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Threshold functions for global graph properties

Also known as the “phase transition”.

The “epochs of evolution”: Consider the structure of randomgraphsG∈ G(n, p),
asp= p(n) increases. The following results can be shown (note thatnp= average
node degree):

0. If p≺ n−2, then a.e.G is empty.

1. If n−2 ≺ p≺ n−1, then a.e.G is a forest (a collection of trees).

• The threshold for the apperarance of anyk-node tree structure isp =
n−k/(k−1).

• The threshold for the appearance of cycles (of all constant sizes) is
p = n−1.

2. If p ∼ cn−1 for anyc < 1 (i.e.np→ c < 1 asn→ ∞), then a.e.G consists
of components with at most one cycle andΘ(logn) nodes.

3. “Phase transition” or “emergence of the giant component”at p ∼ n−1 (i.e.
np→ 1).

4. If p∼ cn−1 for anyc> 1 (i.e.np→ c> 1), then a.e.G consists of a unique
“giant” component withΘ(n) nodes and small components with at most one
cycle.

5. If n−1 ≺ p≺ lnn
n , then a.e.G is disconnected, consisting of one giant com-

ponent and trees.

6. If p≻ lnn
n , then a.e.G is connected (in fact Hamiltonian).

Theorem 7.15 Let pl (n) =
lnn−ω(n)

n , pu(n) =
lnn+ω(n)

n whereω(n) → ∞. Then

(i) a.e. G∈ G(n, pl) is disconnected;

(ii) a.e. G∈ G(n, pu) is connected.

Proof. We shall use the second moment method on random variablesXk = Xk(G)
= number of components onG with exactlyk nodes.

Assume without loss of generality thatω(n) ≤ ln lnn andω(n) ≥ 10.
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(i) Set p = pl and computeµ= E(X1),σ2 = Var(X1). By linearity of expectation,

µ = E(X1) = n(1− p)n−1 = ne(n−1) ln(1−p)

≤ ne−np = ne− lnn+ω(n) = eω(n) −−→
n→∞

∞.

Furthermore, the expected number of ordered pairs of isolated nodes is

E(X1(X1−1)) = n(n−1)(1− p)2n−3.

Hence,

σ2 = Var(X1) = E(X2
1)−µ2

= E(X1(X1−1))+µ−µ2

= n(n−1)(1− p)2n−3+n(1− p)n−1−n2(1− p)2n−2

≤ n(1− p)n−1+ pn2(1− p)2n−3

≤ µ+(lnn−ω(n))ne−2lnn+2ω(n) (1− p)−3
︸ ︷︷ ︸

≤2

≤ µ+
2lnn

n
e2ω(n) ≤ µ+1 for largen.

Thus,σ2

µ2 ≤ µ+1
µ2 → 0 asn→ ∞, and by lemma 7.10,

Pr(G is disconnected) ≥ Pr(X1(G) > 0) → 1 asn→ ∞.

(ii) (Here basic expectation estimation, or “1st moment method” suffices.)

Setp = pu =
lnn+ω(n)

n and compute

Pr(G is disconnected) = Pr

(⌊n/2⌋
∑
k=1

Xk ≥ 1

)

≤ E

(⌊n/2⌋
∑
k=1

Xk

)
=

⌊n/2⌋
∑
k=1

E(Xk)

≤
⌊n/2⌋
∑
k=1

(
n
k

)
(1− p)k(n−k) (5)
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Split the sum (5) in two parts:

(a) ∑
1≤k≤n3/4

(
n
k

)
(1− p)k(n−k)

≤ ∑
1≤k≤n3/4

(en
k

)k
ek(n−k)(−p)

= ∑
1≤k≤n3/4

(en
k

)k
e−knpek2p

≤ ∑
1≤k≤n3/4

k−knkeke−k(lnn+ω(n))ek2·2lnn/n

= ∑
1≤k≤n3/4

k−ke(1−ω(n))ke2k2 lnn/n

≤ e−ω(n) · ∑
1≤k≤n3/4

exp

(
−k lnk+k+2k2 lnn

n

)

︸ ︷︷ ︸
≤3

≤ 3e−ω(n).

