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Proof. (i) Assumei ∈C, C minimal closed subset ofS. Then for anyk≥ 1,

∑
j∈S

p(k)
i j = ∑

j∈C

p(k)
i j = 1,

becauseC is closed andP is a stochastic matrix. Consequently,

∑
k≥0

∑
j∈C

p(k)
i j = ∞,

and becauseC is finite, there must be somej0 ∈C such that

∑
k≥0

p(k)
i j0

= ∞.

Since j0 ↔ i, there is somek0 ≥ 0 such thatp(k0)
j0i = p0 > 0. But then

∑
k≥0

p(k)
ii ≥ ∑

k≥k0

p(k−k0)
i j0

p(k0)
j0i =

(

∑
k≥k0

p(k−k0)
i j0

)

· p0 = ∞.

By Theorem 1.4i is thus recurrent.

(ii) DenoteC = C1∪· · ·∪Cm. Since for anyj ∈Y the set{l ∈ S| j → l} is closed,
it must intersectC; thus for anyj ∈ T there is somek≥ 1 such that

p(k)
iC , ∑

l∈C

p(k)
jl > 0.

SinceT is finite, we may find ak0 ≥ 1 such that for anyj ∈ T, p(k0)
jC = p > 0.

Then one may easily compute that for anyi ∈ T,

p(k0)
iT ≤ 1− p, p(2k0)

iT ≤ (1− p)2, p(3k0)
iT ≤ (1− p)3, etc.

and so

∑
k≥1

p(k)
ii ≤ ∑

k≥1

p(k)
iT ≤ ∑

r≥0
k0p(rk0)

iT ≤ k0 ∑
r≥0

(1− p)r < ∞.

By Theorem 1.4,i is thus transient.2

1.2 Existence and Uniqueness of Stationary Distribution

A matrix A∈ Rn×n is
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(i) nonnegative, denotedA≥ 0, if ai j ≥ 0 ∀ i, j

(ii) positive, denotedA & 0, if ai j ≥ 0 ∀ i, j andai j > 0 for at least onei j

(iii) strictly positive, denotedA > 0, if ai j > 0 ∀ i, j

We denote alsoA≥ B if A−B≥ 0, etc.

Lemma 1.6 Let P≥ 0 be the transition matrix of some regular finite Markov
chain with state set S. Then for some t0 ≥ 1 it is the case that Pt > 0 ∀ t ≥ t0.

Proof. Choose somei ∈ Sand consider the set

Ni = {t ≥ 1 | p(t)
ii > 0}.

Since the chain is (finite and) aperiodic, there is some finiteset of numberst1, . . . , tm∈
Ni such that

gcdNi = gcd{t1, . . . , tm} = 1,

i.e. for some set of coefficientsa1, . . . ,am ∈ Z,

a1t1+a2t2+ · · ·+amtm = 1.

Let P andN be the absolute values of the positive and negative parts of this sum,
respectively. ThusP−N = 1. Let T ≥ N(N−1) and consider anys≥ T. Then
s = aN+ r, where 0≤ r ≤ N− 1 and, consequently,a ≥ N− 1. But thens =
aN+ r(P−N) = (a− r)N+P wherea− r ≥ 0, i.e.Scan be represented in terms
of t1, . . . , tm with nonnegative coefficientsb1, . . . ,bm. Thus

p(s)
ii ≥ p(b1t1)

ii p(b2t2)
ii · · · p(bmtm)

ii > 0.

Since the chain is irreducible, the claim follows by choosing t0 sufficiently larger
thanT to allow all states to communicate withi. 2

Let thenA≥ 0 be an arbitrary nonnegativen×n-matrix. Consider the set

Λ = {λ ∈ R | Ax≥ λx for somex≥ 0}.

