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It is an intriguing, and nontrivial, exercise to work out thevalue ofλ2 exactly in
this case, in order to determine whether the mixing timesτ(ε) are closer to the
given lower or upper bounds as a function ofn.

Let us now return to the proof of Theorem 3.6, establishing the connection be-
tween the second-largest eigenvalue and the conductance ofa Markov chain. Re-
call the statement of the Theorem:

Theorem 3.6 Let M be a finite, regular, reversible Markov chain andλ2 the
second-largest eigenvalue of its transition matrix. Then:

(i) λ2 ≤ 1− Φ2

2 ,

(ii) λ2 ≥ 1−2Φ.

Proof. (i) The approach here is to boundΦ in terms of the eigenvalue gap ofM ,
i.e. to show thatΦ2/2≤ 1−λ2, from which the claimed result follows.

Thus, consider the eigenvalueλ = λ2. (The following proof does not in fact de-
pend on this particular choice of eigenvalueλ 6= 1, but since we are proving an
upper bound of the formΦ2/2≤ 1−λ, all other eigenvalues yield weaker bounds
thanλ2.)

Let e be a left eigenvectore 6= 0 such thateP= λe. Now e must contain both
positive and negative components, since∑i ei = 0 as can be seen:

eP= λe ⇔ ∑
i

ei pi j = λej ∀ j

⇒ ∑
j
∑
i

ei pi j = ∑
i

ei ∑
j

pi j

︸ ︷︷ ︸

=1

= λ∑
j

ej

λ6=1
⇒ ∑

i
ei = 0.

DefineA = {i | ei > 0}. Assume, without loss of generality, thatπ(A) ≤ 1/2.
(Otherwise we may replaceeby−e in the following proof.)

Define further a “π-normalised” version ofe↾ A:

ui =

{
ei/πi, if i ∈ A
0, if i /∈ A

Without loss of generality we may again assume that the states are indexed so that
u1 ≥ u2 ≥ . . . ≥ ur > ur+1 = . . . = un = 0, wherer = |A|.
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In the remainder of the proof, the following quantity will beimportant:

D =

∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i

.

We shall prove the following claims:

(a) Φ ≤ D,

(b) D2/2≤ 1−λ,

which suffice to establish our result.

Proof of (a): DenoteAk = {1, . . . ,k}, for k = 1, . . . , r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out of theAk as
follows:

∑
i< j

wi j (u
2
i −u2

j ) = ∑
i< j

wi j ∑
i≤k< j

(u2
k−u2

k+1)

=
r

∑
k=1

(u2
k−u2

k+1) ∑
i∈Ak
j /∈Ak

wi j

=
r

∑
k=1

(u2
k−u2

k+1)FAk.

Now the capacities of theAk satisfyπ(Ak) ≤ π(A) ≤ 1/2, so by definitionΦAk ≥
Φ ⇒ FAk ≥ Φ ·π(Ak). Thus,

∑
i< j

wi j (u
2
i −u2

j ) =
r

∑
k=1

(u2
k−u2

k+1)FAk

≥ Φ ·
r

∑
k=1

(u2
k−u2

k+1)π(Ak)

= Φ ·
r

∑
k=1

(u2
k−u2

k+1)
k

∑
i=1

πi

= Φ ·
r

∑
i=1

πi

r

∑
k=i

(u2
k−u2

k+1)

= Φ ·∑
i∈A

πiu
2
i .
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Hence,

Φ ≤

∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i

= D.

Proof of (b): We introduce one more auxiliary expression:

E =

∑
i< j

wi j (ui −u j)
2

∑
i

πiu
2
i

,

and establish that: (b’)D2 ≤ 2E, (b”) E ≤ 1−λ. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b’): Observe first that

∑
i< j

wi j (ui +u j)
2 ≤ 2∑

i< j
wi j (u

2
i +u2

j ) ≤ 2∑
i∈A

πiu
2
i .

Then, by the Cauchy-Schwartz inequality:

D2 =







∑
i< j

wi j (u
2
i −u2

j )

∑
i

πiu
2
i







2

≤







∑
i< j

wi j (ui +u j)
2

∑
i

πiu
2
i













∑
i< j

wi j (ui −u j)
2

∑
i

πiu
2
i







≤ 2E.

