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Figure 8: Detailed balance conditionpi; = 1 pj;.

But this is straightforward:
TPji = ) Tipij =T » Pji =T§.
O

Observe the intuition underlying the detailed balance t@rd At stationarity,
an equal amount of probability mass flows in each step fraonj as fromj to
I.(The “ergodic flows™ between states are in pairwise bagart. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graphy = {1,...,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbourterstase as
the next state, uniformly at random. That is,

I, If(i,])€E :
m=1 & omense (@ =g
Let us check that this chain is reversible, with stationasyribution
_|d1 d2 dn
- {H & ﬂ ,
whered = 51 ; di = 2|E|. The detailed balance condition is easy to verify:

: d; e e .
i = 4 3=3=9 F=mpi if(jecE
0= pji, if (i,j) ¢ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure & d&isy to verify that
this chain has the unique stationary distributios= [ 1 1]. However, for
anyi=123:
12 2 11 1
TP+ =337 g~ TP+ =33 g
Thus, even in a stationary situation, the chain has a “peaf®” of moving in the
counter-clockwise direction, i.e. it is not time-symmeiri
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Figure 10: Hard-core colouring of a lattice.
2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) samplingvhich is an
extremely important method for dealing with “hard-to-as€edistributions.

Assume that one needs to generate samples according toabpityldistribution

T, but Ttis too complicated to describe explicitly. A clever solutiis then to
construct a Markov chain that converges to stationary itigion 1, let it run

for a while and then sample states of the chain. (Howeverpbrneus problem
that this approach raises is determining how long is “for det® This leads to
interesting considerations of the convergence rates apid'mixing” of Markov

chains.)

Example2.1 The hard-core model.

A hard-core colouringpf a graphG = (V, E) is a mapping
&:V—{01} (“empty” vs. “occupied” sites)

such that

(i,j))eE = &(i)=0VvE&(j)=0 (no two occupied sites are adjacent)
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E.g. on a lattice graph, the hard-core colouring conditiaydeils an exclusion
principle, whereby a “particle” at one site excludes thespree of “particles” at
neighbouring sites, cf. Figure 10. In computer science $earhard-core colour-
ing of a graphG corresponds to an independent set of nodes fGom

Denote byg the uniform distribution over all th&g valid hard-core colourings of
G. We would like to sample colourings accordingug, e.g. in order to compute
the expected number of ones in a valid colouring:

EMC) = Y nEH® =5 Y @i
£c{0,1}V £e{0,1}V

wheren(&) denotes the number of ones in colouring

However, the combinatorial structure of distributiagis quite complicated; it is
far from clear how one could pick a random valid hard-coreunohg of graph
G. (Even computing their total numbgg is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless AP N

Given a graplG = (V,E),V = {1,...,n}, let us consider the following Markov
chain(Xp, X1, ...) on the space of valid hard-core colouringsf

¢ Initially chooseXg to be any valid hard-core colouring Gt
e Then, given colouring¢, generate colouring; 1 as follows:

1. Choose some node V uniformly at random.

2. If all the neighbours of have colour O irX;, then letX1(i) = 1 with
probability 1/2 andX; 1 (i) = 0 with probability /2.

3. Atall other nodeg, let X;1(j) = % (j).

It can be seen that the chain thus determined is irreducsiohed all colourings
communicate via the all-zeros colouring) and aperiodiedgsifor any colouring
g, PEE > 0).

To see that the chain hag; as its unique stationary distribution, it suffices to
check the detailed balance conditions with respepttd_eté, &' be two different
colourings. If they differ at more than one node, tiign = Pss = 0, so it suffices
to check the case wheégi) # &'(i) at a single node But then

111
Zg n 2
The above hard-core sampling algorithm is a special caseziblas samplefor
a target distributiormon a state space of the fors=CV.