(b) ∑
n3/4≤k≤n/2

(
n
k

)
(1− p)k(n−k)

≤ ∑
n3/4≤k≤n/2

(en
k

)k
ek(n−k)(−p)

≤ ∑
n3/4≤k≤n/2

(
en1/4

)k
n−n/4

≤ n
2

en/2n−
1
4n3/4

≤ n−n3/4/5

= exp

(
−n3/4

5
lnn

)

≤ e−ω(n) for largen.

Thus, altogether

Pr(G is disconnected) ≤ 4e−ω(n) −−→
n→∞

0. �
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What happens at the “phase transition”p ∼ n−1? For fixed values ofn andN =(n
2

)
, consider the space of “graph processes”G̃ = (Gt)

N
t=0, where at each “time

instant”t a new edge is selected uniformly at random for insertion intoann-node
graph. (Thus, picking graphGt from a randomly chosen process̃G ∈ G(n,M),
whereM = t.)

Theorem 7.16 Let c> 0 be a constant andω(n)→∞. Denoteβ =(c−1− lnc)−1

and t= t(n) = ⌊cn/2⌋. Then

(i) At c< 1, every component C of a.e. Gt satisfies
∣∣∣∣|C|−β

(
lnn− 5

2
ln lnn

)∣∣∣∣≤ ω(n).

(ii) At c= 1, for any fixed h≥ 1 the h largest components C of a.e. Gt satisfy

|C| = Θ(n2/3).

(iii) At c> 1, the largest component C0 of a.e. Gt satisfies

||C0|− γn| ≤ ω(n) ·n1/2,

where0 < γ = γ(c) < 1 is the unique root of

e−cγ = 1− γ.

The other components C of a.e. Gt satisfy also in this case
∣∣∣∣|C|−β

(
lnn− 5

2
ln lnn

)∣∣∣∣≤ ω(n).

Thus, the fraction of nodes in the “giant” component of a.e.Gt for t = cn/2 be-
haves as illustrated in Figure 8.

Let us prove one part of this result, the emergence of a gap in the component sizes
of G∈ G(n, p) at p∼ n−1. (This corresponds tot ∼ Np ∼ n/2.)

Theorem 7.17 Let a≥ 2 be fixed. Then for large n,ε = ε(n) < 1/3 and p=
p(n) = (1+ ε)n−1, with probability at least1−n−a, a random G∈ G(n, p) has
no component C that satisfies

8a
ε2 lnn≤ |C| ≤ ε2

12
n.
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Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider “growing” the componentC(u) of an arbitrary nodeu in G
incrementally as follows:

1. (Stage 0:) SetA0 = ∅,B0 = {u}.

2. (Stagei + 1:) If Bi = Ai , then stop withC(u) = Bi . Otherwise pick an
arbitraryv∈ Bi \Ai ; setAi = Ai ∪{v}, Bi+1 = Bi ∪{neighbours ofv in G}.

Now what is the probability distribution of|Bi | (=size of setBi)?

Consider any nodev∈ G\{u}. It participates ini independent Bernoulli trials for
being included inBi , each with success probability equal top. Thus the inclusion
probability for any fixedv 6= u is 1− (1− p)i, independently of each other.

Consequently, the size of eachBi obeys a simple binomial distribution

Pr(|Bi | = k) =

(
n−1

k

)
(1− (1− p)i)k(1− p)i(n−k−1).

This gives also for eachk an upper bound on the probability

Pr(|C(u)|= k) = Pr(|Bi| = k∧ process stops at stagei).

Denotingpk = Pr(|C(u)|= k) for any fixedu∈ G, it is clear that

Pr(G contains a component of sizek) ≤ npk,

and to prove the theorem it suffices to show that

k1

∑
k=k0

pk ≤ n−a−1,
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wherek0 = ⌈8aε−2 lnn⌉, k1 = ⌈ε2n/12⌉.
Since presumablyk0 ≤ k1, we may assumeε4 ≥ 96alnn

n ≥ 1
n.

We may now estimate

pk ≤ Pr(|Bi| = k) ≤ nk

k!
e−

k2
2n (kp)k(1− p)k(n−k−1), (6)

because

(
n−1

k

)
=

nk

k!

k

∏
j=1

(
1− j

n

)
≤ nk

k!
e−

k2
2n , and

(1− p)k ≥ 1−kp.

