Part |l

Stochastic Algorithms

8 Simulated Annealing

Global optimisation (say, minimisation) of an objectivenétion H (o), framed
as a Hamiltonian of a statistical mechanics system, via aesexrg of Metropolis
samplers for the Gibbs distributions determinedHiy) at decreasing values of
the temperature paramefer— 0.

Let H : S— R be a function to be minimised over a finite (but typically very
large) state spacg Assume thathas some neighbourhood struct@e (S N)
(cf. page 24).

In any specific application of the method, the algorithm gesr typically has a
lot of freedom in the choice of the most appropriéte This choice can have a
significant effect on the efficiency of the algorithm: one \ablike to haveN such
thatN(o) is small for eacho € S yet the resulting Metropolis chains converge
rapidly.

The Gibbs distribution determined by at temperaturd@ is (recall page 58):

T _ _ 1 v 1 pH©
T[Ey Prr(0) ZTe ZTe

wheref3 = 1/KT.

A relevant observation is that @s— 0 (or f — ), the distribution Pf(0) gets
more peaked according té. Denoting byS* = {o* € S| H(0*) = min} the set
of global optima oH, one observes that:

P (0) _ BHO)-H@) { 0,0¢S
T—0

PI’T(O'*> - lLoeS

(B—)
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Thus, in the limit one obtains:

L [0, o¢S
o = Jim,Prr(0) = { 1/|S], 0 S

Of course, one cannot directly sample accordingttpbut the idea is that by
starting at a high value af and then slowly (but how slowly?) decreasing it, one
obtains a nonhomogenous Metropolis chain that converges®nably fast (?) to
.

As regards the convergence of the chains at each Tixed, we can appeal to the
general results concerning Metropolis samplers from pdgengvards.

Let us just check the form of the acceptance probabilitiggoposed move — T,
wheret € N(0), is accepted with probability:

[ T®ds
Por = mln{nch,l}

) e—BH(T) do
= min { m . d—T, 1
_ min{e—B(H(T)—H(G)) . %,1}

_ min{e*B(H(T)’H(")),l},

if (S N) isregulari.e]N(o)| = |N(1)|for all o,T.

Thus, for a regular neighbourhood structure, and dendliig= H(1) — H(0),
a proposed transitioa — T is accepted always AH < 0, and with probability
e PO if AH > 0.

In summary, one obtains the following general method forimising a function
H over a state spacgwith neighbourhood structure:

Algorithm SA(H,S N):

T « Tinit;
0 < Oinit,
while T > T¢jna do

L — sweep();
for L times do

chooser € N(o) uniformly at random;
AH — H(t) —H(0);



8. Simulated Annealing 95

if AH <0 theno «T;

else choose € [0, 1) uniformly at random;
if r <exp(—AH/T)
theno « T,

end for;
T — lower(T);

end while;
result<— o;

(For simplicity, the neighbourhood graph is assumed to gelag.)

The obvious question is now how to choose appropriate fanstiower{) and
sweepl), i.e. what is a good “cooling scheduléTy, Lo), (T1,L1),. ..

In practice, it is customary to just start from some “highinfgeratureTy, and
after each “sufficiently long” sweelpdecrease the temperature by some “cooling
factor’a ~ 0.8...0.99:

Tk = 0Ty

Theoretically this is much too fast, as we shall see, bunageems to work well
enough.

Consider an inhomogenous Markov chain with transition imesP(©), P, P2 .
Denote

P(m,k) = pMp(m+l) p(m+k-1)
i.e.Bj(mK) =PrXmik=j | Xm=1).
The chainM is weakly ergodidf for all m > O:
lim sup dy (W'P(m,k),vTP(mk)) =0
—0 LV

andstrongly ergodidf there is some distributiort such that for alm > O:
lim supdy (1" P(m k), 1) =0
—00 vl
Let Q be ann x m stochastic matrix. ThéDobrushin) ergodic coefficierdf Q is
defined as:

a = (Gi1,--- ,Gim)

P=p(Q = mad(®d) g (qgp,....qm)

H‘.

m
= Zmax$ |Gk — g
2 Me I(:1|Q|k Qjk|
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The following key technical lemmas will possibly be provatkr. The proofs are
not exceedingly difficult.

