
112 Part III. Stochastic Algorithms

Theorem 10.6
Let P= (pi j) and P′ = (p′i j) be regular transition matrices over finite state space
S, with the same stationary distributionπ. If pi j ≥ p′i j for all i 6= j, then

v(f ,P,π)≤ v(f ,P′,π)

holds for all functions f: S→ R.

Proof: E.g. Brémaud page 300.�

Corollary 10.7
For a given candidate-generation matrix Q, the Metropolis-Hastings algorithm
has optimal asymptotic variance in the class of Hastings algorithms.

Proof: Since theαi j are probabilities, the upper bound onsi j given in condition
(10) cannot be exceeded. The Metropolis-Hastings algorithm matches the upper
bound.�

11 Genetic Algorithms

Genetic algorithms (GA) are a general-purpose “black-box”optimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

The method has attracted lots of interest, but its theory is still incomplete and the
empirical results somewhat inconclusive. Advantages of the technique are that
it is general-purpose, parallelisable, and adapts incrementally to changing cost
functions (“on-line optimisation”). Disadvantages, on the other hand include that
GA’s are typically very slow – thus the technique should be used with moderation
for simple serial optimisation of a stable, easily evaluated cost function.

Some claim that GA’s typically require fewer function evaluations to reach com-
parable results as e.g. simulated annealing. Thus the method may be good when
function evaluations are expensive (e.g. require some acutal physical measure-
ment).

11.1 The Basic Algorithm

We consider the so called “simple genetic algorithm”; also many other variations
exist.

11. Genetic Algorithms 113

Assume we wish to maximise a cost functionc defined onn-bit binary strings:

c : {0,1}n→R.

Other types of domains must be encoded into binary strings, which is a nontrivial
problem. View each of the candidate solutionss∈ {0,1}n as anindividual or
chromosome. At each stage (generation) t the algorithm maintains apopulation
of individualspt = (s1, . . . ,sm).

There are three operations defined on populations:

• selectionσ(p) (“survival of the fittest”)

• recombinationρ(p) (“mating”, “crossover”)

• mutation µ(p)

TheSimple Genetic Algorithmis then as follows:

function SGA(σ, ρ, µ):
p← random initial population;
while p “not converged”do

p′← σ(p);
p′′← ρ(p′);
p← µ(p′′)

end while;
return p (or “fittest individual” in p).

end.

Selection

DenoteΩ = {0,1}n. The selection operatorσ : Ωm→Ωm maps populations prob-
abilistically: given an individuals∈ p, the expected number of copies ofs in σ(p)
is proportional to thefitnessof s in p. This is a function of the cost ofscompared
to the costs of others′ ∈ p.

Some possible fitness functions are:

• Relativecost(⇒ “canonical GA”):

f (s) =
c(s)

1
m ∑

s′∈p

c(s′)
,

c(s)
c̄

.

114 Part III. Stochastic Algorithms

• Relativerank:

f (s) =
r(s)

1
m ∑

s′∈p

r(s′)
=

2
m+1

· r(s),

wherer(s) is the rank of individuals in a worst-to-best ordering of alls′ ∈ p.

Once the fitness of individuals has been evaluated, selection can be performed in
different ways:

• Roulette-wheel selection(“stochastic sampling with replacement”):

– Assign to each individuals∈ p a probability to be selected in propor-
tion to its fitness valuef (s). Selectm individuals according to this
distribution.

– Pictorially: Divide a roulette wheel intom sectors of width propor-
tional to f (s1), . . . , f (sm). Spin the wheelm times.

• Remainder stochastic sampling:

– For eachs∈ p, select deterministically as many copies ofsas indicated
by the integer part off (s). After this, perform stochastic sampling on
the fractional parts of thef (s).

– Pictorially: Divide a fixed disk intom sectors of width proportional
to f (s1), . . . , f (sm). Place an outer wheel around the disk, withm
equally-spaced pointers. Spin the outer wheel once.

Recombination

Given a populationp, choose two random individualss,s′ ∈ p. With probability
pρ, apply acrossover operatorρ(s,s′) to produce two new offspring individuals
t, t ′ that replaces,s′ in the population. Repeat the operationm/2 times, so that on
average each individual participates once. Denote the total effect on the popula-
tion asp′ = ρ(p). (A practical implementation: choose

pρ
2 ·m random pairs from

p and apply crossover deterministically.) Typicallypρ ≈ 0.7. . .0.9.