Applying Stirling’s formula

√
2πk

(
k
e

)k

≤ k! ≤ e
1

12k
√

2πk

(
k
e

)k

and the boundsk0 ≤ k≤ k1 to (6) we obtain

pk ≤ exp

(−k2

2n
− ε3k

3
+

k2(1+ ε)
n

)

≤ exp

(−ε2k
3

+
k2

n

)

≤ exp

(−ε2k
4

)
,

and consequently

k1

∑
k=k0

pk ≤
k1

∑
k=k0

e−ε2k/4 ≤ e−ε2k0/4 · (1−e−ε2/4)−1

≤ 5
ε2 ·e

−ε2k0/4 ≤ 5
√

n·n−2a

= 5n−2a+1/2 < n−a−1.

for largen. 2
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7.2 Nonuniform Models

Introduction

Obviously (in hindsight), most large “real-world” networks do not conform to the
Erdös-Rényi random graph model. Consider e.g. the Internet, the WWW, traffic
networks (airline connections, roads), collaboration networks (scientists, artistic,
business), etc. All these exhibit strong nonuniformities:clustering, nodes with
exceptionally high degree, (“hubs”) etc.

This was noted (vaguely) in the social sciences at least in the 1960’s (Milgram,
“six degrees of separation”) and also in popular culture (“small worlds”, “the
Kevin Bacon game”).

Curiously, the first serious mathematical (physical) investigation of the phenomenon
seems to have been Duncan Watts’ Ph.D. thesis (under Steven Strogatz) in 1998
(?), and the “letter” to Nature by Watts and Strogatz in June 1998.

The Watts & Strogatz paper set off a veritable avalanche of work in the area –
fueled in no small part by the current interest in modeling the Internet and the
WWW.

“Small World” Networks

Watts & Strogatz 1998 etc.

Empirical measurements of real networks vs. predictions ofthe ER random graph
model showed that the ER model is not an adequate model of practical networks.

Statistical measures on a graphG = (V,E), |V| = n:

• Characteristic path length = average distance between nodes:

L(G) =

(
n
2

)−1

∑
u6=v

dist(u,v),

where dist(u,v) is the length of the shortest path betweenu andv.

• Clustering coefficient

C (G) = n−1∑
v

ρ(Γv),

whereΓv is the subgraph ofG induced by the neighbours of nodev in G,
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Figure 9: The SW random graph model: circulant graph and rewired graph.

and for a graphΓ with k nodes andl edges, thedensityof Γ is5

ρ(Γ) = l/

(
k
2

)
.

Watts and Strogatz considered the following three empirical graphs (n = number
of nodes,δ = average node degree; only the largest component of each graph was
chosen):

• Hollywood film actors collaboration network:n = 225226,δ = 61

• Power grid of the western US:n = 4941,δ = 2.67

• Neural network of nematodeCaenorhabditis elegans: n = 282,δ = 14

Watts and Strogatz obtained the following comparisons (LER andCER denote the
corresponding values for ER random graphs of comparable size and density):

L LER C CER

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.08 0.0005
C. elegans 2.65 2.25 0.28 0.05

The empirical conclusion is thus that “real networks” have path length compara-
ble to ER random graphs (= short) but considerably higher clustering. To model
such observations, Watts and Strogatz introduced a specific“small world” (SW)
random graph model, whereby one starts with a “circulant graph” Cn,k, and then
randomly “rewires” some small fractionp of the edges. (Cf. Figure 9.)

5To be precise, the definition requires thatk≥ 2. For nodesv with 0 or 1 neighbours, it is most
convenient to stipulate that the neighbourhood density corresponds to the global density, i.e. that
ρ(Γv) = |E|/|V|.



7. Random Graphs 89

0.2

L(G)

C (G)

0.001 0.01 0.1 1 p

0.8

1

0.6

0.4

Figure 10: Path length and clustering coefficient in SW random graphs.

Watts & Strogatz experimented on the effect of the rewiring probability p onL(G)
andC (G) in this model and obtained results as indicated in Figure 10 (curves nor-
malised byC (Cn,k) andL(Cn,k); n = 1000,k = 5). Thus, the “small world” phe-
nomenon of smallL and largeC seems to occur forp in the range 0.0005. . .0.05.