Lemma 8.1 (“Dobrushin’s inequality”)
Given the stochastic matrices @ [0,1]™™, Q, € [0,1]™":

P(Q1Q2) < p(Q1)p(Q2).

Lemma 8.2 (“Dobrushin convergence rate bound”)
Given the stochastic matrix P and the distributions:u

dv (WP VTPY) < dy (,v)p(P)".

Lemma 8.3

An inhomogeneous Markov chaiif with transition probability matrices ©,
P, ... is weakly ergodic if and only if either (and hence both) of filleowing
conditions hold:

(i) forany m> 0: limg_. p(P(m,k)) =0;

(i) for some increasing sequen@ec mp < My < ---

[oe]

> (1-p(P(M, M 1)) =

i=
Lemma 8.4
Let M be a weakly ergodic Markov chain with transition probalyilinatrices

PO pA ... Suppose that there exists a sequence of distributifistid, ...
such that

(i) mMPM =™ for each m> 0;

(il §||n‘m>—rﬁm”>ul<oo-
m=0

ThenM is also strongly ergodic, with limit distribution

= lim ™.

m—oo
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Theorem 8.5
Consider a simulated annealing computation on inpdt S N). Assume the
neighbourhood grapfiS N) is connected and regular of degree r. Denote:

A=max{H(t)—H(o) | ce SteN(0)}.
Suppose the cooling schedule used is of the {@giL), (T1,L), (To,L),. .., where

L > min maxdist(o,c* 1
> min maxdist(o,0°), ®

wheredist(o,c*) is the distance in grapfS N) fromao to ¢*, and for each cooling
stage I> 2:
LA
N> (butT—0). (2)

Then the distribution of states visited by the computatamverges in the limit to
T, where

[0, ifo¢S
"3—{1/|s*\, ifoes

Proof: Denote byP(®, P . . the sequence of transition matrices for the Markov
chain onS determined by the SA algorithm with the given parameters.stl
show, based on Lemma 8.4, that this chain is strongly ergeidicthe given limit
distribution.

Let us first verify weak ergodicity using Lemma 8.3 (ii). L&t € S* be some
ground state achieving the lower bound in condition (1). Wallsshow that for
anyo € Sandk > kg, wherekg is sufficiently large:

L
Pa (1) > (e %) @

wherety = T/ | = cooling temperature at stép

It then follows from condition (3) and from the falgt — g| = p+q—2min{p.q}
that

1- p(P(ka k+ L))
1

o,T
ve

= rglrn z min{Pgy (K, k+L), Pry (K, k+L)}
7T veES
oeS

> rle L/
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and so (choosingy =1 -L):

8

(I—-p(P(m,my1))) > > (1-p(P(IL,IL +L1)))

g I8

[ee]

1
> ;OI’LELA/tk > r—L %OI_ — o,
= =

Thus, let us check that condition (3) holds for some suffitydargeky. Observe
first that for anyo € Sandt € N(0):

1 1
— “minfe-HO-H©O)/t 11 > Zo /%
Pot(K) ; min{e 1} > re .
Similarly, for anyoc™ € S* there is somég such that for alk > ko:

1
Pyeo-(K) > Fe—A/‘k.

Namely, letd = min{H(t) —H(c") | 0" € S*,1 € N(0*) \ S*}. Now & > 0, unless
H is a constant function. Thus for &> kg, wherekg is sufficiently large:

1 —o/t —A/t

Porgr = 1— z PG*T(k>
1eN(o*)

= Z(1—e %%

> Leam,

r

Thus, for anyo € Sandk > ko:

Poo+ (K, K+L)
=33 Y PoryoPurp(k+ 1) Py_yor(k+L—1)

1 T2 T

> PGGl(k) P0102(k+ 1) T P0L710*(k+ l—)

L
Z (}e_A/tk) ,
r
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whereo,01,02,...,0._1,0" is a shortest path frora to o* in (S N), with pos-
sibly statec* repeated several times if the length of the actual path &thesn
L.

Having now established the weak ergodicity of our chainygetheck conditions
(i) and (ii) of Lemma 8.4 to complete the proof.

For condition (i) it suffices to observe that the stationasgrébution at stagé of
the algorithm:

= LeHom z 5 e RO
=€ ) Z| - € )

z 2
satisfies the condition!)P(M = i), for values ofmfromIL to (I + 1)L — 1.

