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e How fast does the CGA with elitist selection converge towaad optimal
solution?

e Does the CGA without elitist selection converge to a popoitatvith mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models
“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial tiome &verage” or
“with high probability” for reasonable-looking distribons of problem instances.
E.g. Satisfiability in timeO(n?) (Goldberg et al. 1982), Graph Colouring in time
O(n?) (Grimmett & McDiarmid 1975, Turner 1984).

Where, then, are the (presumably) exponentially hard mestsof these problems
located? Could one tell ahead of time whether a given instasdikely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), ¢taann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell,ns&h & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logerawveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.qg. satisfiable 3-cnf formula
(X1 VX2V X3) A (X1 VX2V Xg)

The expressions in parenthesis eli@ises and thex's areliterals.
Distribution of test formulas:

e number of variables

e m= anrandomly generated clauses of 3 literals; & < 8
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Figure 4: Number of DPLL calls required to determine satisfity (Mitchell et
al. 1992).

TThe Davis-Putnam[-Logemann-Loveland] (DP[LL]) methad festing the sat-
isfiability of a set of clause’ on the variable sét:

1. If Zis empty, return “satisfiable”.
2. If Z contains an empty clause, return “unsatisfiable”.

3. If X contains a unit clause = x*, assign tox a value which satisfies,
simplify the remaining clauses correspondingly, and c&lLD recursively.

4. Otherwise select an unassigned V, assignx <— 1, simplify Z, and call
DPLL recursively. If this call returns “satisfiable”, theeturn “satisfiable”;
else assigx — 0, simplify %, and call DPLL recursively again.

For each set of 500 formulas, Mitcell et al. plotted the mediamber of DPLL
calls required for solution.

The results of this experiment are illustrated in Figuresad % Discussion:

e A clear peak in running times (number of DPLL calls) near tbempwhere
50% of formulas are satisfiable.

e The “50% satisfiable” point or “satisfiability threshold”esas to be located
at roughlya =~ 4.25 for largen.
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Figure 5. Number of required DPLL calls according to typeahfula (Mitchell
et al. 1992).
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Figure 6: Probability of satisfiability for random 3-cnf foulas (Mitchell et al.
1992).

e The peak seems to be caused by relatively short unsatisf@abhalas.

A fundamental question is whether the connection of theingime peak and
the satisfiability threshold a characteristic of the DPLgalthm, or a (more or
less) algorithm independent “universal” feature?

The “50% satisfiable” point or “satisfiability threshold’f@-SAT seems to be
located at ~ 4.25 for largen.

12.2 Statistical Mechanics ok-SAT (“1st-Order Analysis”)

Kirkpatrick & Selman (Science 1994)
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Figure 7: Probability of satisfiability for randokicnf formulas (Kirkpatrick &
Selman 1994).

Similar experiments as above fSAT, k = 2,...,6, 10000 formulas per data
point. Results illustrated in Figure 7. Further observagio

e The “satisfiability threshold&. shifts quickly to larger values af for in-
creasingk.

o For fixedk, the value ot drifths slowly to smaller values for increasing
A statistical mechanics model ofkacnf formula:

e variablesq ~ spins with states-1

clausex ~ k-wise interactions between spins

truth assignmentr ~ state of spin system

HamiltonianH (o) ~ number of clauses unsatisfied oy

0c¢ ~ critical “interaction density” point for “phase transitibfrom “satis-
fiable phase” to “unsatisfiable phase”

Estimates ofi¢ for various values ok via “annealing approximation”, “replica
theory”, and observation:
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Oann  Orep Oobs
241 1.38 1.0
519 425 4.1#0.03
10.74 9.58 9.7%0.05
21.83 20.6 20.20.1
44,01 42.8 43.20.2

OOk WNX

The “annealing approximation” means simply assuming tmadifferent clauses
are satisfied independently. This leads to the followingreste:

e The probability that a given claugeas satisfied by a random: px=1—
27K,

e The probability that a random satisfies alm= an clauses assuming inde-
pendencepy".

e Total number of satisfying assignmert2"pi" £ ().

e For largen, §(a) falls rapidly from 2' tp O near a critical valuer = a.
Where isa.?

e One approach: solve f&(a) = 1.

