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• How fast does the CGA with elitist selection converge towards an optimal
solution?

• Does the CGA without elitist selection converge to a population with mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models

“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial time “on average” or
“with high probability” for reasonable-looking distributions of problem instances.
E.g. Satisfiability in timeO(n2) (Goldberg et al. 1982), Graph Colouring in time
O(n2) (Grimmett & McDiarmid 1975, Turner 1984).

Where, then, are the (presumably) exponentially hard instances of these problems
located? Could one tell ahead of time whether a given instance is likely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), Hubermann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell, Selman & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logemann-Loveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.g. satisfiable 3-cnf formula

(x1∨ x̄2∨ x3)∧ (x̄1∨ x2∨ x̄4)

The expressions in parenthesis areclauses and thex’s areliterals.

Distribution of test formulas:

• number of variables

• m = αn randomly generated clauses of 3 literals, 2≤ α≤ 8
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Figure 4: Number of DPLL calls required to determine satisfiability (Mitchell et
al. 1992).

TThe Davis-Putnam[-Logemann-Loveland] (DP[LL]) method for testing the sat-
isfiability of a set of clausesΣ on the variable setV :

1. If Σ is empty, return “satisfiable”.

2. If Σ contains an empty clause, return “unsatisfiable”.

3. If Σ contains a unit clausec = x±, assign tox a value which satisfiesc,
simplify the remaining clauses correspondingly, and call DPLL recursively.

4. Otherwise select an unassignedx ∈ V , assignx← 1, simplify Σ, and call
DPLL recursively. If this call returns “satisfiable”, then return “satisfiable”;
else assignx← 0, simplify Σ, and call DPLL recursively again.

For each set of 500 formulas, Mitcell et al. plotted the median number of DPLL
calls required for solution.

The results of this experiment are illustrated in Figures 4 and 5. Discussion:

• A clear peak in running times (number of DPLL calls) near the point where
50% of formulas are satisfiable.

• The “50% satisfiable” point or “satisfiability threshold” seems to be located
at roughlyα≈ 4.25 for largen.
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Figure 5: Number of required DPLL calls according to type of formula (Mitchell
et al. 1992).

Figure 6: Probability of satisfiability for random 3-cnf formulas (Mitchell et al.
1992).

• The peak seems to be caused by relatively short unsatisfiableformulas.

A fundamental question is whether the connection of the running time peak and
the satisfiability threshold a characteristic of the DPLL algorithm, or a (more or
less) algorithm independent “universal” feature?

The “50% satisfiable” point or “satisfiability threshold” for 3-SAT seems to be
located atα≈ 4.25 for largen.

12.2 Statistical Mechanics ofk-SAT (“1st-Order Analysis”)

Kirkpatrick & Selman (Science 1994)
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Figure 7: Probability of satisfiability for randomk-cnf formulas (Kirkpatrick &
Selman 1994).

Similar experiments as above fork-SAT, k = 2, . . . ,6, 10000 formulas per data
point. Results illustrated in Figure 7. Further observations:

• The “satisfiability threshold”αc shifts quickly to larger values ofα for in-
creasingk.

• For fixedk, the value ofαc drifths slowly to smaller values for increasingn.

A statistical mechanics model of ak-cnf formula:

• variablesxi ∼ spins with states±1

• clausesc ∼ k-wise interactions between spins

• truth assignmentσ ∼ state of spin system

• HamiltonianH(σ) ∼ number of clauses unsatisfied byσ

• αc ∼ critical “interaction density” point for “phase transition” from “satis-
fiable phase” to “unsatisfiable phase”

Estimates ofαc for various values ofk via “annealing approximation”, “replica
theory”, and observation:
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k αann αrep αobs

2 2.41 1.38 1.0
3 5.19 4.25 4.17± 0.03
4 10.74 9.58 9.75± 0.05
5 21.83 20.6 20.9± 0.1
6 44.01 42.8 43.2± 0.2

The “annealing approximation” means simply assuming that the different clauses
are satisfied independently. This leads to the following estimate:

• The probability that a given clausec is satisfied by a randomσ: pk = 1−
2−k.

• The probability that a randomσ satisfies allm = αn clauses assuming inde-
pendence:pαn

k .