For condition (ii), one can show by a somewhat tedious catmn (cf. Aarts
& Korst, “Simulated Annealing.. ”, p. 22) that for each of the intermediate
stationary distributionst!):

. o0 () A
if 0" € S, thena—_l_ng,* <0;

if 0 ¢S, then 6iTT'§) > 0 for| > |4 sufficiently large

As T,1 <T, at each stagk it thus follows that:

nﬁ,‘f” 2T[g) foro* €S
TIQH) §T§,') foro¢ S andl > I

Thus, forl > I5:

HT[(|)_T[(|+1)H1 :Ggs nél)_ (I+1)’
_ () _ (1+1) () _ (1+1)
L Y
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Hence, denotingd™ = ril™/LD:

00

WZO ﬁ(m)_ﬁ(m+1)H1 _ li ﬁ(l)_ﬁ(IJrl)Hl
1 o
_ IZO ﬁ<|)_ﬁ<|+1)Hl+l_g+l ﬁ(l)_ﬁ(m)Hl
= 2I1+ 2 (o*gs* T%* - 0*%8‘ T[g*ﬁ—l))

< 21+2< o,

This completes the proof, because according to Lemma 8&htia has the limit
distributionTt*, where

i) o L Heym [0, ifogS
T = im 1" = lim —-e =\ 1/S], ifoes O

| —o0 | —co Z|

9 Approximate counting

Let > be an alphabet (without loss of generallty= {0,1}) andRC Z* x * an
NP relation ovek*, i.e.

e for some polynomiap(n), R(x,w) = |w| < p(|x|), where|z| denotes the
length of string z

¢ the conditionR(x,w) can be tested in polynomial time, for any giveqw)
Well-known examples of NP relations:

e SAT(pt), whereg is (an encoding of) a Boolean formula andVary —
{T,F} is a truth assignment to its variables; relation holdgévaluates to
T undert.

e COL4(G,0), whereG = (V,E) isagraphanas :V — {1,...,q} is a can-
didate g-colouring of its nodes; relation holds d is valid for G, i.e. if
(uv) eE = o(u) #o(v) YuveV.
DenoteR(x) = {w € Z*|R(x,w) holds}.
One may consider different computational problems relaidl
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e existence problengivenx, determine ifR(X) # &
e counting problemgivenx, determineNr(x) = |R(X)|

e sampling problemgivenx, providew € R(x) uniformly at random

A randomised approximation scheme (r&s)the counting problem associated to
Ris a randomised algorithi(x, €) such that for anyx € ~*, € > 0:

PH{(1- E)NR() < A(XE) < (L+ENR(Y) >
where the probability is with respect to the random choicaderby the algorithm.
The ras idully polynomial (fprasjf its running time is polynomial inx| and /.
An almost uniform sampler (auf)r Ris a randomised algorith®(x, 8) such that
for anyx € £*, §(x,0) € R(x) anddy (S(x,0),Ur(X)) < 8, whereS(x,d) denotes
(by slight abuse of notation) the distribution of the outptitS(x, ), andUr(X)

denotes the uniform distribution ovBXx). An aus isfully polynomial (fpaus)s
its running time is polynomial ifx| and In1/d.

It can be shown (Jerrum et al. 1986, Sinclair 1993) th& i§ “self-reducible”,
thenR has an fpras if and only if it has an fpaus.

Self-reducibility ofR means roughly (the exact definition is somewhat more gen-
eral) that there is a small collection of polynomial timedtionsf;, g, i=1,... Kk,
such that for any € >*, | fj(x)| < |x| and

k

R(x) = [Jgi(xR(fi(x))).

i=1

E.g. for the SAT relation SAT#) = SAT(@r) USAT(¢=), wheregr (¢e) is the for-
mula obtained frong by substitutingl (F) for the first variable and simplifying.
Almost all “natural” NP-complete relations are self-reihle.

Let us see concretely, in the case of low-degree graph dapurow an efficient
fpaus (pages 46-50) can be converted into an efficient fpras.

Given a graplG = (V, E) with maximum node degref < g, denote for brevity
Q(G) = COLq4(G), and assume the existence of a fp&US, d) for g-colourings.
(Actually, the fpaus-construction on pages 46-50 requitese strongly thaf <

q/2)
One possible self-reduction for graph colouring is

Q(G) =9(G,Q(G)),
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whereG' ~ G with one edge (e.g. highest-numbered one) removed, and

(G,0) = o if oisvalid forG
909)=1 L otherwise

where_L is a “null-value” (SU{ L} = Sfor anyS).