S@)=1&2p =1
1 In2 In2 K
Clogype In(—27k) T 27k (In2)-2"

Itis in fact known that:

A sharp satisfiability threshold. exists for allk > 2 (Friedgut 1999).

Fork=2,0. =1 (Goerdt 1982, Chvatal & Reed 1982). Note that 2-SAT
P.

Fork =3, 314 < a. < 4.51 (lower bound due to Achlioptas 2000, upper
bound to Dubois et al. 1999).

Current best empirical estimate fer= 3: a. ~ 4.27 (Braunstein et al.
2002).
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12.3 Local Search Methods for 3-SAT

Local search methods (e.g. simulated annealing, gengticigdms) can be used
for finding (with high probability) satisfying truth assigrents to randomly gen-
erated 3-cnf formulas in the satisfiable phasén(= a < ac).

Consider first a general objective functien= E(x) to be minimised. Then the
basic local search scheme is:

e Start with some randomly chosen feasible soluieaxg.

e If value of E(x) is not “good enough”, search for some “neighboxirof x
that satisfie€(x') < E(x). If such anx is found, sek < X' and repeat.

¢ If noimproving neighbour is found, then either restart avmandomx = Xg
or relax the neighbourhood condition [algorithm-depenfen

In the setting of the 3-SAT problem, the objective functiofé minimised i€ =
Er (s) = the number of unsatisfied clauses in formilander truth assignmest
Whena < a¢, an assignmerg satisfyingE(s) = 0 exists with high probability,
and local search techniques are surprisingly powerful ohirfigsuch assignments.

The first systematically tested algorithm of this type wassftillowing procedure
GSAT by (Selman et al. 1992):

GSAT(F):
s =initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, el se:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then smallest increase);
- flip x.

An improvement to GSAT is to augment it with a fractignof random walk
moves, leading to algorithm NoisyGSAT (Selman et al. 1996):

Noi syGSAT(F, p):
s =initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- With probability p, pick a variable x
uniformy at randomand flip it;
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- with probability (1-p), do basic GSAT nove:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then snallest increase);
- flip x.

A subtle butimportant change to NoisyGSAT idaousthe search on the presently
unsatisfied clauses. This leads to the current “industrydstal” WalkSAT algo-
rithm (Selman et al. 1996):

VIl kSAT(F, p):
s =initial truth assignment;
while flips < max_flips do

if s satisfies F then output s & halt, else:

- pick a randomunsatisfied clause Cin F;

- if some variables in Ccan be flipped w thout
breaki ng any presently satisfied clauses,
then pick one such variable x at random el se:

- With probability p, pick a variable x
in Cat random

- wWith probability (1-p), pick an x in C
that breaks a mniml nunmber of presently
satisfied clauses;

- flip x.

The focusing seems to be important: in the (Ssomewhat unsgsie) experiments
performed by Selman et al. (1996), WalkSAT outperforms NBISAT by several
orders of magnitude.

Also other local search techniques can be applied to thefisdiiity problem.
Good results have been obtained e.g. with the following Retm-Record Travel
(RRT) method first introduced in the context of the TSP prob{®ueck 1993):

RRT(E, d):
s = initial feasible solution;
s* =5, B = E(9);
whi | e noves < max_noves do
if sis aglobal mn. of Ethen output s & halt,
el se:
pi ck a random nei ghbour s’ of s;
if E(s’) <= E* +dthenlet s =¢g";
if E(s’) < E* then:
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In applying RRT to SAT, one chooses ag&ifs) = number of clauses unsatisfied
by truth assignmerg, together with single-variable flip neighbourhoods. Impos
ing thefocusing heuristic of always selecting the flipped variables fromatiséied
clauses (precisely: one unsatisfied clause is chosen abmgrahd from there a
variable at random) leads to the “focused RRT” (FRRT) abhyomi for 3-SAT,
which is quite competitive with WalkSAT (Seitz & Orponen Z)0

12.4 Statistical Mechanics oK-SAT (“Replica Analysis”)

The analyses in this area are rather technical, so we pres¢sbme basic ideas.

