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Markov Chains and Stochastic
Sampling

1 Markov Chains and Random Walks on Graphs

1.1 Structure of Finite Markov Chains

We shall only consider Markov chains with a finite, but uspatry large,state
space S={1,...,n}.
An S-valued(discrete-time)stochastic procesis a sequencp, X1, X2,... of &

valued random variables over some probability sgacee. a sequence of (mea-
surable) map¥;: Q — St=0,1,2,...

Such a process isMarkov chainif for all t > 0 and anyig,i1,...,it_1,i, ] € Sthe
following “memoryless” (forgetting) condition holds:

PrXr1=j|Xo=lio, X1 =11,..., % 1=lt-1,% =1)
= PriXq1=1j|X%=i). (1)

Consequently, the process can be described completelywimggis initial distri-
bution (vector}

PP =[pd,....,pY = [p%],, wherepl=Pr(Xo=i)

1By a somewhat confusing convention, distributions in Markbain theory are represented
as row vectors. We shall be denoting the h columnvector with componentg;, ..., pn as
(P1,-..,Pn), and the correspondingx 1 row vector agps,...,pn] = (P1,...,Pn)". All vectors
shall be column vectors unless otherwise indicated by terbtation.

2



1. Markov Chains and Random Walks on Graphs 3

and its sequence ofansition (probability) matrices

n
PO = () wherepll) = Pr(X = j | %_1=1).

ij=1’
Clearly, by the rule of total probability, the distributielctor at time > 1
pY = [Pr(X% = )]y

is obtained fromp*—Y simply by computing for eaclj
n
t _ (t=1) (O
p," = iZi Pi “Bij

or more compactly

pt) = pt=Dp®)
Recurring back to the initial distribution, this yields
pt) = pPpMp@...pH), (2)

If the transition matrix is time-independent, i) = pforallt > 1, the Markov
chain ishomogeneoy®otherwiseinhomogeneous/Ne shall be mostly concerned
with the homogeneous case, in which formula (2) simplifies to

p(t) — pOPt.
We shall say in general that a vectpe R" is astochastic vectoif it satisfies

g=>0 VvVi=1l...,n and g=1
| IZI

A matrix Q € R"™" is astochastic matrixf all its row vectors are stochastic vec-
tors.

Now let us assume momentarily that for a given homogeneoukdvaChain
with transition matrixP and initial probability distributiorp® there exists a limit
distributiontt € [0, 1]" such that

lim pY =1t (in any norm, e.g. coordinatewise) (3)

t—oo

Then it must be the case that
= lim pOp! = lim popt+i

= (Iim pOPt) P=r1P

t—oo
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Figure 1: A Markov chain for Helsinki weather.

Thus, any limit distribution satisfying property (3), ifduexist, is a left eigen-
vector of the transition matrix with eigenvalue 1, and cacd@puted by solving
the equatiormt= 1iP. Solutions to this equation are called #guilibriumor sta-
tionary distributionsof the chain.

Example 1.1 The weather in Helsinki.Let us say that tomorrow’s weather is
conditioned on today’s weather as represented in Figure ih dre transition
matrix:

P |rain sun
rain| 0.6 0.4
sun| 0.7 0.3

Then the long-term weather distribution can be determiirethis case uniquely
and in fact independent of the initial conditions, by sotyin

P =TT ZTl'izl
|

0.6 0.4
s [T TE] l0-7 0_3} =[], mHme=1

T, =0.61% +0.71% _
{T[S:O.4Trr+0.3ns » TetTe=1
T =0.64
< {nszo.ses

Every finite Markov chain has at least one stationary distiim, but as the fol-
lowing examples show, this need not be unique, and evensf then the chain
does not need to converge towards it in the sense of equ&jon (

Example 1.2 A reducible Markov chainConsider the chain represented in Fig-
ure 2. Clearly any distributiop = [p1  p2] is stationary for this chain. The



1. Markov Chains and Random Walks on Graphs 5

1 1
Figure 2: A reducible Markov chain.
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Figure 3: Periodic Markov chains.

underlying cause for the existence of several stationasiributions is that the
chain isreducible meaning that it consists of several “noncommunicatingh€o
ponents. (Precise definitions are given below.)

