
Part III

Stochastic Algorithms

8 Simulated Annealing

Global optimisation (say, minimisation) of an objective function H(σ), framed
as a Hamiltonian of a statistical mechanics system, via a sequence of Metropolis
samplers for the Gibbs distributions determined byH(σ) at decreasing values of
the temperature parameterT→ 0.

Let H : S→ R be a function to be minimised over a finite (but typically very
large) state spaceS. Assume thatShas some neighbourhood structureS= (S,N)
(cf. page 24).

In any specific application of the method, the algorithm designer typically has a
lot of freedom in the choice of the most appropriateN. This choice can have a
significant effect on the efficiency of the algorithm: one would like to haveN such
that N(σ) is small for eachσ ∈ S, yet the resulting Metropolis chains converge
rapidly.

The Gibbs distribution determined byH at temperatureT is (recall page 58):

π(T)
σ = PrT(σ) =

1
ZT

e−H(σ)/kT =
1

ZT
e−βH(σ),

whereβ = 1/kT.

A relevant observation is that asT → 0 (or β→ ∞), the distribution PrT(σ) gets
more peaked according toH. Denoting byS∗ = {σ∗ ∈ S | H(σ∗) = min} the set
of global optima ofH, one observes that:

PrT(σ)

PrT(σ∗)
= e−β(H(σ)−H(σ∗)) −−−−→

T→0
(β→∞)

{
0, σ /∈ S∗

1, σ ∈ S∗
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Thus, in the limit one obtains:

π∗σ = lim
T→0

PrT(σ) =

{
0, σ /∈ S∗

1/|S∗|, σ ∈ S∗

Of course, one cannot directly sample according toπ∗, but the idea is that by
starting at a high value ofT and then slowly (but how slowly?) decreasing it, one
obtains a nonhomogenous Metropolis chain that converges reasonably fast (?) to
π∗.

As regards the convergence of the chains at each fixedT > 0, we can appeal to the
general results concerning Metropolis samplers from page 24 onwards.

Let us just check the form of the acceptance probabilities: aproposed moveσ→ τ,
whereτ ∈N(σ), is accepted with probability:

pστ = min

{
πτdσ
πσdτ

,1

}

= min

{

e−βH(τ)

e−βH(σ)
·
dσ
dτ

,1

}

= min

{

e−β(H(τ)−H(σ)) ·
dσ
dτ

,1

}

= min
{

e−β(H(τ)−H(σ)),1
}

,

if (S,N) is regular i.e.|N(σ)|= |N(τ)| for all σ,τ.

Thus, for a regular neighbourhood structure, and denoting∆H = H(τ)−H(σ),
a proposed transitionσ→ τ is accepted always if∆H ≤ 0, and with probability
e−β∆H , if ∆H > 0.

In summary, one obtains the following general method for minimising a function
H over a state spaceSwith neighbourhood structureN:

Algorithm SA(H,S,N):

T← Tinit ;
σ← σinit ;
while T > Tf inal do

L← sweep(T);
for L times do

chooseτ ∈N(σ) uniformly at random;
∆H ←H(τ)−H(σ);
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if ∆H ≤ 0 thenσ← τ;
else chooser ∈ [0,1) uniformly at random;

if r ≤ exp(−∆H/T)
thenσ← τ;

end for;
T← lower(T);

end while;
result← σ;

(For simplicity, the neighbourhood graph is assumed to be regular.)

The obvious question is now how to choose appropriate functions lower(T) and
sweep(T), i.e. what is a good “cooling schedule”〈T0,L0〉,〈T1,L1〉, . . .

In practice, it is customary to just start from some “high” temperatureT0, and
after each “sufficiently long” sweepL decrease the temperature by some “cooling
factor” α≈ 0.8. . .0.99:

Tk+1 = αTk.

Theoretically this is much too fast, as we shall see, but often seems to work well
enough.

Consider an inhomogenous Markov chain with transition matricesP(0), P(1), P(2), . . .
Denote

P(m,k) = P(m)P(m+1) · · ·P(m+k−1)

i.e. Pi j (m,k) = Pr(Xm+k = j | Xm = i).

The chainM is weakly ergodicif for all m≥ 0:

lim
k→∞

sup
µ,ν

dV
(
µTP(m,k),νTP(m,k)

)
= 0

andstrongly ergodicif there is some distributionπ such that for allm≥ 0:

lim
k→∞

sup
µ

dV(µTP(m,k),π) = 0

Let Q be ann×m stochastic matrix. The(Dobrushin) ergodic coefficientof Q is
defined as:

ρ = ρ(Q) = max
i, j

dV(qi,q j)
qi = (qi1, . . . ,qim)
q j = (q j1, . . . ,q jm)

=
1
2

max
i, j

m

∑
k=1

|qik−q jk|
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The following key technical lemmas will possibly be proved later. The proofs are
not exceedingly difficult.