• Total number of satisfying assignments= 2npαn
k , Sn

k(α).

• For largen, Sn
k(α) falls rapidly from 2n tp 0 near a critical valueα = αc.

Where isαc?

• One approach: solve forSn
k(α) = 1.

Sn
k(α) = 1⇔ 2pα

k = 1

⇔ α =−
1

log2 pk
=−

ln2
ln(1−2−k)

≈−
ln2
2−k = (ln2) ·2k.

It is in fact known that:

• A sharp satisfiability thresholdαc exists for allk ≥ 2 (Friedgut 1999).

• Fork = 2, αc = 1 (Goerdt 1982, Chvátal & Reed 1982). Note that 2-SAT∈
P.

• For k = 3, 3.14< αc < 4.51 (lower bound due to Achlioptas 2000, upper
bound to Dubois et al. 1999).

• Current best empirical estimate fork = 3: αc ≈ 4.27 (Braunstein et al.
2002).
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12.3 Local Search Methods for 3-SAT

Local search methods (e.g. simulated annealing, genetic algorithms) can be used
for finding (with high probability) satisfying truth assignments to randomly gen-
erated 3-cnf formulas in the satisfiable phase (m/n = α < αc).

Consider first a general objective functionE = E(x) to be minimised. Then the
basic local search scheme is:

• Start with some randomly chosen feasible solutionx = x0.

• If value of E(x) is not “good enough”, search for some “neighbour”x′ of x
that satisfiesE(x′) . E(x). If such anx′ is found, setx← x′ and repeat.

• If no improving neighbour is found, then either restart at new randomx = x0

or relax the neighbourhood condition [algorithm-dependent].

In the setting of the 3-SAT problem, the objective function to be minimised isE =
EF(s) = the number of unsatisfied clauses in formulaF under truth assignments.
Whenα < αc, an assignments satisfyingE(s) = 0 exists with high probability,
and local search techniques are surprisingly powerful in finding such assignments.

The first systematically tested algorithm of this type was the following procedure
GSAT by (Selman et al. 1992):

GSAT(F):
s = initial truth assignment;
while flips < max_flips do

if s satisfies F then output s & halt, else:
- find a variable x whose flipping causes

largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.

An improvement to GSAT is to augment it with a fractionp of random walk
moves, leading to algorithm NoisyGSAT (Selman et al. 1996):

NoisyGSAT(F,p):
s = initial truth assignment;
while flips < max_flips do

if s satisfies F then output s & halt, else:
- with probability p, pick a variable x

uniformly at random and flip it;
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- with probability (1-p), do basic GSAT move:
- find a variable x whose flipping causes
largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.

A subtle but important change to NoisyGSAT is tofocus the search on the presently
unsatisfied clauses. This leads to the current “industry standard” WalkSAT algo-
rithm (Selman et al. 1996):

WalkSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a random unsatisfied clause C in F;
- if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

- with probability p, pick a variable x
in C at random;

- with probability (1-p), pick an x in C
that breaks a minimal number of presently
satisfied clauses;

- flip x.

The focusing seems to be important: in the (somewhat unsystematic) experiments
performed by Selman et al. (1996), WalkSAT outperforms NoisyGSAT by several
orders of magnitude.

Also other local search techniques can be applied to the satisfiability problem.
Good results have been obtained e.g. with the following Record-to-Record Travel
(RRT) method first introduced in the context of the TSP problem (Dueck 1993):

RRT(E,d):
s = initial feasible solution;
s* = s; E* = E(s);
while moves < max_moves do
if s is a global min. of E then output s & halt,
else:

pick a random neighbour s’ of s;
if E(s’) <= E* + d then let s = s’;
if E(s’) < E* then:
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s* = s’; E* = E(s’).

In applying RRT to SAT, one chooses againE(s) = number of clauses unsatisfied
by truth assignments, together with single-variable flip neighbourhoods. Impos-
ing thefocusing heuristic of always selecting the flipped variables from unsatisfied
clauses (precisely: one unsatisfied clause is chosen at random, and from there a
variable at random) leads to the “focused RRT” (FRRT) algorithm for 3-SAT,
which is quite competitive with WalkSAT (Seitz & Orponen 2003).

