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It is an intriguing, and nontrivial, exercise to work out Wedue ofA, exactly in
this case, in order to determine whether the mixing timgs are closer to the
given lower or upper bounds as a functiomof

Let us now return to the proof of Theorem 3.6, establishirggdbnnection be-
tween the second-largest eigenvalue and the conductarcklafkov chain. Re-
call the statement of the Theorem:

Theorem 3.6 Let M be a finite, regular, reversible Markov chain and the
second-largest eigenvalue of its transition matrix. Then:

() Aa<1-%,
(i) Ap>1—20.

Proof. (i) The approach here is to boudtlin terms of the eigenvalue gap 61,
i.e. to show thatb? /2 < 1 — Ay, from which the claimed result follows.

Thus, consider the eigenvalae= A,. (The following proof does not in fact de-
pend on this particular choice of eigenvalue 1, but since we are proving an
upper bound of the forrd? /2 < 1— A, all other eigenvalues yield weaker bounds
thanA,.)

Let e be a left eigenvectoe # 0 such thaeP = Ae. Now e must contain both
positive and negative components, singe = 0 as can be seen:

eP=2Ae & S apj=Aej V]
|

= Yyapj=)a)pj=A>e
T T j
=1
A;il za:O.
|

DefineA= {i | & > 0}. Assume, without loss of generality, thafA) < 1/2.
(Otherwise we may replaaeby —ein the following proof.)

Define further a f-normalised” version oé | A:

L_[e/m ificA
=10,  ifi¢gA

Without loss of generality we may again assume that theséaieindexed so that
Up>Up>...>U >Uy1=...= Uy =0, wherer = |A|.
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In the remainder of the proof, the following quantity will beportant:

2 2
> wij (U —uf)
i<

s
|

We shall prove the following claims:

D=

(@) @ <D,
(b) D?/2<1—A,

which suffice to establish our result.

Proof of (a): DenoteAx = {1,...,k}, fork=1,...,r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out ofApas
follows:

2 2 2 2
> Wi (U —uj) = wij Z (Ui — Ui 1)
1<) i<] i<k<j
r

B 2 2 .
=Y (Ug—Ugiq) Wij
k=1 €A,

1¢A

z uk - uk+1

Now the capacities of th& satisfyi(Ay) < (A) < 1/2, so by definitior®a, >
® = Fp > ®-m(Ay). Thus,

r
> wij(u 2 — U 1)F,
i<) k=1

v

©- (Uk — Ui, 1)THAY)
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Hence,

> waj (uf — uf)

i<]

s
|

=D.

o<

Proof of (b): We introduce one more auxiliary expression:

> wij (Ui — up)?
i<

s
|

E—

and establish that: (bp? < 2E, (b”) E < 1— A. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b"): Observe first that

> wij ( Ui +Uj)? <2 wi( uf + u? <2;Tﬁui2.
i

i<] i<]

Then, by the Cauchy-Schwartz inequality:

2

S wij (uf - uf)
D2: 1<)

st
|

5w (uiHu)?\ 5w (- up)?

< i<] , i<] , <2F

> TR, > ThL;
| |

Proof of (b"): DenoteQ =1 — P. TheneQ= (1—A)eand thus

eQU =(1-Me i
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On the other hand, writingQU' out explicitly:

n r Wi ) )
eQUu = i;glque.u; qn=—pu=—#, i #

r r

> aij&u; Qiizl_pii:;pij
i;,; i#]

2 -
= - WijUin—F% Wijut | e =Ty, €A

j#i
= —Zzwijuiuj+ZWij(ui2+uj-2)
<) i<)
= > wij(u uj)?

Thus,
E-Zmuizz Wij (U —uj)? < eQU = (1—A)- ZTEUiZ = E<1-A\.
[ i<] [
(i) Given the stationary distribution vectore R", define an inner product, - )
in R" as:

(U, V)= i:imuivi.