Watts and Strogatz call all graph families with this qualitative property “small
world graphs”. The notion has also been quantified by Walsh (1999) in terms of
theproximity ratio

µ=
C/L

CER/LER
.

Thus, presumablyµ ≫ 1 for small world graphs. However, this quantity does
not seem to be very invariant over various SW graph families.E.g. forC. elegans,
µ≈4.8 and for the power grid graphµ≈106, but for the actors’ networkµ≈ 2400.

For analytical simplicity, Newman et al. (1999, 2000) modified the Watts-Strogatz
SW model to simply adding a fractionp of random cross edges, rather than
rewiring. This variant of the model is called the “solvable SW”, or SSW model.

Other Small World Models

• Kleinberg’s (2000) lattice model: Basis is ans× s square lattice, with
Manhattan (L1) metric:

d(u,v) = d((i, j),(k, l)) = |k− i|+ |l − j|.

Each nodeu has local connections to all nodes within distanced ≤ p, and
in additionq≥ 0 directed “long distance” connections. The probability of
creating a long distance connection betweenu andv is proportional to thei
distance, Pr((u,v)) ∝ d(u,v)−r , r ≥ 0.
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Figure 11: A Kleinberg lattice.

• “Caveman graphs”: (Watts 1999; old idea?) Deterministic SW graph
model. Connect a collection ofr “k-man caves” (k-cliques) together in a
systematic manner.

Figure 12: A collection of six 5-caves connected together ina 6-cycle.

Scale Free Networks

So are small world graphs a good model of real world networks?Not always.
(Usually not?)

One aspect of real networks that SW graphs often do not model well is the degree
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Figure 13: Degree distribution of an ER random graph.

distribution. In an ER random graphG ∈ G(n, p), the degree distribution is al-
most binomial with parametersn−1, p. For largen and smallp, the distribution
approaches Poisson(λ), whereλ = np.

More precisely, ifXk = Xk(G) = number of nodes inG with deg =k, then

P(k) =
E(Xk)

n
=

(
n−1

k

)
pk(1− p)n−1−k ≈ e−np(np)k

k!
≈ e−δ δk

k!
,

whereδ = average degree of graphG. Thus, the degree distribution of a typical
ER graphG looks as illustrated in Figure 13.

The degree distributions of SW graphs are typically even more peaked around
δ(G). E.g. in WS graphs based on the circulantCn,t , approximately fraction
1− 2t p of the nodes has degree equal to 2t (recall thatp ≪ 1 is the rewiring
probability).

However, many real world networks seem to have very heavy tailed degree distri-
butions, well matched by “power laws”

P(k) ∝ k−γ,

whereγ = 2. . .4. This indicates that there are some nodes with unreasonably
large (in the ER or SW models) degrees. Also, such networks are called “scale
free”, because there is no characteristic “scale” or node degree value at which
large networks would concentrate.

On a log-log plot, the degree distributions of such networkslook somewhat as in
Figure 14

For instance, the following values forγ have been estimated for real world net-
works (Barabási & Albert 1999)
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Figure 14: Degree distribution of a “scale-free” random graph.

n δ γ
Film actors 212250 28.8 2.3± 0.1
WWW (local) 325729 5.46 2.1± 0.1
Power grid 4941 2.67 4

Barabási & Albert (1999) proposed the following attractive “growth and preferen-
tial attachment” model (BA model) to explain the emergence of such power law
degree distributions in networks:

• The network is initialised at timet = 0 with some small set of nodes and
edges,G0 = (V0,E0)

• At time t +1, a new nodeu is introduced to the network, withd0 edges that
are preferentially attached to the existing nodesv∈Vt so that

Pr((u,v) ∈ Et+1) ∝ degt(v).

Barabási and Albert argue heuristically and experimentally that this growth pro-
cess yields networks with power law degree distributions

P(k) ∝ k−3.

They also claim that with nonlinear preferences the exponent γ can be adjusted
also to values different than 3.

These arguments have been made rigorous by Eriksen & Hörnquist (2002) and by
Krapivsky (2000). (However some problems still remain withnonlinear prefer-
ences?)

Finally, note that the popular experimental graphs (Internet, actors, power grid,
etc.) have both small world and scale free properties, so neither the SW nor the BA
model (which are mutually contradictory) provides a fully satisfactory explanation
for them.