Proof of (b”): DenoteQ = I −P. TheneQ= (1−λ)eand thus

eQuT = (1−λ)euT = (1−λ)
r

∑
i=1

πiu
2
i .
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On the other hand, writingeQuT out explicitly:

eQuT =
n

∑
i=1

r

∑
j=1

qi j eiu j qi j = −pi j = −
wi j

πi
, i 6= j

≥
r

∑
i=1

r

∑
j=1

qi j eiu j qii = 1− pii = ∑
i 6= j

pi j

= −∑
i∈A

∑
j∈A
j 6=i

wi j uiu j + ∑
i∈A

∑
j∈A
j 6=i

wi j u
2
i ei = πiui , i ∈ A

= −2∑
i< j

wi j uiu j + ∑
i< j

wi j (u
2
i +u2

j )

= ∑
i< j

wi j (ui −u j)
2.

Thus,

E ·∑
i

πiu
2
i = ∑

i< j
wi j (ui −u j)

2 ≤ eQuT = (1−λ) ·∑
i

πiu
2
i ⇒ E ≤ 1−λ.

(ii) Given the stationary distribution vectorπ ∈ R
n, define an inner product〈·, ·〉π

in R
n as:

〈u,v〉π =
n

∑
i=1

πiuivi .

By (a slight modification of) a standard result (the Courant-Fischer minimax the-
orem) in matrix theory, and the fact thatP is reversible with respect toπ, implying
〈u,Pv〉π = 〈Pu,v〉π, one can characterise the eigenvalues ofP as:

λ1 = max

{
〈u,Pu〉π
〈u,u〉π

| u 6= 0

}

,

λ2 = max

{
〈u,Pu〉π
〈u,u〉π

| u⊥ π,u 6= 0

}

, etc.

In particular,

λ2 ≥
〈u,Pu〉π
〈u,u〉π

for anyu 6= 0 such that∑
i

πiui = 0. (5)

Given a set of statesA⊆ S, 0 < π(A) ≤ 1/2, we shall apply the bound (5) to the
vectoru defined as:

ui =







1
π(A)

, if i ∈ A

−
1

π(Ā)
, if i ∈ Ā
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Clearly

∑
i

πiui = ∑
i∈A

πi

π(A)
−∑

i∈Ā

πi

π(Ā)
= 1−1 = 0, and

〈u,u〉π = ∑
i

πiu
2
i = ∑

i∈A

πi

π(A)2 + ∑
i∈Ā

πi

π(Ā)2
=

1
π(A)

+
1

π(Ā)
,

so let us compute the value of〈u,Pu〉π.

The task can be simplified by representingP asP = In− (In−P), and first com-
puting〈u,(I −P)u〉π:

〈u,(I −P)u〉π = ∑
i

πiui ∑
j
(I −P)i j u j

= −∑
i

∑
j 6=i

πiui pi j u j +∑
i

∑
j 6=i

πiui pi j ui

= ∑
i

∑
j 6=i

πi pi j (u
2
i −uiu j)

= ∑
i< j

πi pi j (ui −u j)
2

= ∑
i∈A
j 6=i

πi pi j

(
1

π(A)
+

1
π(Ā)

)2

=

(
1

π(A)
+

1

π(Ā)

)2

FA.

Thus,

λ2 ≥
〈u,Pu〉π
〈u,u〉π

=
1

〈u,u〉π

(

〈u,u〉π−〈u,(I −P)u〉π

)

= 1−
1

〈u,u〉π
· 〈u,(I −P)u〉π

= 1−

(
1

π(A)
+

1
π(Ā)

)−1( 1
π(A)

+
1

π(Ā)

)2

·FA

= 1−

(
1

π(A)
+

1

π(Ā)

)

·FA

≥ 1−
2

π(A)
·FA = 1−2ΦA.
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Since the bound (6) holds for anyA⊆ Ssuch that 0< π(A)≤ 1/2, it follows that
it holds also for the conductance

Φ = min
0<π(A)≤1/2

ΦA.