By (a slight modification of) a standard result (the Cour@ischer minimax the-
orem) in matrix theory, and the fact tHais reversible with respect tm implying
(u,Pv)yr= (Pu,V)r, one can characterise the eigenvalueB at:

— max{ <?J,F:JL;?T" |u+# 0},

P
Ao = max{%iuh\uLn,u;éO}, etc.

U)rr
In particular,

<U, PU>T[
>
)\2 B <U, u>T[

Given a set of state8 C S, 0 < 1(A) < 1/2, we shall apply the bound (5) to the
vectoru defined as:

for anyu # 0 such thatz U = 0. (5)
|

1 .
T[—A)’ ifieA
1 —
——— ifieA
nA)

Ui
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Clearly

T T§
Zmui :i;@—i;@ =1-1=0, and

T§ T
W= 3= D A 2R T A A

so let us compute the value af, Pu).

The task can be simplified by representi@sP = I, — (I, — P), and first com-
puting (u, (I — P)u)::

(u,(I =P)U)r = zTEUi Z(| —P)iju;
' ]
= —Z;WUipiiui +|Zj;muipuui

=3 > T (uf — i)
A
= ipy (Ui —uj)?

i<)

~ () ™

Thus,
Ao > <ztil;in _ (u,lU >n<<u,u>n— (u,(1 = P)u)r)
1
=1-— W (u, (I =P)u)y
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Since the bound (6) holds for adyC Ssuch that 0< Ti(A) < 1/2, it follows that
it holds also for the conductance

®= min da.
0<m(A)<1/2

Thus, we have shown thap > 1 — 2®, which completes the proof;

Despite the elegance of the conductance approch, it canrbetisoes (often?)
difficult to apply in practice — computing graph conductaoae be quite difficult.
Also the bounds obtained are not necessary the best pgssilgarticular the
square in the upper bound < 1— ®?/2 is unfortunate.

An alternative approch, which is sometimes easier to aglg, can even yield
better bounds, is based on the construction of so callecdtuaal paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain withi@tatry distributionr,
represented as a weighted graph with nod&seid edge sét = {(i, j) | pij > 0}.
The weight, or capacityye associated to edge= (i, j) corresponds to the ergodic
flow T4 pj; between stateisand j.

Specify for each pair of statés| € Sa canonical pathyy connecting them. The
paths should intuitively be chosen as short and as nongyerig as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

Denotel” = {yy | k,| € S} and define the unweighted and weighéesitje loading
induced byl on an edge € E as:

1

Pe = — TKTY
Wevkuzae

_ 1

Pe = — ) TWTG|Ykl,
Wevkuzae

where|yy | is the length (number of edges) of patf. (Note that here the edges
are considered to bariented so that only paths crossing an edge (i, j) in the
direction fromi to j are counted in determining the loadingesf Themaximum
edge loadingnduced byl is then:

p = p(l) = maxpe

_ _ ecE

p = p(r) = maxpe.

Theorem 3.9 For any regular, reversible Markov chain and any choice afi@a-
ical paths,

®> -
~ 29
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Proof. Represent the chain as a weighted gr@plwhere the weight (capacity) on
edgee= (i, j) is defined as:

Wij = TG Pij =TT Pji-

Every set of stated C Sdetermines a cutA, A_\) in G, and the conductance of the
cut corresponds to itelative capacity

WAA 1
P = = Wij .
T2

Let thenA be a set with G< TI(A) < 3 that minimisesb,, and thus ha®a = ®.
Assume some choice of canonical pakhs: {yij}, and assign to each payh a
“flow” of value Tg11;. Then the total amount of flow crossing the CAtA) is

S T = AT(A),
ieAJeEA

but the cut edges, i.e. edges crossing the cut, have onlycapacityw(A,A).
Thus, some cut edgemust have loading

s nam> S A L
Pe—wewzae“ 1= WAA) T 2W(AA) 20

The result follows

Corollary 3.10 With notations and assumptions as above,

Proof. From Theorems 3.6 and 3.9.
A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:

() A < 1—%
B t
@) am < 1PL

icA
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Example 3.2 Random walk on a ringLet us consider again the cyclic random
walk of Figure 11. Clearly the stationary distributiorris= [ -, 1], and the
ergodic flow on each edge= (i,i+1)is

(iii) t(e) < (In +In

n’n7'

11 1

We = ==.>==
e=TiPjji+1 na" an

An obvious choice for a canonical path connecting nddéss the shortest one,
with length

[Via| = min{|l —k|,n— |l —kl}.

