonical genetic algorithm”,
with mutation probabilityd < p, < 1is positive and hence primitive.

Proof: DenoteC = (Cix),M = (my),S= (). ThenP = (pjj), where
pij = ;Cikmdsly
Observe:

(i) Vidki:cy >0 (Becaus€ is stochastics- Vi : yCx = 1)

(i) M is positive: denot®& = mn, d(k,I) = Hamming distance between popu-
lationsk, . Then:

d(k|l _
my = pu( : ).(1_ pu)N dkl) < .

(i) ¥ j:sjj > 0 (Because with nonzero probability, selection does nohgba
the population.)

Thus:
pij = ;Cikrndslj > Cik;MjSjj > 0. o
Theorem 11.4

The CGA with mutation probabilit§ < p, < 1 converges to a stationary distri-
bution of populations where the probability of every popiglais nonzero.
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Proof: Follows from Theorem 11.1 and Lemma 11:3.
Assume the CGA is defined so as to maximize the funatiof0,1} — R. Denote

c" =max{c(i) | i € {0,1}"},

and for a populatioﬁ: (i1,...,im):

A

c' (i) =max{c(ix) | k=1,...,m}.

Denote byi) the population of the CGA at timee The algorithmconverges to
global optimumif

lim Pr(c' (i) =c*) = 1.

Note that the simulated annealing algorithm convergesdbajloptimum in ex-
actly this sense.

Corollary 11.5
If nonoptimal solutions with respect to the cost functiorxiste(i.e. if j) < c*
for some je {0,1}"), then the CGA does not converge to the global optimum.

A

Proof: Let | = (j,],...,]) be a population such that(]) < ¢* By Theorem 11.2,

A~

lim PriV =) =e>0,
and thus

lim Pric' (i) =c")<1-e<1.g

Theorem 11.6

On the other hand, if the best solution found is always keghénpopulation
(“elitist” selection) and not mutated, then the CGA does\eenge to the global
optimum.

Proof: Simple corollary to Theorem 11.2: the transition prob&pitatrix P re-
duces in this case to the form

CoO
=[x 7]
where the upper rows correspond to the unique closed clgsspaflations con-

taining a globally optimal solutiony

Note that for practical purposes, such (non)convergenselteeare of course
largely irrelevant. The important (but difficult) questgare:
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e How fast does the CGA with elitist selection converge towaad optimal
solution?

e Does the CGA without elitist selection converge to a popoitatvith mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models
“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial tiome &verage” or
“with high probability” for reasonable-looking distribons of problem instances.
E.g. Satisfiability in timeO(n?) (Goldberg et al. 1982), Graph Colouring in time
O(n?) (Grimmett & McDiarmid 1975, Turner 1984).

Where, then, are the (presumably) exponentially hard mestsof these problems
located? Could one tell ahead of time whether a given instasdikely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), ¢taann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell,ns&h & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logerawveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.qg. satisfiable 3-cnf formula
(X1 VX2V X3) A (X1 VX2V Xg)

The expressions in parenthesis el@isesand thex's areliterals.
Distribution of test formulas:

e number of variables

e m= anrandomly generated clauses of 3 literals; & < 8