Lemma 8.1 (“Dobrushin’s inequality”)
Given the stochastic matrices Q1 ∈ [0,1]n×m,Q2 ∈ [0,1]n×l :

ρ(Q1Q2)≤ ρ(Q1)ρ(Q2).

Lemma 8.2 (“Dobrushin convergence rate bound”)
Given the stochastic matrix P and the distributions µ,ν:

dV(µTPn,νTPn)≤ dV(µ,ν)ρ(P)n.

Lemma 8.3
An inhomogeneous Markov chainM with transition probability matrices P(0),
P(1), . . . is weakly ergodic if and only if either (and hence both) of thefollowing
conditions hold:

(i) for any m≥ 0: limk→∞ ρ(P(m,k)) = 0;

(ii) for some increasing sequence0≤m0 < m1 < · · ·

∞

∑
i=0

(1−ρ(P(mi,mi+1))) = ∞.

Lemma 8.4
Let M be a weakly ergodic Markov chain with transition probability matrices
P(0),P(1), . . . Suppose that there exists a sequence of distributionsπ(0),π(1), . . .
such that

(i) π(m)P(m) = π(m), for each m≥ 0;

(ii)
∞

∑
m=0
||π(m)−π(m+1)||1 < ∞.

ThenM is also strongly ergodic, with limit distribution

π∗i = lim
m→∞

π(m)
i .
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Theorem 8.5
Consider a simulated annealing computation on input(H,S,N). Assume the
neighbourhood graph(S,N) is connected and regular of degree r. Denote:

∆ = max{H(τ)−H(σ) | σ ∈ S,τ ∈ N(σ)}.

Suppose the cooling schedule used is of the form〈T0,L〉,〈T1,L〉,〈T2,L〉, . . . , where

L≥ min
σ∗∈S∗

max
σ/∈S∗

dist(σ,σ∗), (1)

wheredist(σ,σ∗) is the distance in graph(S,N) fromσ to σ∗, and for each cooling
stage l≥ 2:

Tl ≥
L∆
ln l

(but Tl −−→
l→∞

0). (2)

Then the distribution of states visited by the computation converges in the limit to
π∗, where

π∗σ =

{
0, if σ /∈ S∗

1/|S∗|, if σ ∈ S∗

Proof: Denote byP(0),P(1), . . . the sequence of transition matrices for the Markov
chain onSdetermined by the SA algorithm with the given parameters. Weshall
show, based on Lemma 8.4, that this chain is strongly ergodicwith the given limit
distribution.

Let us first verify weak ergodicity using Lemma 8.3 (ii). Letσ∗ ∈ S∗ be some
ground state achieving the lower bound in condition (1). We shall show that for
anyσ ∈ Sandk≥ k0, wherek0 is sufficiently large:

Pσσ∗(k,k+L)≥

(
1
r

e−∆/tk

)L

, (3)

wheretk = T⌊k/L⌋ = cooling temperature at stepk.

It then follows from condition (3) and from the fact|p−q|= p+q−2min{p.q}
that

1−ρ(P(k,k+L))

= 1−
1
2

max
σ,τ ∑

ν∈S

|Pσν(k,k+L)−Pτν(k,k+L)|

= min
σ,τ ∑

ν∈S

min{Pσν(k,k+L),Pτν(k,k+L)}

≥ min
σ∈S

Pσσ∗(k,k+L)

≥ r−Le−L∆/tk,
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and so (choosingml = l ·L):

∞

∑
l=0

(1−ρ(P(ml ,ml+1)))≥
∞

∑
l=k0

(1−ρ(P(lL, lL +L)))

≥
∞

∑
l=k0

r−Le−L∆/tk ≥ r−L
∞

∑
l=k0

1
l

= ∞.

Thus, let us check that condition (3) holds for some sufficiently largek0. Observe
first that for anyσ ∈ Sandτ ∈ N(σ):

Pστ(k) =
1
r

min{e−(H(τ)−H(σ))/tk,1} ≥
1
r

e−∆/tk.

Similarly, for anyσ∗ ∈ S∗ there is somek0 such that for allk≥ k0:

Pσ∗σ∗(k)≥
1
r

e−∆/tk.

