10 Part I. Markov Chains and Stochastic Sampling

Proof. (i) Assumei € C, C minimal closed subset & Then for anyk > 1,

>l = 3ol

becaus€ is closed andP is a stochastic matrix. Consequently,

(k)
E E pii’ = oo,
k>0j€e N

and because€ is finite, there must be somnjg € C such that

5 o

k>0

Sincejg < i, there is soméy > 0 such thapg';?) = po > 0. But then

p.. Z@p. p,o.—<%p, >~po=oo.

By Theorem 1.4 is thus recurrent.

(i) DenoteC =C; U---UC,. Since for anyj € Y the se{l € S| j — |} is closed,
it must intersecC; thus for anyj € T there is somé& > 1 such that

(k) 2 (k)
iC Iez il

SinceT is finite, we may find &y > 1 such that for anyj € T, pg'éo) =p>0.
Then one may easily compute that for any T,

P <1-p, p7® < (1-p)? PP < (1-p)®, etc.

and so

kZ p Z,T<;)kop.rk° kor;(l—

By Theorem 1.4 is thus transientm

1.2 Existence and Uniqueness of Stationary Distribution

A matrix A e R™" s
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(i) nonnegativedenotedA > 0, if gj; >0 Vi, ]
(i) positivg denotedA 2 0, if g >0 Vi, j andajj > O for at least ong

(iii) strictly positive denotedA > 0, if aj; >0 Vi, j

We denote alsé& > Bif A—B >0, etc.

Lemma l.6 Let P> 0 be the transition matrix of some regular finite Markov
chain with state set S. Then for sorpetlitis the case thatP>0 Vit > to.

Proof. Choose somec Sand consider the set
o (t)
N,—{tZl‘ Bii >O}'

Since the chain is (finite and) aperiodic, there is some fggt@f numbers, ... ;tn €
N; such that

gcdN; = ged{ty, ... ,tm} =1,
i.e. for some set of coefficients, ... ,am € Z,
aity +apto + - - - +amtm= 1.

Let P andN be the absolute values of the positive and negative partso$um,
respectively. Thu® —N =1. LetT > N(N —1) and consider ang > T. Then
s=aN+r, where 0<r < N -1 and, consequentlg > N — 1. But thens=
aN+r(P—N) = (a—r)N+Pwherea—r > 0, i.e.Scan be represented in terms
of t1,... ,tm with nonnegative coefficients, ... ,by. Thus

(S)

o (bity) ~(bot2) (Brtm) 0

Zpi PR >0

Since the chain is irreducible, the claim follows by chogsgsufficiently larger
thanT to allow all states to communicate with

Let thenA > 0 be an arbitrary nonnegative< n-matrix. Consider the set
A ={A € R | Ax> Axfor somex > 0}.

Clearly 0e A, soA # @. Also, it is easy to see that the values/Arare upper
bounded by the maximal rowsulh of A. ThusA C [0,M], and we may define

A" = supA.
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To see that the supremum Afis actually attained by somg* € A and vector
xX* > 0, observe that one may also defikieas
. (AX);
A= max min Q,
x€[0, " i=1,..,n X
where in the case of =0, the quotienf’;—’i()i is defined as the appropriate limit to
maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix A O there
exist a positive real number* > 0 and a strictly positive vector*x> 0 such that:

(i) AX* = N*X*;
(i) if A £ A* is any other (in general complex) eigenvalue of A, thenr< A*;

(i) A* has geometric and algebraic multiplicity 1.

Proof. DefineA* as above, and let > 0 be a vector such th&tx" > A*x*. Since
A >0, alsoA* > 0.

(i) Suppose that it is not the case that" = A*x*, i.e. thatAx* > A*x*, but not
AX* = N*x*. Consider the vector* = Ax*. SinceA > 0, Ax> 0 for anyx = 0; in
particular NnOWA(y* —A*X*) = Ay — A*AX* = Ay* —A*y* > 0, i.e. Ay* > A*y*; but
this contradicts the definition of*.

ConsequenthAx* = A*x*, and furthermoret® = A%A)(k > 0.