Thus, we have shown thatλ2 ≥ 1−2Φ, which completes the proof.2

Despite the elegance of the conductance approch, it can be sometimes (often?)
difficult to apply in practice – computing graph conductancecan be quite difficult.
Also the bounds obtained are not necessary the best possible; in particular the
square in the upper boundλ2 ≤ 1−Φ2/2 is unfortunate.

An alternative approch, which is sometimes easier to apply,and can even yield
better bounds, is based on the construction of so called “canonical paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain with stationary distributionπ,
represented as a weighted graph with node setSand edge setE = {(i, j) | pi j > 0}.
The weight, or capacity,we associated to edgee= (i, j) corresponds to the ergodic
flow πi pi j between statesi and j.

Specify for each pair of statesk, l ∈ Sa canonical pathγkl connecting them. The
paths should intuitively be chosen as short and as nonoverlapping as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

DenoteΓ = {γkl | k, l ∈ S} and define the unweighted and weightededge loading
induced byΓ on an edgee∈ E as:

ρe =
1
we

∑
γkl∋e

πkπl

ρ̄e =
1
we

∑
γkl∋e

πkπl |γkl|,

where|γkl| is the length (number of edges) of pathγkl. (Note that here the edges
are considered to beoriented, so that only paths crossing an edgee= (i, j) in the
direction fromi to j are counted in determining the loading ofe.) Themaximum
edge loadinginduced byΓ is then:

ρ = ρ(Γ) = max
e∈E

ρe

ρ̄ = ρ̄(Γ) = max
e∈E

ρ̄e.

Theorem 3.9 For any regular, reversible Markov chain and any choice of canon-
ical paths,

Φ ≥
1

2ρ
.
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Proof. Represent the chain as a weighted graphG, where the weight (capacity) on
edgee= (i, j) is defined as:

wi j = πi pi j = π j p ji .

Every set of statesA⊆ Sdetermines a cut(A, Ā) in G, and the conductance of the
cut corresponds to itsrelative capacity:

ΦA =
w(A, Ā)

VA
=

1
π(A) ∑

i∈A, j∈Ā

wi j .

Let thenA be a set with 0< π(A) ≤ 1
2 that minimisesΦA, and thus hasΦA = Φ.

Assume some choice of canonical pathsΓ = {γi j}, and assign to each pathγi j a
“flow” of value πiπ j . Then the total amount of flow crossing the cut(A, Ā) is

∑
i∈A, j∈Ā

πiπ j = π(A)π(Ā),

but the cut edges, i.e. edges crossing the cut, have only total capacityw(A, Ā).
Thus, some cut edgeemust have loading

ρe =
1
we

∑
γi j∋e

πiπ j ≥
π(A)π(Ā)

w(A, Ā)
≥

π(A)

2w(A, Ā)
=

1
2Φ

.

The result follows.2

Corollary 3.10 With notations and assumptions as above,

λ2 ≤ 1−
1

8ρ2 .

Proof. From Theorems 3.6 and 3.9.�

A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:

(i) λ2 ≤ 1−
1
ρ̄

(ii) ∆(t)≤
(1−1/ρ̄)t

min
i∈A

πi
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(iii) τ(ε) ≤ ρ̄
(

ln
1
ε

+ ln
1

πmin

)

.2

Example 3.2 Random walk on a ring.Let us consider again the cyclic random
walk of Figure 11. Clearly the stationary distribution isπ = [1

n, 1
n, · · · , 1

n], and the
ergodic flow on each edgee= (i, i ±1) is

we = πi pi,i±1 =
1
n
·
1
4

=
1
4n

.

An obvious choice for a canonical path connecting nodesk, l is the shortest one,
with length

|γkl| = min{|l −k|,n−|l −k|}.

It is fairly easy to see that each (oriented) edge is now travelled by 1 canonical
path of length 1, 2 of length 2, 3 of length 3,. . . , n

2 of length n
2 (actually the last

one is just an upper bound). Thus:

ρ = max
e

1
we

∑
γkl∋e

πkπl |γi j | ≤ 4n
n/2

∑
r=1

1
n2 · r

2

=
4
n
·
1
6
·
n
2
·
(n

2
+1
)

· (n+1) =
1
6

(n+1)(n+2)

⇒

τ(ε) ≤ 1
6 (n+1)(n+2)

(
ln n+ ln 1

ε
)

= 1
6n2
(
ln n+ 1

ε
)
+O

(
n
(
ln n+ ln 1

ε
))

.