Some possible crossover operators are illustrated in Figure 1.

11. Genetic Algorithms 115

0 1 1 0

1 1 0 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1

0 1 1 0

1 1 0 1

0 0 1 1 0 0 1

1 0 1 1 0 1 1

(a) 1-point

1 0 1 1
0 1 0 0 11 1

0 11 0 1 0 1
1 11 0 1 0 1
0 10 1 0 0 11 0 1 1

1 0 0 1 1 0 0 1

(b) 2-point

0 11 1 0 1 0 0 1 1 0 0 1

0 1 1 0 1 0 1 1 0 1 1 1 0 11 0 0 11 10 1

1 0 11 0 0 10 1

(c) uniform

Figure 1: Typical crossover operators.

Mutation

Given populationp, consider each bit of each individual and flip it with some
small probabilitypµ. Denote the total effect on the population asp′ = µ(p).
Typically, pµ ≈ 0.001. . .0.01. It appears that forn-bit strings a good choice is
pµ = 1/n.

Theoretically mutation is disruptive. Recombination and selection should take
care of optimisation; mutation is needed only to (re)introduce “lost alleles”, al-
ternative values for bits that have the bits that have the same value in all current
individuals.

In practice mutation plus selection equals local search. Mutation, even with quite
high values ofpµ, can be efficient and is often more important than recombination.

Analysis of GA’s: Hyperplane sampling

The notion of hyperplane sampling presents a heuristic viewof how a genetic
algorithm works.

A hyperplane(actually subcube) is a subset ofΩ = {0,1}n, where the values of
some bits are fixed and other are free to vary. A hyperplane maybe represented by
a schema H∈ {0,1,∗}n. E.g. the schema ’0∗1∗ ∗’ represents the 3-dimensional
hyperplane (subcube) of{0,1}5 where bit 1 is fixed to 0, bit 3 is fixed to 1, and
bits 2, 4, and 5 vary.

116 Part III. Stochastic Algorithms

c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Figure 2: A population sampling hyperplanes.

An individual s∈ {0,1}n sampleshyperplaneH, or matchesthe corresponding
schema if the fixed bits ofH match the corresponding bits ins. BY some abuse
of notation, this situation is denoted as “s∈H”. Note that a given individual gen-
erally samples many hyperplanes simultaneously, e.g. individual ’101’ samples
’10∗’, ’1 ∗1’, etc.

Define theorder of a hyperplaneH as:

o(H) = number of fixed bits inH

= n−dim H.

Theaverage costof hyperplaneH is then:

c(H) =
1

2n−o(H) ∑
s∈H

c(s).

Denoting bym(H, p) the number of individuals in populationp that sample hy-
perplaneH, theaverage fitnessof hyperplaneH in populationp is defined as:

f (H, p) =
1

m(H, p) ∑
s∈H∩p

f (s, p)

A heuristic claim is then that selection drives the search towards hyperplanes of
higher average cost (quality).

Consider e.g. the cost function and partition ofΩ into hyperplanes (in this case,
intervals) of order 3 presented in Figure 2. Here the currentpopulation of 21

11. Genetic Algorithms 117

c(s)

010** Ω001** 011** 100** 101** 110** 111**000**

Figure 3: A sampling population after selection.

individuals samples the hyperplanes so that e.g. ’000∗∗’ and ’010∗∗’ are sampled
by three individuals each, and ’100∗ ∗’ and ’101∗ ∗’ by two individuals each.
Hyperplane ’010∗ ∗’ has a rather low average fitness in this population, whereas
’111∗∗’ has a rather high average fitness.

The result of e.g. roulette wheel selection on this population might lead to elimi-
nation of some individuals and duplication of others, as presented in Figure 3.

Then, in terms of expected values, one can show that

E[m(H,σ(p))] = m(H, p) · f (H, p).

The effect of crossover on schemata

Consider a schema such as

H = ∗∗11∗∗01∗1
︸ ︷︷ ︸

∆(H)=7

∗∗

and assume that it is represented in the current population by somes∈H.

If sparticipates in a crossover operation and the crossover point is located between
bit positions 3 and 10, then with large probability the offspring are no longer inH.
In this case schemaH is said to bedisrupted. On the other hand, if the crossover
point is elsewhere, then one of the offspring stays inH, andH is retained.