Any irreducible (“fully communicating”) chain has a unigstationary distribu-
tion, but this does not yet guarantee convergence in theséregjuation (3).

Example 1.3 Periodic Markov chains.Consider the chains represented in Fig-
ure 3. These chains aperiodic with periods 2 and 3. While they do have unique
stationary distributions indicated in the figure, they oodywerge to those distri-
butions from the corresponding initial distributions; etWwise probability mass
“cycles” through each chain.

So when is a unique stationary limit distribution guarad®@he brief answer is
as follows.

Consider a finite, homogeneous Markov chain with stat&setd transition ma-
trix P. The chain is:

(i) irreducible if any state can be reached from any other state with pesitiv
probability, i.e.

Vi,jeS 3t>0:PR;>0;
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(i) aperiodicif for any statei € Sthe greatest common divisor of its possible
recurrence times is 1, i.e. denoting

Ni={t>1|Rj >0}
we have gctN)) =1, VieS

Theorem (Markov Chain Convergence)A finite homogeneous Markov chain
that is irreducible and aperiodic has a unique stationargtdbutiontt, and the
chain will converge towards this distribution from any ialtdistribution @ in the
sense of Equation (3}

Irreducible and aperiodic chains are also cafegllar or ergodic

We shall prove this important theorem below, establishirgj the existence and
unigueness of the stationary distribution, and then caemre. Before going
into the proof, let us nevertheless first look into the stitebf arbitrary, possibly
nonregular, finite Markov chains somewhat more closely.

Let the finite state space I$and the homogeneous transition matrixmhe
A set of state€ C S C # o is closedor invariant, if pj =0 VieC,j¢C.
A singleton closed state a&bsorbing(i.e. pij = 1).

A chain isirreducibleif Sis the only closed set of states. (This definition can be
seen to be equivalent to the one given earlier.)

Lemma 1.1 Every closed set containsminimal closed set as a subset.

Statej is reachablefrom state, denoted — |, if Pitj > 0 for somet > 0.
States, j € S communicatedenoted < j, if i — jandj —i.

Lemma 1.2 The communication relation<-” is an equivalence relation. All the
minimal closed sets of the chain are equivalence classése@gpect to “-". The
chain is irreducible if and only if all its states communieat

States which do not belong to any of the minimal closed ssleret calledran-
sient

One may thus partition the chain into equivalence classregpect to &”. Each
class is either a minimal closed set or consists of transtatgs. This is illustrated
in Figure 4. By “reducing” the chain in this way one obtainsA@®like structure,
with the minimal closed sets as leaves and the transient goemts as internal
nodes. (Actually a “forest” if the chain is disconnectedr) ireducible chain of
course reduces to a single node.
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Figure 4: Partitioning of a Markov chain into communicatoigsses.

Theperiod of statei € Sis

ged{t > 1| P} > 0}.
N—————

N

A state with period 1 isperiodic

Lemma 1.3 Two communicating states have the same period. Hence, every
ponent of the & relation has a uniquely determined periogh

Define thefirst hit (or first passageprobabilities for states— | andt > 1 as:

(9 PG £ X 7 1 X1 5% = ] | Xo = 1),
and thehitting (or passaggprobabilityfori — j as

£r =5 £,
ut;U

Then theexpected hittingpassaggtimefori — j is
tf Y if £ =1
i PRI i
0 if fij <1

Fori = |, Wi is called theexpected return timeand often denoted simply.

Statei € Sis recurrent(or persistenfif f;" =1, otherwise it igransient (In infi-
nite Markov chains the recurrent states are further dividempositive recurrent
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with < o andnull recurrentwith | = oo, but the latter case does not occur in
finite Markov chains and thus need not concern us here.)

The following theorem provides an important characteiosaof the recurrent
states.

Notation: PX = (p,(Jk)> injzl.