(i) Let A = A* be an eigenvalue oA andy # 0 the corresponding eigenvector,
Ay = MAy. Denotely| = (|yi|,--.,|yn|). SinceA > 0, it is the case that

Aly| = |AYl = Ay = [A[ly]-
By the definition ofA*, it follows that|A| < A*.

To prove strict inequality, led > 0 be so small that the matriks = A— dl is still
strictly positive. Then for any eigenvalueof A, A — d is an eigenvalue ofy
and vice versa. Sincls > 0, its largest eigenvalue ¥ — 9, i.e. for any other
eigenvalue\ of A, A — 9| < A*—0.

But this implies thatA cannot have any eigenvalugss A* on the circleA| = ¥,
because such would haje— 8| > |A* — 9. (See Figure 5.)

(iif) We shall consider only the geometric multiplicity. fpose there was another
(real) eigenvectoy > 0, linearly independent of*, associated ta*. Then one
could form a linear combinatiow = x* 4+ ay such thatw > 0, but notw > 0.
However, sincé\ > 0, it must be the case that also= )\—1*AW> 0. O
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Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix (& 0) such that some power of A is
strictly positive (& > 0), then the conclusions of Theorem 1.7 hold also for-A.

Note: In fact every nonnegative matrx> 0 has a real “Perron-Frobenius” eigen-
valueA* > 0 of maximum modulus, i.e. such that < A* holds for all eigenvalues
A of A. But in this general case there may also be complex eigeesatiequal
modulus, and\* itself may be nonsimple, i.e. have multiplicity greaterntlome.

Proposition 1.9 Let A> 0 be a nonnegative r n matrix with row and column
sums

rizzaija Cjzzalja iaj:]-a"'an
] [

Then for the Perron-Frobenius eigenvaliieof A the following bounds hold:

minr; <A* <maxrj, minc; <A* < maxc;.
[ [ j j
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Proof. Letx* = (x1, X2, ... ,Xn) be an eigenvector corresponding\tg normalised
so thaty; x; = 1. Summing up the equations fAK" = A*x" yields:

11Xy + apXe + ... 4+ ainXn =A"Xg

Ax1X1 + agXe + ... + amXn =AX

amX1 + amX2 + ... + awmXn =A%

Cixt + CX + ... + C¥n =A(Xg+-+Xn) =AT
~———

ThusA™ is a “weighted average” of the column sums, so in particularjo) <
A* < max; cj.

Applying the same argument @', which has the sam¥"* asA, yields the row
sum bounds.

Corollary 1.10 Let P> 0O be the transition matrix of a regular Markov chain.
Then there exists a unique distribution veatsuch thatP = (< PTr’ =1').

Proof. By Lemma 1.6 and Corollary 1.8,has a unique largest eigenvaliec R.
By Proposition 1.9\* = 1, because as a stochastic matrix all row sumB (fe.
the column sums d®') are 1. Since the geometric multiplicity &f is 1, there is
a unique stochastic vectur(i.e. satisfyingy; 4 = 1) such thattiP = 1.

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chdth transition ma-
trix P has a unique stationary distribution vectosuch that = 1t

By elementary arguments (page 3) we know that starting froyriratial distribu-
tion g, if the iterationg, qP,qP?, . .. converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain deteed byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let Ae C"™" be any matrix with eigen-
valueshy,... ,A; € C, | <n. Then there exists an invertible matrixtJC"*" such
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that
J 0 - 0
vau-l=| 0 2
o 0
0 -~ 0 J

where each;dis a k x k; Jordan block associated to some eigenvalief A:

A1O0-.-- 00
0o AN1 00
J=1|: - Lo
0 0 0 - Al
0 OO 0 A

The total number of blocks associated to a given eigenvalteggresponds ta'’s
geometric multiplicity, and their total dimensighnk; to A’s algebraic multiplicity.
O