It is fairly easy to see that each (oriented) edge is now liedy 1 canonical
path of length 1, 2 of length 2, 3 of length 3, , 3 of length 5 (actually the last
one is just an upper bound). Thus:

n/2

_ 1 1
p = r:aiweyklzgeﬂmlvij|§4nrzl?—2.r2
- ﬁ-ag-<§+1)~(n+1):6(n+1)(n+2)
=
1(e) < l(n+1)(n+2)(|n n+Ini)
= gnz(ln n+1)+0(n(In ntinl ).

Example 3.3 Sampling permutations.et us consider the Markov chain whose
states are all possible permutationsgrgf= {1,2,...,n}, and for any permutations

ste Sy

Pst = {

Thus, e.g. fon = 3 we obtain the transition graph in Figure 12.

if s=t,
: (2)_1, if scan be changed toby transposing two elements,
otherwise

Y

QNI NI~

Y

Clearly, the stationary distribution for this chainmis= [+, X ..., 1], and the

ergodic flow on each edge= (s,t), withs#t, pst > 0, is:

1 1 /m\ ¢t
Wr = TlgPst = 2o .
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Figure 12: Transition graph for three-element permutation

A natural canonical path connecting permutatsio permutatiort is now ob-
tained as follows:

S=9—S1—H— =S 1=1L
where at eachy, sc(K) =t(k). (Thus, eacls matches up to elemenk, s¢(1...k) =
t(1...k).)
Thus, e.g. the canonical path connecting (1234) tot = (3142 is as follows:

® A
— =

(1234 — (3|214) — (31)24) — (3142).
Now let us denote the set of canonical paths containing axgreasitiont : w —
o by I'(1). We shall upper bound the size bft) by constructing an injective

mappingo: : I (1) — S,. Obviously, the existence of such a mapping implies that
MM <n.

Suppose transposes locationst+ 1 andl, k+ 1 < |, of permutatiorw. Then for
any(s,t) € I'(1), define the permutation= o(s,t) as follows:

1. Place the elements (1. ..k) in the locations they appear & (Note that
permutatiorw is given and fixed as part af)

2. Place the remaining elements in the remaining locatiorike order they
appear irt.
Thus, for example in the above example case:
0:((1234,(3142) — (. _ 3 ) — (1432
——"

z

w=(3214), k=1
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Why is this mapping an injection, i.e. how do we recavandt from a knowledge
of T andz = o(s,t)? The reasoning goes as follows:

1. t =w(1...k)+ “other elements in same order aszin

2. s="elements inw(1...k) at locations indicated i@’ + “other elements in
locations deducible from the transposition psthsy — 51 — - — =W’

This is somewhat tricky, so let us consider an example. Say(3 1|2 4),
k=2,z=(1 4 3 2. Then:

Lt=(3 1. )+(C |4 2=3 14 2

2.
s = =1 -3 =1 -3
s = 3 - - ) = s =@ 21 )
W =15 = (3 1 2 4 S = (3 1 2 4
s =% = (1 2 3 49 S = (1 2 3 49
ss = (3 21 4 = s = (3 21 9
W =15 = (3 1 2 4 S = (3 1 2 4

Thus, we know that for each transition
rm<nl

We can now obtain a bound on the unweighted maximum edgenganiduced
by our collection of canonical paths:

p = maxi z TTg < i}(n)l
T€E Ot (o5 ) —\n 2 \2

— onl (2) - (%)2 _2. (2) —n(n—1).

By Theorem 3.9, the conductance of this chain is #hus W{” and by Corol-
lary 3.8, its mixing time is thus bounded by

1_ ) <2(2n(n—1))? (In%jtlnn!)

Th(e) < 2 In1+ln
M= ez \ e in

- ot