Theorem 1.4 State ic S is recurrent if and only if - pi(ik) = oo, Correspond-
ingly, i € Sis transient if and only if .~ pi(ik) < 0,
Proof. Recall the relevant definitions:

P = PXe=11%=1),

B = P #i. . X1 £ X =1 Xo=1).

Then it is fairly clear that

k k—1
(k) (t) (k1) (k=t) (1)
1 t; ] ] t;) ] ]
Consequently, for ani{:

K k-1

K
(k) (k—t)
i~ = i oy
kZ]_ 1} k—ltZ) ii 1}

K

® (k1)
= [N f.)
t; 2
< W
t;pii fii
A
= <1+t;pii ) fii

SinceK was arbitrary, we obtain:

(o]

_fu Z Sf*

IN

Now if i € Sis transient, i.ef;’ < 1, then

fr
Zn._l_ﬂ

k>1
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Conversely, assume thiat Sis recurrent, i.efi = 1. Now one can see that

>

2
Pr(X =iforatleasttwd > 1| Xp=1i) = fii(t) fii(t/) = Zl fii(t)
ti>1 t=

fi)?=1,
and by induction that

Pr(X =i for at leassstimes|Xo=i) = (f{)>= 1.
Consequently,

Pey = Pr(X = i infinitely often| Xo = i) = lim (f;")*= 1.

S—00

However, ify ~o pi(ik) < oo, then by the Borel-Cantelli lemma (see below) it should
be the case thaly, = 0.

Thus it follows that iff; = 1, then alsdy .o p\ = e.

Lemma (Borel-Cantelli, “easy case”)Let Ay,Aq,... be events, and A the event
“infinitely many of the A occur”. Then

k; Pr(Ax) < oo = Pr(A) =0.

Proof. Clearly

A= U A«

m>0k>m
Thus for allm > 0,
Pr(A) < Pr(U Ak> < > Pr(A) —0asm— o,
k>m k>m

assuming the surfi,-oPr(Ax) convergesp

LetCy,...,Cm C Sbe the minimal closed sets of a finite Markov chain, ané
S\ (CLU---UCp).

Theorem 1.5 (i) Any state i€ C;, for some r=1,...,m, is recurrent.
(il) Any state i€ T is transient.



10 Part I. Markov Chains and Stochastic Sampling

Proof. (i) Assumei € C, C minimal closed subset & Then for anyk > 1,

becaus€ is closed andP is a stochastic matrix. Consequently,

K _
PPN

and becaus€ is finite, there must be somjg € C such that

k
S bl =e.
k>0

Sincejg « I, there is somég > 0 such thap?;‘i’) = po > 0. But then

k k— k—
Z pi(i ) > Zopi(jo kO)DE';?) = < %pi(jo kO)) - Po = .
50 kS KS

By Theorem 1.4 is thus recurrent.

(if) DenoteC =C; U---UC,. Since for anyj € Y the se{l € S| j — |} is closed,
it must intersecC; thus for anyj € T there is somé& > 1 such that

K a (k)
P = P; > 0.
iC Ie; il

SinceT is finite, we may find &g > 1 such that for any € T, pE(k:O) =p>0.

Then one may easily compute that for ary T,

P <1-p, p2¢ < (1-p)? PP < (1-p)? etc.

iT
and so
o< T < T ko <k T (1-p) <.
k>1 k>1 r> r>

By Theorem 1.4j is thus transientm

1.2 Existence and Unigueness of Stationary Distribution

A matrix A€ R™" s
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(i) nonnegativedenotedA > 0, if gj;j >0 Vi, ]
(i) positivg denotedA 2 0, if g; >0 Vi, j anda;jj > O for at least one

(iii) strictly positive denotedA > 0, if aj; >0 Vi, ]

We denote alsé& > Bif A—B >0, etc.

Lemma 1.6 Let P> 0 be the transition matrix of some regular finite Markov
chain with state set S. Then for somgetlitis the casethatP>0 Vit >tp.

