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Threshold functions for global graph properties

Also known as the “phase transition”.

The “epochs of evolution”: Consider the structure of randpaphsG € G(n, p),
asp = p(n) increases. The following results can be shown (noterthataverage
node degree):

0. If p<n~2, then a.eG is empty.
1. If n=? < p<n1 then a.eGis a forest (a collection of trees).

e The threshold for the apperarance of &yode tree structure ig =
n—K/(k=1)

e The threshold for the appearance of cycles (of all constars}is
-1
p=n_-.

2. lf p~cntforanyc <1 (i.e.np— c < 1asn— ), then a.eG consists
of components with at most one cycle &@dogn) nodes.

3. “Phase transition” or “emergence of the giant componahp ~ n~1 (i.e.
np— 1).

4. If p~cntforanyc> 1 (i.e.np— c> 1), then a.eG consists of a unique
“giant” component witf®(n) nodes and small components with at most one
cycle.

5. 1fnl<p=< '“T” then a.eG is disconnected, consisting of one giant com-
ponent and trees.
6. If p>= N1 then a.eG is connected (in fact Hamiltonian).

n

Theorem 7.15Let p(n) = Inn-a(n) pu(n) = w wherew(n) — . Then

n
(i) a.e. Ge G(n, p) is disconnected:;

(i) a.e. Ge G(n,py) is connected.

Proof. We shall use the second moment method on random varizblesxy(G)
= number of components da with exactlyk nodes.

Assume without loss of generality thatn) < Inlnnandw(n) > 10.
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(i) Setp = p; and computei = E(X;),0% = Var(X;). By linearity of expectation,

M= E(X) =n(1—p)"* = nen-n-pl
S neinp — ne*“’] n+w(n) — ew(n) — 00,

nN—oo

Furthermore, the expected number of ordered pairs of mbladdes is
E(X1(X1—1)) =n(n—1)(1— p)>" 3.

Hence,

0% = Var(Xy) = E(X?) — 2
= E(X (X1 — 1)) +p—
n(n—1)(1-p)*"*+n(l—p)" ' —nP(1-p>"?
n(1—p)" 4 pri(l—p>°
H+ (Inn— w(n))ne—Zlnn—i—Zw(n) (1— p)—S
Nl

<2

VARV

< p+ L:nez‘*’(”) <u+1  forlargen.

Thus,g—j < %1 — 0 ash — oo, and by lemma 7.10,
Pr(G is disconnected> Pr(X1(G) > 0) — 1 asn — co.

(i) (Here basic expectation estimation, of*inoment method” suffices.)

Setp = py = M9 and compute

[n/2]
Pr(G is disconnected= Pr( z X > 1)
K=1

IN

Ln/2] [n/2]
(5 1)- 5 e

/2|
<y <E)(1—p>"(”") (5)
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Split the sum (5) in two parts:

@ Y (E)(l_p)k(n—k)
1<k<n3/4

emk . i
< 3 ?> K(n—K)(~p)

1<k<nd/4

= 3 ﬂ‘) K e knpg@p
1<k<nd/4 k

< k—*nKekek(nn+w(n)) *-2Inn/n
1<k<n3/4

= Kk Ke(1-w(n)kg2kInn/n

1<k<nd/4

<e . § exp(—klnk+k+2k2|n7n)

1<k<n3/4

J/

-~

<3
< 3g @,

(b) E) (1— p)knk

< ek kn—k)(-p)

nd/4<k<n/2 (

n3/4<k<n/2

< e M for largen.

Thus, altogether

Pr(G is disconnected< 4e " —— 0.

n—oo
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What happens at the “phase transitign® n—Nl? For fixed values of andN =
(5), consider the space of “graph processész (G)N.,, where at each “time
instant”t a new edge is selected uniformly at random for insertionamto-node
graph. (Thus, picking grap®; from a randomly chosen proce&se G(n,M),
whereM =1t.)

Theorem 7.16 Let c> 0 be a constant ana(n) — . Denotel = (c—1—Inc)~?
andt=t(n) = |cn/2]|. Then

(i) Atc< 1, every component C of a.e; atisfies

‘\C\ —B(Inn—glnlnn)

(i) Atc= 1, for any fixed > 1 the h largest components C of a.q.<atisfy

< w(n).

IC| = ©(n?/3).
(i) Atc> 1, the largest componenp®f a.e. G satisfies
ICol —yn| < w(n) -2,
where0 < y=y(c) < 1is the unique root of
e Y=1-v.

The other components C of a.gq. €atisfy also in this case

'\C\ —B(Inn—glnlnn)

Thus, the fraction of nodes in the “giant” component of &efor t = cn/2 be-
haves as illustrated in Figure 8.

< w(n).

Let us prove one part of this result, the emergence of a gd@indmponent sizes
of Ge G(n,p) atp ~ n~L. (This corresponds tb~ N ~ n/2.)