Ho(&)Pee = Mo (&) Pee.
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The general principle is to choose in step 2 of the state epude the new value
for X;;1(i) according to theonditionalre-distribution

Pivic(Xe41(i) = ©) = Pm(&(i) = ¢ | &(j) = X (1),] # 1)

(In addition, the chain needs to be initialised in a sté§ethat has nonzeraor
probability.) It can be seen that the chain so obtained isi@gie and hast as
a stationary distribution. Whether the chain is also irctole depends on which
state<, have nonzeratprobability.

Example 2.2 Sampling graph k-colouringd.et G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in $paceS= {1,... k}V
of k-colourings ofG:

e Initially chooseXg to be any validk-colouring ofG. (Of course, finding a
valid k-colouring is an NP-complete problem flor> 3, but let us not worry
about that).

e Then, given colouring¢, generate colouriny;. 1 as follows:

1. Choose some node= V uniformly at random.
2. LetC’ be the set of colours assigned ¥yto the neighbours df

C'={X(j)[(i,j)€E}.

(Note that|C'| < k.) Choose a colour foX;1(i) uniformly at random
from the set{1,... ,k}\C'.

3. Atall other nodeg, let Xi11(j) = X(j).

Note that it is a nontrivial question whether this chain isdiucible or not.

Another general family of MCMC samplers are tketropolis chains

Let the state spacghave some neighbourhood structure, so that it may be viewed
as a (large) connected graffB N). Denote byN(i) the set of neighbours of state

i, and letd; = |N(i)|. We assume that the neighbourhood structure is symmetric,
so thati € N(j) ifand only if j € N(i).

Then the (basicMetropolis samplefor distributiontton Soperates as follows:

e Initially chooseXp to be some statec S

e Then, given stat&; =i, stateX;, 1 is obtained as follows:
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1. Choose somge N(i) uniformly at random.
2. Wrth probability mrn{ n—.g ,1}, accep;,1 = J. Otherwise lel; 1 =

Thus, fully written out the transition probabilities are:

1 T d| . .
almln{ d 1} if j € N(i)
pij =4 0O, if j&N(),j#i
1=y py. =i
JeN(i)

To show that this chain hasas its stationary distribution, it suffices to check the
detailed balance conditions:

Tipij =T;pji Vi,jeS

The conditions are trivial if = j or j ¢ N(i), so let us consider the cage N(i).
There are two subcases:

(i) Case"'d' > 1: Then:

1
TPij =T§ e 1

1 md; T
TG Pji = T4 - dr ﬁ o

(ii) Case"'d' < 1: Then:

_ 1 n,d._ﬁ

TiPij =T§ - g md;  d;
1

ﬂjpjizﬂj'd—j-l

(Note that in both cases pij = mjpji = min{O| , d‘} ) Hencerttis a stationary
distribution of the chain.

Furthermore the chain is guaranteed to be aperiodic ittlseat least onec S
such thatm— <1(= pi>0)i.e.itisnotthe casethatforallj €S
T, T

=1 — const
di
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In the latter case the chain reduces to a simple random watkeograph(S,N)
with stationary distribution

Cfd o dy
”_{d dmd}

as seen earlier. Such a random walk is aperiodic, if and drtheigraph(S N)
contains at least one odd cycle, i.e(¥ N) is not bipartite.

3 Estimatingthe ConvergenceRateof aMarkov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on stateSet{1,...  n}, with transition prob-
ability matrix P = (pjj) and stationary distributiort.

We would like to measure the rate of convergence of the cloaim ¢.g. in terms
of thetotal variation distance

Ay (t) = dy (9, 1),

Wheren?’t) = pi(}), and
1
dv(p, 1) = max|p(A) ~T(A)| = lgpj — ).

However, we get somewhat tighter results by using instedg tiferelative point-
wise distance

pPj — Ty
d¥ (p, T :maxi‘ .
p(PT) = M

Hence, we define our convergence rate function as:

(t)
. L — TT
AV (t) = maxd, (™Y, m) = _maxM.
icU i,jeu T
When we consider convergence over the whole state spadd,=+€5, we denote
simply:

At) = AS(1).
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Proposition 3.1 For any two distributiong, 1, wherert; > 0 for all j:

v (p,1) < S85(p.70 < " (p, ).