Clearly 0∈ Λ, soΛ 6= ∅. Also, it is easy to see that the values inΛ are upper
bounded by the maximal rowsumM of A. ThusΛ ⊆ [0,M], and we may define

λ∗ = supΛ.
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To see that the supremum ofΛ is actually attained by someλ∗ ∈ Λ and vector
x∗ ≥ 0, observe that one may also defineλ∗ as

λ∗ = max
x∈[0,1]n

min
i=1,...,n

(Ax)i

xi
,

where in the case ofxi = 0, the quotient(Ax)i
xi

is defined as the appropriate limit to
maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix A> 0 there
exist a positive real numberλ∗ > 0 and a strictly positive vector x∗ > 0 such that:

(i) Ax∗ = λ∗x∗;

(ii) if λ 6= λ∗ is any other (in general complex) eigenvalue of A, then|λ| < λ∗;

(iii) λ∗ has geometric and algebraic multiplicity 1.

Proof. Defineλ∗ as above, and letx∗ ≥ 0 be a vector such thatAx∗ ≥ λ∗x∗. Since
A > 0, alsoλ∗ > 0.

(i) Suppose that it is not the case thatAx∗ = λ∗x∗, i.e. thatAx∗ ≥ λ∗x∗, but not
Ax∗ = λ∗x∗. Consider the vectory∗ = Ax∗. SinceA > 0, Ax> 0 for anyx & 0; in
particular nowA(y∗−λ∗x∗) = Ay∗−λ∗Ax∗ = Ay∗−λ∗y∗ > 0, i.e.Ay∗ > λ∗y∗; but
this contradicts the definition ofλ∗.

ConsequentlyAx∗ = λ∗x∗, and furthermorex∗ = 1
λ∗ Ax∗ > 0.

(ii) Let λ 6= λ∗ be an eigenvalue ofA andy 6= 0 the corresponding eigenvector,
Ay= λy. Denote|y| = (|y1|, . . . , |yn|). SinceA > 0, it is the case that

A|y| ≥ |Ay| = |λy| = |λ||y|.

By the definition ofλ∗, it follows that|λ| ≤ λ∗.

To prove strict inequality, letδ > 0 be so small that the matrixAδ = A−δI is still
strictly positive. Then for any eigenvalueλ of A, λ− δ is an eigenvalue ofAδ
and vice versa. SinceAδ > 0, its largest eigenvalue isλ∗− δ, i.e. for any other
eigenvalueλ of A, |λ−δ| ≤ λ∗−δ.

But this implies thatA cannot have any eigenvaluesλ 6= λ∗ on the circle|λ| = λ∗,
because such would have|λ−δ| > |λ∗−δ|. (See Figure 5.)

(iii) We shall consider only the geometric multiplicity. Suppose there was another
(real) eigenvectory > 0, linearly independent ofx∗, associated toλ∗. Then one
could form a linear combinationw = x∗ + αy such thatw & 0, but notw > 0.
However, sinceA > 0, it must be the case that alsow = 1

λ∗Aw> 0. 2
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λ

λ∗-δ

λ∗− δ

λ− δ

Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix (A≥ 0) such that some power of A is
strictly positive (An > 0), then the conclusions of Theorem 1.7 hold also for A.2

Note: In fact every nonnegative matrixA≥ 0 has a real “Perron-Frobenius” eigen-
valueλ∗≥ 0 of maximum modulus, i.e. such that|λ| ≤ λ∗ holds for all eigenvalues
λ of A. But in this general case there may also be complex eigenvalues of equal
modulus, andλ∗ itself may be nonsimple, i.e. have multiplicity greater than one.