Now let us consider the Jordan canonical form of a transimatrix P for a regular
Markov chain. Assume for simplicity that all the eigenvau# P are real and
distinct. (The general argument is similar, but needs monegticated notation.)
Then the rows oU may be taken to be left eigenvectors of the ma@jand the
Jordan canonical form reduces to the familiar eigenvalueigposition:

MM O - 0
upu-t—pn=| O A
Lo 0
0 -+ 0 M

In this case one notes that in fact the columnblof =V are precisely theight
eigenvectors corresponding to the eigenvalNgs.. ,An,. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalde = 1, and the other eigen-
values may be ordered so that>1|]A;| > |A3| > --- > |An|. The unique (up to
normalisation) left eigenvector associated to eigenvéligethe stationary distri-
butionTt, and the corresponding unique (up to normalisation) rigigr@/ector is
1=(1,1,...,1). If the first row ofU is normalised tat, then the first column of
V must be normalised tbbecaus&)V =UU 1 =1, and henc€UV )11 = ujvy =
v, = 1.
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Denoting
1 0 --- 0
A 0 A2 7
0
0 0 An
we have then:
1 0 --- 0
2
P2 = (VAU)?* =VA?U =V 0 A u,
o, .0
0 -~ 0 A2
and in general
10---0
t -,
Po— vau = v|9%% iy
.0 0
0--- 0 A,
-0 V11U1 Tt
ViU 11
Y . _ 12.1 |7
0--- 00 VinU1 Lt

To make the situation even more transparent, represenea miitial distribution
q= q° in the (left) eigenvector basis as

q = Guui+Gauz+---+Gnln
= T+Gua+---+Gin,  wheregi=(q",v) = qu.

Then

qP = (T4 GaUz+ - - - + Gnlin) P = T+ GoA2U2 + - - - + GnAnlin,
and generally

n

gV =qP = n+i;qi?\}ui,

implying thatq? —— 1, and if the eigenvalues are ordered as assumed, then

t—oo

199 =il = O(A2[").
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1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Matian?

A moment’s thought shows that the transition matrix of antealy (finite) Markov
chain can be put in the followinganonical form

P 0

0 R

R Q

where ther square matriceBy, ... ,P; in the upper left corner represent the tran-
sitions within ther minimal closed classe®Q represents the transitions among
transient states, arRRirepresents the transitions from transient states to orfesof t
closed classes.

In this ordering, stationary distributions (left eigentas of P corresponding to
eigenvalue 1) must apparently be of the fams: [ty --- 1 0 --- 0]. (Note that
sinceQ has at least one row sum less than 1, by the proof argumenbpoBi

tion 1.9 also all of its eigenvalues have modulus less thdins the only solution
of the stationarity equationQ= pisu=0.)

Consider then théundamental matrix M= (I — Q) of the chain. Intuitively, if
M is well-defined, it corresponds ¥ = | + Q+ Q?+..., and represents all the
possible transition sequences the chain can have withdutg®.

Theorem 1.12 For any finite Markov chain with transition matrix as abovieet
matrix | — Q is invertible, and its inverse can be represented as theemgent
seriesM=14+Q+ Q% +...

Proof. Since for anyt > 1,

(1-QU+Q+ - +Q ) =1-q,
andQ! — 0 ast — o, the result follows

A transparent stochastic interpretation of the fundamemadrix may be obtained
by considering any two transient stategin a Markov chain as above. Then:

PriX = [ Xo=1)=Q 2.
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1 q=1-p

SEme

Figure 6: A Markov chain representing the geometric distidn.

Thus,
E[number of visitstgj € T | Xo=i € T] = qi(jo) +qi(j1) +qi(j2) T
= M+QrHﬁ+m
Furthermore,

E[number of moves i before exitingtaC | Xo =1 € T]
= ZE[number of visitstg € T | Xo =1 € T|
i

= j;mj
(M1);

As another application, ldtj; be the probability that the chain when started in
transient state € T will enter a minimal closed class via stafe= C. Denote
B = (bij)ieT jec. Then in facB = MR.