~ min; T
Consequentiydl/ (t) < $A(t) for alli,t. o

Define themixing timeof a given regular chain as
1(e)=min{t | A(t)<e VvVt >t}

In algorithmic applications, the details of the chain areofdetermined by some
inputx, in which case we writéy(t), Tx(€) correspondingly.

A chain (more precisely, a family of chains determined byuiisyx) is rapidly
mixingif

Tx(€) = poly <|x|, In :—eL) .

Our goal is now to establish some techniques for analysiagdmvergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and statiayalis-
tribution Ttis reversible, if and only if the matrix ??PD~1/2 is symmetric, where

DY2 = diag(y/T8, /TG - , /Th)-

.
Proof. DY/2PD~1/2 = <D1/2PD*1/2> & DP=P'D.

Inspecting this condition coordinatewise shows that itdaatly the same as the
reversibility conditionr pi; = pjiTy Vi, . O

Now it is easy to see that the matix= DY/2PD~1/2 has the same eigenvalues as
P: if A is an eigenvalue d? with left eigenvecto, then for the vectov = uD—1/2
we obtain

VA= uD 12 (Dl/ZPD‘l/Z) —uPD Y2 AuD V2 =)\

Since matrixA is symmetric for reversibl®, this shows that reversible have
real eigenvalues. By the Perron-Frobenius theorem theyheebe ordered as

AM=1>A>A3>--->A\y>—1.

DenoteAmax= max{|Aj| : 2 <i < n} =max{Az, —An}.
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Theorem 3.3 Let P be the transition matrix of a regular, reversible Maviahain,
and other notations as above. Then for anyls,

)\t
AU (t) < max

mlmT.

ieU

Proof. Letel,... " be an orthonormal basis f&" consisting of left eigenvectors
of A, where vecto€ is associated to eigenvalde Especially,e! = mD1/2 =

VTG, /TE

ThenA has a spectral representation

A:i)\i(e‘)Tei :_i?\iEi,

whereE; = (¢)Té. ClearlyE? = Ej, andEE; = 0 if i # j.
Thus, for anyt > 0, A' = 57, AE;, and hence

pt — p-l2apY/2— ZAt( 1/2(ei)T) <eiD1/2>

=]ﬁ+ZN< ~1/2(¢ )@DW>

In component form, this means:

P = e+ Aeid,
=\ 3 Ve

Computing the relative pointwise distance convergencs kae thus get for any
ucs

i”e‘iﬁi

AV (1) max—— (4)
jkeU /THTE
ma e
]kEl)J( % GL‘
<
L s — minTr;
jeu
t
< Lma" (by the Cauchy-Schwarz inequality and normalify).

minT;
jeu
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Theorem 3.4 With notation and assumptions as above,
A(t) > Ayax

for all even t. Moreover, if all eigenvalues of P are nonnegatthen the bound
holds for all t.

Proof. Continuing from equation (4) above, whers even or all eigenvalues are
nonnegative, the following holds:

(e|_0)2
A(t) = AS(t) > max >N max—1—
( ) ( )— jGS T[j — ‘Mmax jGS T[j 9

()2

where€® is a normalised eigenvector corresponding to eigenvaltie atisolute
valueAmax Ne(:essaril)((—:-'jo)2 > 1; for somej for otherwise

n

21‘[]':1,

=

. n .
el =3 (€<
J:

contradicting the normality a#°.

Negative eigenvalues are often a nuisance, but they calysbearemoved, with-
out affecting the convergence properties of the chain mglgdding appropriate
self-loops to the states. E.g.:

Proposition 3.5 With notation and assumptions as above, consider the cleain d
termined by transition matrix 'P= %(I +P). This chain is then also regular and
reversible, has same stationary distributimpand its eigenvalues satisI\)/(, >0
andAmax= A, = 2(1+A2). O

With Theorem 3.3 and Proposition 3.5 in mind, it is clear thatkey to analysing
convergence rates of reversible Markov chains is to find geotiniques for
bounding the second eigenvaligaway from 1.