Namely, letδ = min{H(τ)−H(σ∗) | σ∗ ∈ S∗,τ ∈N(σ∗)\S∗}. Now δ > 0, unless
H is a constant function. Thus for allk≥ k0, wherek0 is sufficiently large:

1−e−δ/tk ≥ e−∆/tk,

and so

Pσ∗σ∗ = 1− ∑
τ∈N(σ∗)

Pσ∗τ(k)

= 1− ∑
τ∈N(σ∗)

1
r

e−(H(τ)−H(σ))/tk

≥ 1−
1
r
(r−1+e−δ/tk)

=
1
r
(1−e−δ/tk)

≥
1
r

e−∆/tk.

Thus, for anyσ ∈ Sandk≥ k0:

Pσσ∗(k,k+L)

= ∑
τ1

∑
τ2

· · · ∑
τL−1

Pστ1(k)Pτ1τ2(k+1) · · ·PτL−1σ∗(k+L−1)

≥ Pσσ1(k)Pσ1σ2(k+1) · · ·PσL−1σ∗(k+L)

≥

(
1
r
e−∆/tk

)L

,
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whereσ,σ1,σ2, . . . ,σL−1,σ∗ is a shortest path fromσ to σ∗ in (S,N), with pos-
sibly stateσ∗ repeated several times if the length of the actual path is less than
L.

Having now established the weak ergodicity of our chain, letus check conditions
(i) and (ii) of Lemma 8.4 to complete the proof.

For condition (i) it suffices to observe that the stationary distribution at stagel of
the algorithm:

π(l)
σ =

1
Zl

e−H(σ)/Tl , Zl = ∑
σ∈S

e−H(σ)/Tl ,

satisfies the conditionπ(l)P(m) = π(l), for values ofm from lL to (l +1)L−1.

For condition (ii), one can show by a somewhat tedious calculation (cf. Aarts
& Korst, “Simulated Annealing. . . ”, p. 22) that for each of the intermediate
stationary distributionsπ(l):

if σ∗ ∈ S∗, then
∂

∂T
π(l)

σ∗ < 0;

if σ /∈ S∗, then
∂

∂T
π(l)

σ > 0 for l ≥ l1 sufficiently large.

As Tl+1≤ Tl at each stagel , it thus follows that:

π(l+1)
σ∗ ≥ π(l)

σ∗ for σ∗ ∈ S∗

π(l+1)
σ ≤ π(l)

σ for σ /∈ S∗ andl ≥ l1

Thus, forl ≥ l1:

∣
∣
∣

∣
∣
∣π(l)−π(l+1)

∣
∣
∣

∣
∣
∣
1

= ∑
σ∈S

∣
∣
∣π(l)

σ −π(l+1)
σ

∣
∣
∣

= ∑
σ∗∈S∗

∣
∣
∣π(l)

σ∗ −π(l+1)
σ∗

∣
∣
∣+ ∑

σ/∈S∗

∣
∣
∣π(l)

σ −π(l+1)
σ

∣
∣
∣

= 2

(

∑
σ∗∈S∗

π(l+1)
σ∗ − ∑

σ∗∈S∗
π(l)

σ∗

)

.
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Hence, denotinĝπ(m) = π(⌊m/L⌋):

∞

∑
m=0

∣
∣
∣

∣
∣
∣π̂(m)− π̂(m+1)

∣
∣
∣

∣
∣
∣
1

=
∞

∑
l=0

∣
∣
∣

∣
∣
∣π̂(l)− π̂(l+1)

∣
∣
∣

∣
∣
∣
1

=
l1

∑
l=0

∣
∣
∣

∣
∣
∣π̂(l)− π̂(l+1)

∣
∣
∣

∣
∣
∣
1
+

∞

∑
l=l1+1

∣
∣
∣

∣
∣
∣π̂(l)− π̂(l+1)

∣
∣
∣

∣
∣
∣
1

≤ 2l1+2

(

∑
σ∗∈S∗

π∗σ∗− ∑
σ∗∈S∗

π(l1+1)
σ∗

)

≤ 2l1+2 < ∞.

This completes the proof, because according to Lemma 8.4 thechain has the limit
distributionπ∗, where

π∗σ = lim
l→∞

π(l)
σ = lim

l→∞

1
Zl

e−H(σ)/Tl =

{
0, if σ /∈ S∗

1/|S∗|, if σ ∈ S∗ �

9 Approximate counting

Let Σ be an alphabet (without loss of generalityΣ = {0,1}) andR⊆ Σ∗×Σ∗ an
NP relation overΣ∗, i.e.