Assuming|E| = m, denoteG = G, G’ = Gn_1,...,GM = Gy = (V,2). Now
clearly|Q(Go)| = g", wheren = |V|. Then the quantity we are interested in can
be expressed as:

B _ QC)m|  [QG)m-1] |Q(G)1]
NG = 12O = Gl [0l QG0 A
= Pm-Pm-1---P1-q", (4)
where
_ 19(6)
1Q(G)k-1|

Now each of the ratios ipx and hence the product (4) can be estimated using
our presumed fpaus to generate a “sufficiently large” nundbezamples form
eachQ(Gy_1) and seeing how many of those fall alsdMGy). Some analysis is
needed to determine the appropriate numbers.

Before going into the analysis, let us note that the sameoagpt combined with
more complicated samplers, has been used to provide fpragifh important
problems as:

e approximating the volume of a convex body (Dyer, Frieze, ikan1991)

e approximating the partition function of a ferromagnetia¢smodel (Jerrum
& Sinclair 1993)

e approximating the permanent of a positive matrix (Jerrumgl8ir & Vigoda
2001)

Let us then complete the analysis of the graph colouringsfdreecall that
1Q(G)| = pm*Pm-1-+-P1-q",

where each

_ 12
QG)ea



9. Approximate counting 103

Now clearly eachQ(Gy) C Q(Gk_1), so thatpy < 1. On the other hand, each
colouringo € Q(Gk_1) \ Q(Gk) must be such that it assigns the same colour to
both endpointsi, v of the edgee removed fromGy to obtainGy_1. Letu be the
lower-numbered of the nodes. Thercan be transformed to a valid colouring of
Gk by recolouringu with one of the> q— A > 1 colours free for it. On the other
hand, each colouring if(Gy) is generated by this process in at most one way.
Thus

1Q(Gk-1) \ Q(Gy)| < |Q(Gk)|,

1
and sopk > 5.

Assume then without loss of generality that> 1 and 0< € < 1. (Recalle ~
error tolerance for the fpras to be constructed).

Let Z, € {0,1} be a random variable obtained by running the presumed feews f
Gk_1 and testing whether the resulting colouring is also validGg (— Zx = 1)
or not (— Zx = 0). Denote = E[Z].

By settingd = & in the fpaus one may ensure that

(5)

£ £
< < —
Pk 6m_uk_pk+6m,

and noting the bounds @y, that
€ €
S < < — | Pk-
(1 3m> P = M= <1+ 3m> Pk (©)

Note also that by (Syk > 3.

To decrease the variance of questimate, IetZlgl),... ,Zﬁs) bes= [74e~°m] <
75 ~?mindependent copies of varialig, and let

— 120
Z=-52Z
“ Si;k

be their mean. TheB[Z] = E[Z] = 1 and

Var(Zy) _s7?-s-Var(Zy) _ sH(ik—Hf) _ swt-1) <25t

K e e

We shall take as our estimator f@(G)| the random variabl¥ = q"y - - - pm.
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The variance o¥ can be bounded as:
Var(Y)  Var(Zy---Zm)
E(Y)?  (bum)®

_ ﬁ (1+VaL(EZ">) —1

k=1
2\" m 2 - 2? g2
< 1+§ -1 s=[742] = £ < %= 7m
g2 \™
< (1rgm) 2
2/37 2 3
small!
g2
= 36
Since by Chebyshev’s inequality:
1 Var(Y)
— > < =
Pr(lY —E(Y)| > AE(Y)) < NEY)?
i.e.
Y 1€
— - > <
Pf( q M1 Hm‘ > A Hm) =236

we obtain, by choosing = ¢/3, the bound

Pr((l—%) W Em<g"Y < <1+§) u1-~-um> >

But from inequality (6) we obtain the bound

~w

(1) 00 P < i = (14 5) "o
= (1= 2 )P Pm< b < (142 ) pr-pm
(1-3) (1+3)

Putting these two bounds together yields the desired frmagiton:

MW

Prl (1—¢)g"p1---pm <Y < (1+€)q"p1--pm | >
—— ——
12(G)| 2(G)|