Proof. Choose somec Sand consider the set
N={t>1]p" >0
I { = | i~ > }

Since the chain is (finite and) aperiodic, there is some fa@tef numbers, ... ,tn €
N; such that

gcdN; = gedfty, ... ,tm} =1,
i.e. for some set of coefficients, ... ,am € Z,
agty +apto + - - + amtm = 1.

Let P andN be the absolute values of the positive and negative partsogtum,
respectively. Thu® —N =1. LetT > N(N — 1) and consider ang > T. Then
s=aN-+r, where 0<r <N -1 and, consequentla > N — 1. But thens=
aN+r(P—N) = (a—r)N+Pwherea—r > 0, i.e.Scan be represented in terms
oft,...,tm with nonnegative coefficients,. .. ,by. Thus

pl(ls) > p_(_bltl) pi(ibztz) o pi(ibmtm) < 0.

Since the chain is irreducible, the claim follows by chogsisufficiently larger
thanT to allow all states to communicate with

Let thenA > 0 be an arbitrary nonnegativex n-matrix. Consider the set
A ={A € R | Ax> Axfor somex > 0}.

Clearly 0e A, so\ # @. Also, it is easy to see that the values/A\rare upper
bounded by the maximal rowsulh of A. ThusA C [0, M], and we may define

A" =supA.
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To see that the supremum Afis actually attained by somg" € A and vector
X* > 0, observe that one may also defikieas

where in the case of =0, the quotieanX—’i‘)i is defined as the appropriate limit to
maintain continuity.

Theorem 1.7 (Perron-Frobenius) For any strictly positive matrix A> O there
exist a positive real number* > 0 and a strictly positive vector’x> 0 such that:

() AX" = A*X*;
(i) if A £ A* is any other (in general complex) eigenvalue of A, thenrc A*;

(i) A* has geometric and algebraic multiplicity 1.

Proof. DefineA* as above, and let > 0 be a vector such th&t* > A*x*. Since
A > 0, alsoA* > 0.

(i) Suppose that it is not the case that* = A*x*, i.e. thatAx* > A*x*, but not
AX* = A*x*". Consider the vector* = Ax*. SinceA > 0, Ax> 0 for anyx = 0; in
particular nOwA(y* —A*X*) = Ay — A*AX* = Ay* —A*y* > 0, i.e.Ay* > A*y*; but
this contradicts the definition of*.

Consequently\x* = A*x*, and furthermore* = L Ax* > 0.

(i) Let A £ A* be an eigenvalue oA andy # 0 the corresponding eigenvector,
Ay= Ay. Denotely| = (|y1],.-.,|yn|). SinceA > 0, it is the case that

Alyl > [AY] = [AY] = [A]ly]-
By the definition ofA*, it follows that|A| < A*.

To prove strict inequality, led > 0 be so small that the matrks = A—dl is still
strictly positive. Then for any eigenvalueof A, A — d is an eigenvalue ofgy
and vice versa. Sincdg > 0, its largest eigenvalue " — 9, i.e. for any other
eigenvalue\ of A, A — 9| < A* —0.

But this implies tha# cannot have any eigenvalugs: A* on the circleglA| = A%,
because such would haje— 8| > |A* —9|. (See Figure 5.)

(iif) We shall consider only the geometric multiplicity. fpose there was another
(real) eigenvectoy > 0, linearly independent of*, associated ta*. Then one
could form a linear combinatiow = x* 4+ ay such thatw > 0, but notw > 0.
However, sincé > 0, it must be the case that alao= )\—{Aw> 0. o
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Figure 5: Maximality of the Perron-Frobenius eigenvalue.

Corollary 1.8 If A is a nonnegative matrix (4 0) such that some power of A is
strictly positive (A > 0), then the conclusions of Theorem 1.7 hold also for-A.

Note: In fact every nonnegative matrix> 0 has a real “Perron-Frobenius” eigen-
valueA* > 0 of maximum modulus, i.e. such thHat < A* holds for all eigenvalues
A of A. But in this general case there may also be complex eigessatiequal
modulus, and\* itself may be nonsimple, i.e. have multiplicity greaterrtiuae.