Example 3.3 Sampling permutations.Let us consider the Markov chain whose
states are all possible permutations of[n] = {1,2, . . . ,n}, and for any permutations
s, t ∈ Sn:

pst =







1
2, if s= t,
1
2 ·
(n

2

)−1
, if scan be changed tot by transposing two elements,

0, otherwise

Thus, e.g. forn = 3 we obtain the transition graph in Figure 12.

Clearly, the stationary distribution for this chain isπ =
[

1
n! ,

1
n! , . . . ,

1
n!

]
, and the

ergodic flow on each edgeτ = (s, t), with s 6= t, pst > 0, is:

wτ = πspst =
1
n!

·
1
2
·

(
n
2

)−1

.
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Figure 12: Transition graph for three-element permutations.

A natural canonical path connecting permutations to permutationt is now ob-
tained as follows:

s= s0 → s1 → s2 → ·· · → sn−1 = t.

where at eachsk,sk(k) = t(k). (Thus, eachsk matchest up to elementk, sk(1. . .k) =
t(1. . .k).)

Thus, e.g. the canonical path connectings= (1234) to t = (3142) is as follows:

(1234) →

ω
︷ ︸︸ ︷

(3|214)
τ
→

ω′

︷ ︸︸ ︷

(31|24) → (314|2).

Now let us denote the set of canonical paths containing a given transitionτ : ω →
ω′ by Γ(τ). We shall upper bound the size ofΓ(t) by constructing an injective
mappingστ : Γ(τ) → Sn. Obviously, the existence of such a mapping implies that
|Γ(τ)| ≤ n!.

Supposeτ transposes locationsk+1 andl , k+1 < l , of permutationω. Then for
any〈s, t〉 ∈ Γ(τ), define the permutationz= στ(s, t) as follows:

1. Place the elements inω(1. . .k) in the locations they appear ins. (Note that
permutationω is given and fixed as part ofτ.)

2. Place the remaining elements in the remaining locations in the order they
appear int.

Thus, for example in the above example case:

στ(〈1234〉,〈3142〉)→ ( 3 ) → (1432)
︸ ︷︷ ︸

z
ω = (3|214), k = 1
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Why is this mapping an injection, i.e. how do we recoversandt from a knowledge
of τ andz= στ(s, t)? The reasoning goes as follows:

1. t = ω(1. . .k)+ “other elements in same order as inz”

2. s= “elements inω(1. . .k) at locations indicated inz” + “other elements in
locations deducible from the transposition paths= s0→ s1→·· ·→ sk = ω”

This is somewhat tricky, so let us consider an example. Sayω = (3 1|2 4),
k = 2, z= (1 4 3 2). Then:

1. t = (3 1| )+( |4 2) = (3 1|4 2)

2.

s = s0 = (1 3 ) s0 = (1 3 )
s1 = (3| ) ⇒ s1 = (3| 2 1 )

ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)
∴ s = s0 = (1 2 3 4) s0 = (1 2 3 4)

s1 = (3| 2 1 4) ⇒ s1 = (3| 2 1 4)
ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)

Thus, we know that for each transitionτ,

|Γ(τ)| ≤ n!

We can now obtain a bound on the unweighted maximum edge loading induced
by our collection of canonical paths:

ρ = max
τ∈E

1
qτ

∑
〈s,t〉∈Γ(τ)

πsπt ≤

(

1
n!

·
1
2
·

(
n
2

)−1
)−1

·n! ·

(
1
n!

)2

= 2n!

(
n
2

)

·n! · (
1
n!

)2 = 2 ·

(
n
2

)

= n(n−1).

By Theorem 3.9, the conductance of this chain is thusΦ ≥ 1
2n(n−1) , and by Corol-

lary 3.8, its mixing time is thus bounded by

τn(ε) ≤
2

Φ2

(

ln
1
ε

+ ln
1

πmin

)

≤ 2(2n(n−1))2
(

ln
1
ε

+ lnn!

)

= O

(

n4
(

nlnn+ ln
1
ε

))

.