Proposition 1.9 Let A≥ 0 be a nonnegative n×n matrix with row and column
sums

r i = ∑
j

ai j , c j = ∑
i

ai j , i, j = 1, . . . ,n

Then for the Perron-Frobenius eigenvalueλ∗ of A the following bounds hold:

min
i

r i ≤ λ∗ ≤ max
i

r i , min
j

c j ≤ λ∗ ≤ max
j

c j .
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Proof. Let x∗ = (x1,x2, . . . ,xn) be an eigenvector corresponding toλ∗, normalised
so that∑i xi = 1. Summing up the equations forAx∗ = λ∗x∗ yields:

a11x1 + a12x2 + . . . + a1nxn = λ∗x1

a21x1 + a22x2 + . . . + a2nxn = λ∗x2
...

an1x1 + an2x2 + . . . + annxn = λ∗xn

c1x1 + c2x2 + . . . + cnxn = λ∗ (x1+ · · ·+xn)
︸ ︷︷ ︸

1

= λ∗

Thusλ∗ is a “weighted average” of the column sums, so in particular min j c j ≤
λ∗ ≤ maxj c j .

Applying the same argument toAT , which has the sameλ∗ asA, yields the row
sum bounds.2

Corollary 1.10 Let P≥ 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution vectorπ such thatπP= π (⇔ PTπT = πT).

Proof.By Lemma 1.6 and Corollary 1.8,P has a unique largest eigenvalueλ∗ ∈R.
By Proposition 1.9,λ∗ = 1, because as a stochastic matrix all row sums ofP (i.e.
the column sums ofPT) are 1. Since the geometric multiplicity ofλ∗ is 1, there is
a unique stochastic vectorπ (i.e. satisfying∑i πi = 1) such thatπP = π. 2

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chainwith transition ma-
trix P has a unique stationary distribution vectorπ such thatπP = π.

By elementary arguments (page 3) we know that starting from any initial distribu-
tionq, if the iterationq,qP,qP2, . . . converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain determined byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let A∈ Cn×n be any matrix with eigen-
valuesλ1, . . . ,λl ∈C, l ≤ n. Then there exists an invertible matrix U∈Cn×n such
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that

UAU−1 =








J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jr








where each Ji is a ki ×ki Jordan block associated to some eigenvalueλ of A:

Ji =










λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ










The total number of blocks associated to a given eigenvalueλ corresponds toλ’s
geometric multiplicity, and their total dimension∑i ki to λ’s algebraic multiplicity.

2

Now let us consider the Jordan canonical form of a transitionmatrixP for a regular
Markov chain. Assume for simplicity that all the eigenvalues of P are real and
distinct. (The general argument is similar, but needs more complicated notation.)
Then the rows ofU may be taken to be left eigenvectors of the matrixP, and the
Jordan canonical form reduces to the familiar eigenvalue decomposition:

UPU−1 = Λ =








λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn








.

In this case one notes that in fact the columns ofU−1 = V are precisely theright
eigenvectors corresponding to the eigenvaluesλ1, . . . ,λn. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalueλ1 = 1, and the other eigen-
values may be ordered so that 1> |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. The unique (up to
normalisation) left eigenvector associated to eigenvalue1 is the stationary distri-
butionπ, and the corresponding unique (up to normalisation) right eigenvector is
1 = (1,1, . . . ,1). If the first row ofU is normalised toπ, then the first column of
V must be normalised to1 becauseUV =UU−1 = I , and hence(UV)11 = u1v1 =
πv1 = 1.
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Denoting

Λ =








1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn








,

we have then:

P2 = (VΛU)2 = VΛ2U = V








1 0 · · · 0

0 λ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 λ2
n








U,

and in general

Pt = VΛtU = V








1 0 · · · 0

0 λt
2

. . .
...

...
. . . . . . 0

0 · · · 0 λt
n








U

−−→
t→∞

V








1 0 · · · 0

0 0
...

...
...

. . . . . . 0
0 · · · 0 0








U =








v11u1

v12u1
...

v1nu1








=








π
π
...
π








.

To make the situation even more transparent, represent a given initial distribution
q = q0 in the (left) eigenvector basis as

q = q̃1u1+ q̃2u2+ · · ·+ q̃nun

= π+ q̃2u2+ · · ·+ q̃nun, where ˜qi = 〈qT ,vi〉 = qvi .