12.4 Statistical Mechanics ofK-SAT (“Replica Analysis”)

The analyses in this area are rather technical, so we presentjust some basic ideas.

Consider again the statistical mechanics model ofk-SAT formulas discusses on p.
125. I.e. we consider the ensemble of randomk-cnf formulas withn variables and
m = αn clauses. The Boolean-valued variablesxi are mapped to binary-state spins
asxi ∈ {true, false} 7→ spinSi ∈ {+1,−1}.

A formula consists of a set of clausesCl represented in terms of an “interaction
matrix” C = (Cli):

Cli =







+1, if Cl includesxi

−1, if Cl includes ¯xi

0, otherwise

Thus,

n

∑
i=1

CliSi =−K

if and only if all the literals in clauseCl are “wrong”, i.e. the clause is unsatisfied
by truth assignment (spin state)S = (S1, . . . ,Sn).

We consider the Hamiltonian function

E[S,C] =
m

∑
l=1

δ

(

n

∑
i=1

CliSi +K

)

= number of clauses inC unsatisfied byS,

δ(u) =

{

1, if u = 0
0, otherwise

The ground state potential (minimum number of unsatisfied clauses) of a given
systemC is E∗[C] = minS E[S,C]. For randomly generatedC, Pr(E∗[C] = 0)with
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high probability whenα is small, and we would like to approximate the value
α = αc(K) where this property ceases to hold.

This is however a very difficult problem, so we approach it indirectly by consid-
ering rather the average ofE∗[C] with respect toC, denotedEGS = E∗[C]. (Such
averages with respect to system parameters are called “quenched averages”, as
opposed to the more usual “thermal averages” computed with respect to system
states.)

For largen, the distribution ofE∗[C] is highly concentrated aroundEGS = EGS(α,K).
(E∗ is said to be “self-averaging”.) In particular:

EGS ≈ 0 in the sat. phase(α < αc(K)),

EGS > 0 in the unsat. phase(α > αc(K)).

Thus, we use the behaviour ofEGS as a guide to determining the value ofαc.

It is known that

EGS =−T lnZT [C]+O(T 2)

asT → 0, where

ZT [C] = ∑
S

exp(−E[S,C]/T).

(This follows by averaging from the fundamental thermodynamic formulaF =
E−T S =−kT lnZ (p. 60).)

The important, but complicated quantitylnZ can be estimated using the so called
“replica method”.

Consider the Taylor expansion ofZν as a function ofν for smallν:

Zν = eν lnZ = 1+ν lnZ +O(ν2)

Thus, for a fixedZ > 0:

lnZ = lim
ν→0

Zν−1
ν

.

Applying this to lnZT [C] and averaging overC yields:

EGS =−T lim
ν→0

1
ν

(

ZT [C]ν−1
)

+O(T 2) (11)

asT → 0.
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Now assume that the “smallν” is in fact an integer. Then:

ZT [C]ν =

(

∑
S

exp(−E[S,C]/T)

)ν

= ∑
S1

. . . ,∑
Sν

exp

(

−
ν

∑
r=1

E[Sr,C]/T)

)

Thus we have transformed the problem of computingZν
T to the consideration ofν

interconnected “replicas” of the original system.

This modified structure can further be viewed as a single system consisting of
n vector-valued spins~σi ∈ {+1,−1}ν, i = 1, . . . ,n, with (non-random) potential
function

Ee f f [~σ1, . . . ,~σn] =−T ln



exp

(

−
ν

∑
r=1

E[Sr,C]/T

)



 .

One can easily check that with this choice:

Zν
T = Ze f f

T = ∑
{~σi}

exp(−Ee f f [{~σ}]/T ).

This partition function may in some cases be so concentratedthat for largen:

Zν
T = Ze f f

T ≈ e−n f̃T (ν) ≈ 1−n f̃T (ν),

where f̃T (ν) is some nonlinear function with̃fT (0) = 0.

Plugging this estimate in formula (11) yields

EGS ≈−T lim
ν→0

−n f̃T (ν)

ν
= T n f̃ ′T (0).

The replica method has been partially mathematically vindicated, i.e. the requisite
“analytic continuation” from integer to realν is justified under some conditions,
although not generally.

From an application point of view, approximating the function f̃T (ν) is the diffi-
cult part of the technique.