Proof. For giveni € T, j € C,

bij = pij + > Pikbj-
keT

Thus,

B=R+QB = B=(1-Q) R=MR

Example 1.4 The geometric distributiorConsider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in thése is

(3]
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& sl W

Aloses 9 A wins

Figure 7. A Markov chain representing a coin-flipping game.
NowQ=(q),M=(1—-qg)~*=1/p. Thus, e.g.
E[number of visits to 2 before exiting to| Xy = 2] = M1 = %
An elementary way to obtain the same result would be:

E[number of visits = z Prinumber of visits= k] - k
K>0

= %Pr[number of visits> K|
k>
1

1

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A's success probability equal wand B’s success probability equal te-Jp = q.

The person to first obtaimsuccesses over the other wins. What are A's chances of
winning, given that he initially has successes over B;n < k <n? (A more tech-
nical term for this process is “one-dimensional random weitk two absorbing

barriers.”)

For simplicity, let us consider only the case- 2. Then the chain is as represented
in Figure 7, with transition matrix:

-2 -1 01 2
-2(1 0 00O
-1{qg O p OO
0|0 g OpoO
110 O gqgoOwp
2/ 0 0 001
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i.e. in canonical form:

-2 2 -1 01
-2|'1 0 0 0O
210 1 0 0O
-1 g 0 O p O
0|0 O gq O0wp
170 p 0 q0

1 -p 0] | [p+? p P
= —q 1 —Pp ) > 1 p
0 -q 1 PRIl @ q at+p?
and soB = MR
+ 3 3
1 [pta p P q 0 1 qpqzq gz
“wre| %0 P2 % T | @ pgipl
q q g+p 0p —~  ——

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chaften encountered
in algorithmic applications. Many examples of these typeshains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred timeatition at equilibrium, i.e.
any given sequence of states is equally likely to occur iwéod as in backward
order.

A Markov chain determined by the transition matix= (pjj )i jes is reversibleif
there is a distributiom that satisfies thdetailed balanceonditions:

mpij =mpji Vi,jesS

Theorem 1.13 A distribution satisfying the detailed balance conditioassta-
tionary.

Proof. It suffices to show that, assuming the detailed balance tiondj the fol-
lowing stationarity condition holds for alle S

T = Z;ijji-
i€
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Pij

J
Pji

Figure 8: Detailed balance conditionpi; = 1 pj;.

But this is straightforward:
TPji = ) Tipij =T » Pji =T§.
O

Observe the intuition underlying the detailed balance t@rd At stationarity,
an equal amount of probability mass flows in each step fraonj as fromj to
I.(The “ergodic flows™ between states are in pairwise bagart. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graphy = {1,...,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbourterstase as
the next state, uniformly at random. That is,

I, If(i,])€E :
m=1 & omense (@ =g
Let us check that this chain is reversible, with stationasyribution
_|d1 d2 dn
- {H & ﬂ ,
whered = 51 ; di = 2|E|. The detailed balance condition is easy to verify:

: d; e e .
i = 4 3=3=9 F=mpi if(jecE
0= pji, if (i,j) ¢ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure & d&isy to verify that
this chain has the unique stationary distributios= [ 1 1]. However, for
anyi=123:
12 2 11 1
TP+ =337 g~ TP+ =33 g
Thus, even in a stationary situation, the chain has a “peaf®” of moving in the
counter-clockwise direction, i.e. it is not time-symmeiri
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Figure 10: Hard-core colouring of a lattice.
2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) samplingvhich is an
extremely important method for dealing with “hard-to-as€edistributions.

Assume that one needs to generate samples according toabpityldistribution

T, but Ttis too complicated to describe explicitly. A clever solutiis then to
construct a Markov chain that converges to stationary itigion 1, let it run

for a while and then sample states of the chain. (Howeverpbrneus problem
that this approach raises is determining how long is “for det® This leads to
interesting considerations of the convergence rates apid'mixing” of Markov

chains.)

Example2.1 The hard-core model.

A hard-core colouringpf a graphG = (V, E) is a mapping
&:V—{01} (“empty” vs. “occupied” sites)

such that

(i,j))eE = &(i)=0VvE&(j)=0 (no two occupied sites are adjacent)