Then

qP= (π+ q̃2u2+ · · ·+ q̃nun)P = π+ q̃2λ2u2 + · · ·+ q̃nλnun,

and generally

q(t) = qPt = π+
n

∑
i=2

q̃iλt
iui ,

implying thatq(t) −−→
t→∞

π, and if the eigenvalues are ordered as assumed, then

||q(t)−π|| = O(|λ2|
t).
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1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Markovchain?

A moment’s thought shows that the transition matrix of an arbitrary (finite) Markov
chain can be put in the followingcanonical form:

P =














P1 0
...

0 Pr

0

R Q














where ther square matricesP1, . . . ,Pr in the upper left corner represent the tran-
sitions within ther minimal closed classes,Q represents the transitions among
transient states, andR represents the transitions from transient states to one of the
closed classes.

In this ordering, stationary distributions (left eigenvectors ofP corresponding to
eigenvalue 1) must apparently be of the formπ = [π1 · · · πr 0 · · · 0]. (Note that
sinceQ has at least one row sum less than 1, by the proof argument in Proposi-
tion 1.9 also all of its eigenvalues have modulus less than 1.Thus the only solution
of the stationarity equationµQ= µ is µ= 0.)

Consider then thefundamental matrix M= (I −Q)−1 of the chain. Intuitively, if
M is well-defined, it corresponds toM = I +Q+Q2 + . . . , and represents all the
possible transition sequences the chain can have without exiting Q.

Theorem 1.12 For any finite Markov chain with transition matrix as above, the
matrix I−Q is invertible, and its inverse can be represented as the convergent
series M= I +Q+Q2 + . . .

Proof. Since for anyt ≥ 1,

(I −Q)(I +Q+ · · ·+Qt−1) = I −Qt ,

andQt → 0 ast → ∞, the result follows.2

A transparent stochastic interpretation of the fundamental matrix may be obtained
by considering any two transient statesi, j in a Markov chain as above. Then:

Pr(Xt = j | X0 = i) = Qt
i j , q(t)

i j .
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21

p
q = 1− p1

Figure 6: A Markov chain representing the geometric distribution.

Thus,

E[number of visits toj ∈ T | X0 = i ∈ T] = q(0)
i j +q(1)

i j +q(2)
i j + . . .

= Ii j +Qi j +Q2
i j + . . .

= Mi j , mi j .

Furthermore,

E[number of moves inT before exiting toC | X0 = i ∈ T]

= ∑
j∈T

E[number of visits toj ∈ T | X0 = i ∈ T]

= ∑
j∈T

mi j

= (M1)i.

As another application, letbi j be the probability that the chain when started in
transient statei ∈ T will enter a minimal closed class via statej ∈ C. Denote
B = (bi j )i∈T, j∈C. Then in factB = MR.

Proof. For giveni ∈ T, j ∈C,

bi j = pi j + ∑
k∈T

pikbk j.

Thus,

B = R+QB ⇒ B = (I −Q)−1R= MR.

Example 1.4 The geometric distribution.Consider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in thiscase is

P =

[
1 0
p q

]

.
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A loses A winsq

0

q

1

q

2

1 1

−2 −1

p p p

Figure 7: A Markov chain representing a coin-flipping game.

Now Q = (q), M = (1−q)−1 = 1/p. Thus, e.g.

E[number of visits to 2 before exiting to 1| X0 = 2] = M1 =
1
p
.

An elementary way to obtain the same result would be:

E[number of visits] = ∑
k≥0

Pr[number of visits= k] ·k

= ∑
k≥0

Pr[number of visits≥ k]

= 1+q+q2+ · · · =
1

1−q
=

1
p
.

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A’s success probability equal top and B’s success probability equal to 1− p = q.
The person to first obtainn successes over the other wins. What are A’s chances of
winning, given that he initially hask successes over B,−n≤ k≤ n? (A more tech-
nical term for this process is “one-dimensional random walkwith two absorbing
barriers.”)