Generally, the probability that in 1-point crossover a schema H = {0,1,∗}n is

118 Part III. Stochastic Algorithms

retained, is (ignoring the possibility of “lucky combinations”)

Pr(retainH)≈ 1−
∆(H)

n−1
,

where∆(H) is thedefining lengthof H, i.e. the distance between the first and last
fixed bit in H.

More precisely, ifH hasm(H, p) representatives in populationp of total sizem:

Pr(retainH)≥ 1−
∆(H)

n−1

(

1−
m(H, p)

m

)

.

The Schema “Theorem”

The Schema Theorem, proposed by J. Holland (1975), providesa Heuristic esti-
mate of the changes in representation of a given schemaH from one generation to
the next.

Denote:

m(H, t) =number of individuals in population at generationt

that sampleH.

Then:

(i) Effect of selection:

m(H, t ′)≈m(H, t) · f (H)

(ii) Effect of recombination:

m(H, t ′′)≈ (1− pρ)m(H, t ′)+ pρ



m(H, t ′)Pr(retainH)+m·Pr(luck)
︸ ︷︷ ︸

≥0





≥ (1− pρ)m(H, t ′)+ pρm(H, t ′)

(

1−
∆(H)

n−1

(

1−
m(H, t ′)

m

))

= m(H, t ′)

(

1− pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

(iii) Effect of mutation:

m(H, t +1)≈m(H, t ′′) · (1− pµ)
o(H)

11. Genetic Algorithms 119

In summary, then:

m(H, t +1) & m(H, t) · f (H) ·

(

1− pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

· (1− pµ)
o(H).

The formula leads to so called“Building Block Hypothesis”: In a genetic search,
short, above-average fitness schemata of low order (“building blocks”) receive an
exponentially increasing representation in the population.

The following criticisms have been expressed as regards the“Schema Theorem”
and the Building Block Hypothesis, however:

• Many of the approximations used in deriving the “Schema Theorem” im-
plicitly assume that the population is very large. In particular, it is assumed
that all the relevant schemata are well sampled. This is clearly not possible
in practice, because there are 3n possible schemata of lengthn.

• The result cannot be used to predict the development of the population for
much more than one generation, because:

– firstly, the long-term development depends on the coevolution of the
schemata, and the “theorem” considers only one schema in isolation;

– secondly, an “exponential growth” cannot in any case continue for
long in a finite population.

11.2 Genetic Algorithms as Stochastic Processes

A proper mathematical treatment of GA’s would view them as stochastic pro-
cesses. It is unfortunately very difficult to obtain any nontrivial analytical results
in this direction. Here we outline a simple Markov chain model presented by Vose
& Liepins (1991) and Rudolph (1994).

Consider the “canonical GA”, i.e. the Simple Genetic Algorithm using the relative
cost fitness function and standard proportional (“roulette-wheel”) selection, in the
form:

p← random initial population;
p← σ(p); (selection)
while p “not converged”do

p′← ρ(p); (recombination)
p′′← µ(p′) (mutation)
p← σ(p′′); (selection)

end while.

120 Part III. Stochastic Algorithms

Encode a population ofm individuals, each ann-bit string, as an integer (in binary
representation)

p∈ {0,1}mn≡ {0,1, . . . ,2mn−1}
︸ ︷︷ ︸

Z2mn

.

Then the CGA can be modeled as a Markov chain on state spaceZ2mn, with the
transitions probability matrixP = CMS, where

C is the recombination (“crossover”) transition probability matrix
M is the mutation transition probability matrix
S is the selection transition probability matrix

A stochastic matrixP = (pi j) is:

(i) positive, if pi j > 0 for all i, j;

(ii) primitive, if Pk is positive for somek≥ 0;

(iii) reducible, if it can be converted to the form

P̃ =

[
C 0
R T

]

,

whereC andT are square matrices, by applying the same permutation to
the rows and the columns;

(iv) irreducible, if it is not reducible.

The interpretation of these definitions is that primitive matrices correspond to the
irreducible and aperiodic Markov chains defined before. In areducible matrix, the
upper rows correspond to a “closed” or “absorbing” class of states, the lower rows
to “transient” states. Note that a positive matrix is trivially primitive.