An interesting and intuitive approach to this task is via tition of “conduc-
tance” of a chain.

Given a finite, regular, reversible Markov chai on the state spac&={1,...,n},
transition probability matri¥ = (pjj) and stationary distributiort= (15), we as-
sociate toM a weighted graple = (S, E,W), whereE = {(i, j) | pij > 0}, and
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the weights, or “capacities” on the edges correspond tettedic flowsetween
states:

Wij = T§Bjj =TT Pji.

Given a state sek C S, thevolumeof A is defined as

Va=T1(A) = _%Tﬁ,

and theergodic flowout of A as

Fa= zTﬁpll ZWIJ = W(A, A)
1EA 1€A
j¢A igA

(Note that O< Fa <Va < 1))
Then theconductancef the cut(A, A_\), or the(weighted) expansioof A is

Fa _ WAA)
Va A’

and finally theconductancef 4, or G, is obtained as

Pp =

(DM = CD(G) = min CDA.
0<m(A)<1/2

Since clearlyFa = F5 for any o # A ¢ S, this may equally well be defined as:

® = min maxd,, P
GAACS X ®p, Pp)-

Theorem 3.6 For a regular reversible Markov chain with underlying gragh
the second eigenvalue of the transition matrix satisfies:

()

P(G)?
A <1-— 5
(i)
Ao > 1—2(13((3).

Proof. Later.
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Corollary 3.7 With notation and assumptions as above, the convergenes @it
the chain under consideration satisfy, for asy~ A ¢ S and t> O:

(i)
1-92/2)"

A1) < (
mInT[.
icA

(ii)
A(t) > (1—2d).
Corollary 3.8 Consider a family of regular reversible chains where allexigal-

ues are nonnegative, parameterised by some input stringcwath underlying
graphs G. Then the chains are rapidly mixing, if and only if

1
CD(GX) Z p(‘x‘)a

for some polynomial p and all x.

Proof. According to Corollary 3.7 (i):

At) < &
. 0?/2)"
i (mm.eAn; s €
if tln( ) < In €+In Thin

<- q>2/2

if —t®?/2 < Ine+In Ty
: 2 1 1
if t > Z(nl+inl).

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

Alt) > €
if )\tz > €
if tinAo > In¢g
: 1 1
if tInA—2 < Ing
it t-522 < In! ng=in(1+32) <32 0<r<1
. A 1
if I < Ef.plnE 1-x Increasing im, 1—20 < Ao.
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Figure 11. Random walk on a ring.

Consequently,
1-29(Gy), 1 2 ( 1 1 )
—————In=<14(¢e) < In=+1In
20(Gy) &~ () < P(Gy)2 ™

Example 3.1 Random walk on a ringConsider the regular, reversible Markov
chain described by the graph in Figure 11.
1 1]

Clearly the stationary distribution 1= [n, Ot

The conductanc®a = Fa/Va of a cut(A, A) is minimised by choosing to consist
of anyn/2 consecutive nodes on the cycle, &g= {1,2,...,n/2}. Then

TG [3ij
1€ 101
d—=0 _E_J%A _2n4_1/2n_1'
T AT VA Z&m T o0l 12

Thus, by Theorem 3.6, the second eigenvalue satisfies:

2 1
1-—<A<1-—
n="2=""2n2

by Corollary 3.7, the convergence rate satisfies

(3 samn -3

and by Corollary 3.8, the mixing time satisfies:

1-2/n
2/n

n 1 5 1
Z_1).In=< < - .
& (2 1) Ins_t(s)_Zn (Inn+|n£)

in2 <1(g) < 2r? (In}%—lnn)
£ £