For simplicity, let us consider only the casen= 2. Then the chain is as represented
in Figure 7, with transition matrix:

−2 −1 0 1 2
−2 1 0 0 0 0
−1 q 0 p 0 0
0 0 q 0 p 0
1 0 0 q 0 p
2 0 0 0 0 1
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i.e. in canonical form:

−2 2 −1 0 1
−2 1 0 0 0 0
2 0 1 0 0 0
−1 q 0 0 p 0
0 0 0 q 0 p
1 0 p 0 q 0

Thus,M = (I −Q)−1

=





1 −p 0
−q 1 −p
0 −q 1





−1

=
1

p2+q2





p+q2 p p2

q 1 p
q2 q q+ p2





and soB = MR

=
1

p2 +q2





p+q2 p p2

q 1 p
q2 q q+ p2









q 0
0 0
0 p



=
1

p2 +q2







qp+q3 p3

q2 p2

q3
︸︷︷︸

A loses

pq+ p3
︸ ︷︷ ︸

A wins







.

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chainsoften encountered
in algorithmic applications. Many examples of these types of chains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred time direction at equilibrium, i.e.
any given sequence of states is equally likely to occur in forward as in backward
order.

A Markov chain determined by the transition matrixP = (pi j )i, j∈S is reversibleif
there is a distributionπ that satisfies thedetailed balanceconditions:

πi pi j = π j p ji ∀ i, j ∈ S.

Theorem 1.13 A distribution satisfying the detailed balance conditionsis sta-
tionary.

Proof. It suffices to show that, assuming the detailed balance conditions, the fol-
lowing stationarity condition holds for alli ∈ S:

πi = ∑
j∈S

π j p ji .
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π jπi

pi j

p ji

Figure 8: Detailed balance conditionπi pi j = π j p ji .

But this is straightforward:

∑
j∈S

π j p ji = ∑
j∈S

πi pi j = πi ∑
j∈S

p ji = πi .

2

Observe the intuition underlying the detailed balance condition: At stationarity,
an equal amount of probability mass flows in each step fromi to j as from j to
i.(The “ergodic flows”’ between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graph,V = {1, . . . ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbours is selected as
the next state, uniformly at random. That is,

pi j =

{ 1
di

, if (i, j) ∈ E
0, otherwise

(di = deg(i))

Let us check that this chain is reversible, with stationary distribution

π =

[
d1

d
d2

d
· · ·

dn

d

]

,

whered = ∑n
i=1di = 2|E|. The detailed balance condition is easy to verify:

πi pi j =

{
di
d · 1

di
= 1

d =
d j
d · 1

d j
= π j p ji , if (i, j) ∈ E

0 = π j p ji , if (i, j) /∈ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that
this chain has the unique stationary distributionπ =

[
1
3

1
3

1
3

]
. However, for

any i = 1,2,3:

πi pi,(i+1) =
1
3
·
2
3

=
2
9

> πi+1p(i+1),i =
1
3
·
1
3

=
1
9
.

Thus, even in a stationary situation, the chain has a “preference” of moving in the
counter-clockwise direction, i.e. it is not time-symmetric.
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2

13 1/3

2/3

2/3 2/3

1/3 1/3

Figure 9: A nonreversible Markov chain.

Figure 10: Hard-core colouring of a lattice.

2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) sampling, which is an
extremely important method for dealing with “hard-to-access” distributions.

Assume that one needs to generate samples according to a probability distribution
π, but π is too complicated to describe explicitly. A clever solution is then to
construct a Markov chain that converges to stationary distribution π, let it run
for a while and then sample states of the chain. (However, oneobvious problem
that this approach raises is determining how long is “for a while”? This leads to
interesting considerations of the convergence rates and “rapid mixing” of Markov
chains.)

Example 2.1 The hard-core model.

A hard-core colouringof a graphG = (V,E) is a mapping

ξ : V →{0,1} (“empty” vs. “occupied” sites)

such that

(i, j) ∈ E ⇒ ξ(i) = 0∨ξ( j) = 0 (no two occupied sites are adjacent)