Consider again the statistical mechanics mod& 8AT formulas discusses on p.
125. l.e. we consider the ensemble of randeamf formulas withn variables and
m= an clauses. The Boolean-valued variableare mapped to binary-state spins
asx; € {true false} — spin§ € {+1,—1}.

A formula consists of a set of claus€srepresented in terms of an “interaction
matrix” C = (G;):

—1, if G includesx;

+1, if G includesx
Gi=
0, otherwise

Thus,

_iclis =—-K

if and only if all the literals in claus€, are “wrong”, i.e. the clause is unsatisfied
by truth assignment (spin stat8)= (Sy,...,S).

We consider the Hamiltonian function

m n
E[SC] = 2 ) (ZlCnS + K) = number of clauses i@ unsatisfied by5,
=1 \i=

1, ifu=0
o) = {0, otherwise

The ground state potential (minimum number of unsatisfiads®s) of a given
systemC is E*[C] = mingE[S,C]|. For randomly generated, Pr(E*[C] = O)with
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high probability whena is small, and we would like to approximate the value
a = a¢(K) where this property ceases to hold.

This is however a very difficult problem, so we approach ifriectly by consid-
ering rather the average Bf[C| with respect taC, denotedEgs = E*[C]. (Such
averages with respect to system parameters are called ¢hheéraverages”, as
opposed to the more usual “thermal averages” computed egpect to system
states.)

For largen, the distribution oE*[C] is highly concentrated arourttss = Egs(a, K).
(E* is said to be “self-averaging”.) In particular:

Ecs =~ 0 in the sat. phas@ < a¢(K)),
Egs > 0in the unsat. phage > o¢(K)).

Thus, we use the behaviour B§s as a guide to determining the valueoq.
It is known that

Ecs= —TInZt[C]+ O(T?)
asT — 0, where

z1(C] = Y exi~EISCI/T),

(This follows by averaging from the fundamental thermodyiaformulaF =
E—-TS=—KTInZ (p. 60).)

The important, but complicated quantltyZ can be estimated using the so called
“replica method”.

Consider the Taylor expansion &f as a function of for smallv:
7’ ="' —14vInZ+0(v?)

Thus, for a fixedZ > 0:

v _
InZ = lim Z 1.

v—0

Applying this to InZy [C] and averaging oveZ yields:
1,/
— _Tlim = v_ 2
Egs=—T lim = (ZT [C] 1) +0(T?) (11)

asT — 0.
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Now assume that the “smalf is in fact an integer. Then:

Zr[C = (Z eXp(—E[SC]/T)>

- ;...,gexp<—glE[5r,C]/T)>

Thus we have transformed the problem of compuﬂ_)f‘ugo the consideration of
interconnected “replicas” of the original system.

This modified structure can further be viewed as a singleegystonsisting of
n vector-valued sping; € {+1,—1}",i = 1,...,n, with (non-random) potential
function

\Y
Eeff[a-].? cee 76n] =—TlIn [exp< z E[S7C]/T>] :
r=1
One can easily check that with this choice:
¥ =2y" =Y exp(—Eers[{8}]/T).
{ai}
This partition function may in some cases be so concenttasdor largen:

ef f

Zv=7"~ e V) o 1—nfr(v),

wherefr (v) is some nonlinear function witfy (0) = 0.
Plugging this estimate in formula (11) yields

~

—nfT (V)
\Y

Ecs~ —T lim = Tnf}(0).

v—0
The replica method has been partially mathematically waidid, i.e. the requisite
“analytic continuation” from integer to real is justified under some conditions,
although not generally.

From an application point of view, approximating the funatift (v) is the diffi-
cult part of the technique.