Theorem 7.17 Let a> 2 be fixed. Then for large rg = €(n) < 1/3 and p=
p(n) = (1+¢)n~L, with probability at leastl — n~2, a random Ge G(n, p) has
no component C that satisfies

8a g2
—Inn<|C| < —=n.
€2 <| |—12
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y(c)
T

Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider “growing” the componedtu) of an arbitrary node in G
incrementally as follows:

1. (Stage 0:) Sedg = @,Bg = {u}.

2. (Stagei + 1:) If B = A;, then stop withC(u) = B;. Otherwise pick an
arbitraryv € B; \ Aj; setA; = AU {v}, Biy1 = BjU {neighbours ofin G}.

Now what is the probability distribution dB;| (=size of seB;)?

Consider any nodec G\ {u}. It participates in independent Bernoulli trials for
being included irB;, each with success probability equaltoThus the inclusion
probability for any fixeds £ uis 1— (1— p)', independently of each other.

Consequently, the size of eaBhobeys a simple binomial distribution

Prje =1 = (" ) (1= - p)a p D,

This gives also for eackan upper bound on the probability
Pr(|C(u)| = k) = Pr(|Bi| = kA process stops at stage

Denotingpy = Pr(|C(u)| = k) for any fixedu € G, it is clear that
Pr(G contains a component of sikg < np,

and to prove the theorem it suffices to show that

kg
y Pt
K=
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wherekoy = [8ag~2Inn], ky = [€°n/12].

i 96al 1
Since presumabliy < ki, we may assumg* > 2ann > 2,
We may now estimate
LA k(n—k-1)

P < Pr([Bi| = k) < (7€ = (kp)*(1—p) : (6)

because
n—1) nk K ( j) nk w2
=— 1--)<—e 2 and
( K ki ﬂ n) =K
(1-p)*>1-kp.

Applying Stirling’s formula
k¥ 1 2%
VoK) <io < ez )

and the boundky < k < k; to (6) we obtain

3 n

<—82k kz)
< exp T—}_F

(%)
< exp )

and consequently

—k? €k k%(1+¢g
kaEXp<ﬁ——+ ( >)

k k
- O < © o eK/A < g ho/d (1— e /41
2= 2,
S —e%ko/4 —2a
< 2 e <5yn-n

_ 5nf2a+1/2 < na1

for largen. o
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7.2 Nonuniform Models
Introduction

Obviously (in hindsight), most large “real-world” netwarklo not conform to the
Erdds-Rényi random graph model. Consider e.g. the Ietethe WWW, traffic
networks (airline connections, roads), collaboratiorwoeks (scientists, artistic,
business), etc. All these exhibit strong nonuniformitiekistering, nodes with
exceptionally high degree, (“hubs”) etc.

This was noted (vaguely) in the social sciences at leastarl@60’s (Milgram,
“six degrees of separation”) and also in popular culturen@d worlds”, “the
Kevin Bacon game”).

Curiously, the first serious mathematical (physical) itigedion of the phenomenon
seems to have been Duncan Watts’ Ph.D. thesis (under Sténcya) in 1998
(?), and the “letter” to Nature by Watts and Strogatz in Jup@gl

The Watts & Strogatz paper set off a veritable avalanche okwothe area —
fueled in no small part by the current interest in modeling bhternet and the
WWW.

“Small World” Networks

Watts & Strogatz 1998 etc.

Empirical measurements of real networks vs. predictione®ER random graph
model showed that the ER model is not an adequate model dfgadatetworks.

Statistical measures on a gra@h= (V,E), |V| =n:

e Characteristic path length = average distance between nodes:

£(G) = (2) 1u§vdist(u,v),

where disfu, v) is the length of the shortest path betwessndv.

e Clustering coefficient
C(G)=n"1Y p(r),
\

whererly is the subgraph o induced by the neighbours of nogen G,
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Figure 9: The SW random graph model: circulant graph andreglxgraph.

and for a grapi with k nodes and edges, thelensityof I' is®

o) =1/(5):

Watts and Strogatz considered the following three empigcaphs 6 = number
of nodes = average node degree; only the largest component of eaph gias
chosen):

¢ Hollywood film actors collaboration network: = 22522606 = 61
e Power grid of the western US: = 4941,0 = 2.67

¢ Neural network of nematodeéaenorhabditis elegan® = 282,60 = 14

Watts and Strogatz obtained the following comparisaiisz(@nd (e r denote the
corresponding values for ER random graphs of comparal#easid density):

L fgp C CER
Film actors| 3.65 2.99 0.79 0.00027
Power grid| 18.7 12.4 0.08 0.0005
C.elegans| 2.65 2.25 0.28 0.05

The empirical conclusion is thus that “real networks” haathdength compara-
ble to ER random graphs (= short) but considerably highesteting. To model
such observations, Watts and Strogatz introduced a spé&snfiall world” (SW)
random graph model, whereby one starts with a “circulanplgt&; x, and then
randomly “rewires” some small fractigmof the edges. (Cf. Figure 9.)