• for some polynomialp(n), R(x,w) ⇒ |w| ≤ p(|x|), where|z| denotes the
length of string z

• the conditionR(x,w) can be tested in polynomial time, for any given〈x,w〉

Well-known examples of NP relations:

• SAT(φ, t), whereφ is (an encoding of) a Boolean formula andt : Varφ →
{T,F} is a truth assignment to its variables; relation holds ifφ evaluates to
T undert.

• COLq(G,σ), whereG = (V,E) is a graph andσ : V → {1, . . . ,q} is a can-
didateq-colouring of its nodes; relation holds ifσ is valid for G, i.e. if
(u,v) ∈ E ⇒ σ(u) 6= σ(v) ∀ u,v∈V.

DenoteR(x) = {w∈ Σ∗|R(x,w) holds}.

One may consider different computational problems relatedto R:
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• existence problem: givenx, determine ifR(x) 6= ∅

• counting problem: givenx, determineNR(x) = |R(x)|

• sampling problem: givenx, providew∈ R(x) uniformly at random

A randomised approximation scheme (ras)for the counting problem associated to
R is a randomised algorithmA(x,ε) such that for anyx∈ Σ∗,ε > 0:

Pr((1− ε)NR(x)≤ A(x,ε)≤ (1+ ε)NR(x))≥
3
4
,

where the probability is with respect to the random choices made by the algorithm.
The ras isfully polynomial (fpras)if its running time is polynomial in|x| and 1/ε.

An almost uniform sampler (aus)for R is a randomised algorithmS(x,δ) such that
for any x ∈ Σ∗,S(x,δ) ∈ R(x) anddV(S(x,δ),UR(x)) ≤ δ, whereS(x,δ) denotes
(by slight abuse of notation) the distribution of the outputof S(x,δ), andUR(x)
denotes the uniform distribution overR(x). An aus isfully polynomial (fpaus)is
its running time is polynomial in|x| and ln1/δ.

It can be shown (Jerrum et al. 1986, Sinclair 1993) that ifR is “self-reducible”,
thenR has an fpras if and only if it has an fpaus.

Self-reducibility ofR means roughly (the exact definition is somewhat more gen-
eral) that there is a small collection of polynomial time functions fi ,gi , i = 1, . . . ,k,
such that for anyx∈ Σ∗, | fi(x)|< |x| and

R(x) =
k

[

i=1

gi(x,R( fi(x))).

E.g. for the SAT relation SAT(φ) = SAT(φT)∪SAT(φF), whereφT (φF ) is the for-
mula obtained fromφ by substitutingT (F) for the first variable and simplifying.
Almost all “natural” NP-complete relations are self-reducible.

Let us see concretely, in the case of low-degree graph colouring, how an efficient
fpaus (pages 46-50) can be converted into an efficient fpras.

Given a graphG = (V,E) with maximum node degree∆ < q, denote for brevity
Ω(G) = COLq(G), and assume the existence of a fpausS(G,δ) for q-colourings.
(Actually, the fpaus-construction on pages 46-50 requiresmore strongly that∆ <
q/2.)

One possible self-reduction for graph colouring is

Ω(G) = g(G,Ω(G′)),
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whereG′ ∼G with one edge (e.g. highest-numbered one) removed, and

g(G,σ) =

{
σ if σ is valid forG
⊥ otherwise

where⊥ is a “null-value”(S∪{⊥}= S for anyS).

Assuming|E| = m, denoteG = Gm, G′ = Gm−1, . . . ,G(m) = G0 = (V,∅). Now
clearly |Ω(G0)| = qn, wheren = |V|. Then the quantity we are interested in can
be expressed as:

N(G) = |Ω(G)|=
|Ω(G)m|

|Ω(G)m−1|
·
|Ω(G)m−1|

|Ω(G)m−2|
· · ·
|Ω(G)1|

|Ω(G)0|
· |Ω(G)0|

= ρm ·ρm−1 · · ·ρ1 ·q
n, (4)

where

ρk =
|Ω(G)k|

|Ω(G)k−1|
.

Now each of the ratios inρk and hence the product (4) can be estimated using
our presumed fpaus to generate a “sufficiently large” numberof samples form
eachΩ(Gk−1) and seeing how many of those fall also inΩ(Gk). Some analysis is
needed to determine the appropriate numbers.