Theorem 11.1
Let P be a primitive stochastic matrix. Then the sequence Pk converges as k→ ∞
to a stochastic matrix P∞ which has the form

P∞ =






p∞

...
p∞




 ,

where p∞ is a stochastic vector with all components positive. (The vector p∞

represents the stationary distribution of the chain.)

11. Genetic Algorithms 121

Theorem 11.2
Let P be a reducible stochastic matrix of the form

P =

[
C 0
R T

]

,

where C is primitive, and T does not contain an irreducible submatrix. Then the
sequence Pk converges as k→ ∞ to a stochastic matrix P∞ of the form

P∞ =






p∞ 0
...

...
p∞ 0




 ,

where p∞ is a stochastic vector with all components positive.

Lemma 11.3
The transition probability matrix P= CMS of the “canonical genetic algorithm”,
with mutation probability0 < pµ < 1 is positive and hence primitive.

Proof: DenoteC = (cik),M = (mkl),S= (sl j). ThenP = (pi j), where

pi j = ∑
kl

cikmklsl j .

Observe:

(i) ∀ i∃ ki : ciki > 0 (BecauseC is stochastic⇒ ∀ i : ∑k cik = 1)

(ii) M is positive: denoteN = mn, d(k, l) = Hamming distance between popu-
lationsk, l . Then:

mkl = pd(k,l)
µ · (1− pµ)

N−d(k,l) > 0.

(iii) ∀ j : sj j > 0 (Because with nonzero probability, selection does not change
the population.)

Thus:

pi j = ∑
kl

cikmklsl j ≥ ciki mki jsj j > 0. �

Theorem 11.4
The CGA with mutation probability0 < pµ < 1 converges to a stationary distri-
bution of populations where the probability of every population is nonzero.

122 Part III. Stochastic Algorithms

Proof: Follows from Theorem 11.1 and Lemma 11.3.�

Assume the CGA is defined so as to maximize the functionc : {0,1}→R. Denote

c∗ = max{c(i) | i ∈ {0,1}n},

and for a population̂i = (i1, . . . , im):

c∗(î) = max{c(ik) | k = 1, . . . ,m}.

Denote byî(t) the population of the CGA at timet. The algorithmconverges to
global optimumif

lim
t→∞

Pr(c∗(î(t)) = c∗) = 1.

Note that the simulated annealing algorithm converges to global optimum in ex-
actly this sense.

Corollary 11.5
If nonoptimal solutions with respect to the cost function c exist (i.e. if c(j) < c∗

for some j∈ {0,1}n), then the CGA does not converge to the global optimum.

Proof: Let ĵ = (j, j, . . . , j) be a population such thatc∗(ĵ) < c∗ By Theorem 11.2,

lim
t→∞

Pr(î(t) = ĵ) = ε > 0,

and thus

lim
t→∞

Pr(c∗(î(t)) = c∗)≤ 1− ε < 1. �

Theorem 11.6
On the other hand, if the best solution found is always kept inthe population
(“elitist” selection) and not mutated, then the CGA does converge to the global
optimum.

Proof: Simple corollary to Theorem 11.2: the transition probability matrix P re-
duces in this case to the form

P =

[
C 0
R T

]

,

where the upper rows correspond to the unique closed class ofpopulations con-
taining a globally optimal solution.�

Note that for practical purposes, such (non)convergence results are of course
largely irrelevant. The important (but difficult) questions are:

12. Combinatorial Phase Transitions 123

• How fast does the CGA with elitist selection converge towards an optimal
solution?

• Does the CGA without elitist selection converge to a population with mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models

“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial time “on average” or
“with high probability” for reasonable-looking distributions of problem instances.
E.g. Satisfiability in timeO(n2) (Goldberg et al. 1982), Graph Colouring in time
O(n2) (Grimmett & McDiarmid 1975, Turner 1984).

Where, then, are the (presumably) exponentially hard instances of these problems
located? Could one tell ahead of time whether a given instance is likely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), Hubermann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logemann-Loveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.g. satisfiable 3-cnf formula

(x1∨ x̄2∨x3)∧ (x̄1∨x2∨ x̄4)

The expressions in parenthesis areclausesand thex’s areliterals.

Distribution of test formulas:

• number of variables

• m= αn randomly generated clauses of 3 literals, 2≤ α≤ 8