5To be precise, the definition requires tkat 2. For nodes with 0 or 1 neighbours, it is most
convenient to stipulate that the neighbourhood densityesponds to the global density, i.e. that
p(Fv) = [E[/IVI.
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Figure 10: Path length and clustering coefficient in SW ramdoaphs.

Watts & Strogatz experimented on the effect of the rewirirgppbility pon L(G)
andC(G) in this model and obtained results as indicated in Figure@f/és nor-
malised byC(C k) andL(Cpk); n = 1000,k = 5). Thus, the “small world” phe-
nomenon of smalL and largeC seems to occur fgp in the range M005...0.05.

Watts and Strogatz call all graph families with this quaiNa property “small
world graphs”. The notion has also been quantified by Wal8Bg}lin terms of
the proximity ratio

= _C/L
Cer/ LR

Thus, presumably > 1 for small world graphs. However, this quantity does
not seem to be very invariant over various SW graph famikieg. forC. elegans
H~ 4.8 and for the power grid graph~ 106, but for the actors’ netwogk~ 2400.

For analytical simplicity, Newman et al. (1999, 2000) maatifthe Watts-Strogatz
SW model to simply adding a fractiop of random cross edges, rather than
rewiring. This variant of the model is called the “solvabM/'S or SSW model.

Other Small World Models

¢ Kleinberg’'s (2000) lattice model: Basis is ans x s square lattice, with
Manhattan () metric:

d(u,v) =d((i, J), (k1)) = [k=i] + ]I = j].

Each nodeu has local connections to all nodes within distadce p, and

in additiong > 0 directed “long distance” connections. The probability of
creating a long distance connection betweemndv is proportional to thei
distance, Pf(u,v)) Od(u,v)~",r > 0.
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Figure 11: A Kleinberg lattice.

e “Caveman graphs™ (Watts 1999; old idea?) Deterministic SW graph
model. Connect a collection af“k-man caves”K-cliques) together in a
systematic manner.

Figure 12: A collection of six 5-caves connected togethex @acycle.

Scale Free Networks

So are small world graphs a good model of real world networkis® always.
(Usually not?)

One aspect of real networks that SW graphs often do not maelelsithe degree
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Figure 13: Degree distribution of an ER random graph.

distribution. In an ER random graph € G(n, p), the degree distribution is al-
most binomial with parameters— 1, p. For largen and smallp, the distribution
approaches PoissaY)( whereA = np.

More precisely, iiXx = Xx(G) = number of nodes i with deg =k, then

E -1 K o
P(k) — (:](k) _ (n . ) pk(l— p)nflfk ~ enp(nkF!)) ~ eféﬁ,

whered = average degree of gragh Thus, the degree distribution of a typical
ER graphG looks as illustrated in Figure 13.

The degree distributions of SW graphs are typically evenenpmaked around
6(G). E.g. in WS graphs based on the circul&@ht;, approximately fraction
1—2tp of the nodes has degree equal to(écall thatp < 1 is the rewiring

probability).

However, many real world networks seem to have very heaisddiegree distri-
butions, well matched by “power laws”

P(k) Ok™Y,

wherey = 2...4. This indicates that there are some nodes with unreaspnabl
large (in the ER or SW models) degrees. Also, such networksalfed “scale
free”, because there is no characteristic “scale” or nodges#evalue at which
large networks would concentrate.

On a log-log plot, the degree distributions of such netwdok& somewhat as in
Figure 14

For instance, the following values fgrhave been estimated for real world net-
works (Barabasi & Albert 1999)
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log Xk

slope =—y

logk

Figure 14: Degree distribution of a “scale-free” randonmpira

n 0 %
Film actors 212250 28.8 2.3 0.1
WWW (local) | 325729 5.46 2.1 0.1
Power grid 4941 2.67 4

Barabasi & Albert (1999) proposed the following attraetigrowth and preferen-
tial attachment” model (BA model) to explain the emergenicsuch power law
degree distributions in networks:

e The network is initialised at time= 0 with some small set of nodes and
edgesGO = (V07 EO)

e Attimet+1, a new node is introduced to the network, wittly edges that
are preferentially attached to the existing nodesV; so that

Pr((u,v) € Ery1) O deg(v).

Barabasi and Albert argue heuristically and experiménthht this growth pro-
cess yields networks with power law degree distributions

P(k) Ok3.

They also claim that with nonlinear preferences the expoypean be adjusted
also to values different than 3.

These arguments have been made rigorous by Eriksen & Histr{§002) and by
Krapivsky (2000). (However some problems still remain witnlinear prefer-
ences?)

Finally, note that the popular experimental graphs (Irégractors, power grid,
etc.) have both small world and scale free properties, shedhe SW nor the BA
model (which are mutually contradictory) provides a fullyisfactory explanation
for them.