Before going into the analysis, let us note that the same approach, combined with
more complicated samplers, has been used to provide fpras for such important
problems as:

• approximating the volume of a convex body (Dyer, Frieze, Kannan 1991)

• approximating the partition function of a ferromagnetic Ising model (Jerrum
& Sinclair 1993)

• approximating the permanent of a positive matrix (Jerrum, Sinclair & Vigoda
2001)

Let us then complete the analysis of the graph colouring fpras. Recall that

|Ω(G)|= ρm ·ρm−1 · · ·ρ1 ·q
n,

where each

ρk =
|Ω(G)k|

|Ω(G)k−1|
.
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Now clearly eachΩ(Gk) ⊆ Ω(Gk−1), so thatρk ≤ 1. On the other hand, each
colouringσ ∈ Ω(Gk−1) \Ω(Gk) must be such that it assigns the same colour to
both endpointsu,v of the edgee removed fromGk to obtainGk−1. Let u be the
lower-numbered of the nodes. Thenσ can be transformed to a valid colouring of
Gk by recolouringu with one of the≥ q−∆ ≥ 1 colours free for it. On the other
hand, each colouring inΩ(Gk) is generated by this process in at most one way.
Thus

|Ω(Gk−1)\Ω(Gk)| ≤ |Ω(Gk)|,

and soρk ≥
1
2.

Assume then without loss of generality thatm≥ 1 and 0< ε ≤ 1. (Recallε ∼
error tolerance for the fpras to be constructed).

Let Zk ∈ {0,1} be a random variable obtained by running the presumed fpaus for
Gk−1 and testing whether the resulting colouring is also valid for Gk (→ Zk = 1)
or not (→ Zk = 0). Denoteµk = E[Zk].

By settingδ = ε
6m in the fpaus one may ensure that

ρk−
ε

6m
≤ µk≤ ρk +

ε
6m

, (5)

and noting the bounds onρk, that

(

1−
ε

3m

)

ρk ≤ µk ≤
(

1+
ε

3m

)

ρk. (6)

Note also that by (5),µk≥
1
3.

To decrease the variance of ourρk-estimate, letZ(1)
k , . . . ,Z(s)

k bes= ⌈74ε−2m⌉ ≤
75ε−2m independent copies of variableZk, and let

Z̄k =
1
s

s

∑
i=1

Z(i)
k

be their mean. ThenE[Z̄k] = E[Zk] = µk and

Var(Z̄k)

µ2
k

=
s−2 ·s·Var(Zk)

µ2
k

=
s−1(µk−µ2

k)

µ2
k

= s−1(µ−1
k −1)≤ 2s−1

We shall take as our estimator for|Ω(G)| the random variableY = qnµ1 · · ·µm.
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The variance ofY can be bounded as:

Var(Y)

E(Y)2 =
Var(Z̄1 · · · Z̄m)

(µ1 · · ·µm)2

=
m

∏
k=1

(

1+
Var(Z̄k)

µ2
k

)

−1

≤

(

1+
2
s

)m

−1 s= ⌈74m
e2⌉ ⇒

2
s ≤

2ε2

74m = ε2

37m

≤

(

1+
ε2

37m

)m

−1

≤ eε2/37−1 ex−1 = x+
x2

2!
+

x3

3!
+ · · ·

︸ ︷︷ ︸

small!

≤
ε2

36
.

Since by Chebyshev’s inequality:

Pr(|Y−E(Y)| ≥ λE(Y))≤
1
λ2

Var(Y)

E(Y)2

i.e.

Pr

(∣
∣
∣
∣

Y
qn −µ1 · · ·µm

∣
∣
∣
∣
≥ λµ1 · · ·µm

)

≤
1
λ2

ε2

36

we obtain, by choosingλ = ε/3, the bound

Pr

(
(

1−
ε
3

)

µ1 · · ·µm≤ q−nY ≤
(

1+
ε
3

)

µ1 · · ·µm

)

≥
3
4
.

But from inequality (6) we obtain the bound

(

1−
ε

3m

)m
ρ1 · · ·ρm≤ µ1 · · ·µm≤

(

1+
ε

3m

)m
ρ1 · · ·ρm

⇒
(

1−
ε
2

)

ρ1 · · ·ρm≤ µ1 · · ·µm≤
(

1+
ε
2

)

ρ1 · · ·ρm

Putting these two bounds together yields the desired fpras condition:

Pr




(1− ε)qnρ1 · · ·ρm

︸ ︷︷ ︸

|Ω(G)|

≤Y ≤ (1+ ε)qnρ1 · · ·ρm
︸ ︷︷ ︸

|Ω(G)|




≥

3
4
.