Proposition 1.9 Let A> 0 be a nonnegative r n matrix with row and column
sums

rizzaijv Cjzzaljv i?j:]-?"'?n
J I
Then for the Perron-Frobenius eigenvaldieof A the following bounds hold:

minr; <A* <maxrj, minc; <A* < maxc;.
| | ] J
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Proof. Letx* = (xq,X2, ... ,Xn) be an eigenvector corresponding\tg normalised
so thaty; xi = 1. Summing up the equations fAx" = A*x* yields:

Xy + aXe + ... + amXn =A'Xg

aXy + axpXe + ... + amXn =A%

aniXt + aXe + ... + anmXn =A%

X1 + CX2 + ... 4+ CXn =AN(Xg+--+X) =A*
~——

ThusA* is a “weighted average” of the column sums, so in particularjg) <
A < max;cj.

Applying the same argument %', which has the samk* asA, yields the row
sum bounds.

Corollary 1.10 Let P> 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution veatrsuch that® = (< PTri =1').

Proof. By Lemma 1.6 and Corollary 1.8 has a unique largest eigenvaliec R.
By Proposition 1.9\* = 1, because as a stochastic matrix all row sumB (fe.
the column sums d?") are 1. Since the geometric multiplicity df is 1, there is
a unique stochastic vectur(i.e. satisfyingy; , = 1) such thariP = 1.

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chdth transition ma-
trix P has a unique stationary distribution vectosuch that® = 1t

By elementary arguments (page 3) we know that starting fnoyniratial distribu-
tion g, if the iterationg, gP, gP2, . .. converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain deieed byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let Ae C"™" be any matrix with eigen-
valueshy,... ,A| € C, | <n. Then there exists an invertible matrixdJC"*" such
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that
J 0 .- 0
vau-t—| O %2
T ¢
0o -~ 0 J

where eachiJdis a k x k; Jordan block associated to some eigenvaluef A:

A1O0O-.-- 00
0O A1 00
J=1: i
000 --- A1
(000 - 0\

The total number of blocks associated to a given eigenvakt@responds ta’s
geometric multiplicity, and their total dimensighk; to A’s algebraic multiplicity.

O

Now let us consider the Jordan canonical form of a transitiairix P for a regular
Markov chain. Assume for simplicity that all the eigenvau# P are real and
distinct. (The general argument is similar, but needs monegticated notation.)
Then the rows oJ may be taken to be left eigenvectors of the mai@jand the
Jordan canonical form reduces to the familiar eigenvaleeiposition:

MM O - 0
uput=pn=| O A
P o0
0 - 0 M

In this case one notes that in fact the columnblof =V are precisely theight
eigenvectors corresponding to the eigenvalhgs.. ,A,. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalde = 1, and the other eigen-
values may be ordered so that>1|]Ap| > |Az| > --- > |An|. The unique (up to
normalisation) left eigenvector associated to eigenvalisethe stationary distri-
butionTt, and the corresponding unique (up to normalisation) rigdreerevector is
1=(1,1,...,1). If the first row ofU is normalised tat, then the first column of
V must be normalised tbbecaus&JV =UU 1 =1, and hencéUV)1; = ujvy =
v, = 1.
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Denoting
1 0 --- 0O
A 0 A2 ,
0
0 0 A
we have then:
1 0 --- 0
2
P2 = (VAU)?> =VAZU =V 0 A u,
. 00
0 -~ 0 A2
and in general
10 ---0
t -,
Po— vau = v (%% U
TR ¢
0--- 0 A,
-0 V11U1 Tt
V12U 11
v A
0--- 00 VinU1 Tt

To make the situation even more transparent, represenea giitial distribution
q= g in the (left) eigenvector basis as

q = Guui+Gauz+---+Gnln
= Ti+Golp+---+Gaun,  wheredi = (q",vi) = qu.

Then

qP = (Tt+ Galz + - - - + Gnln) P = Tt+ GoA2Uz + - - - + GnAnUn,
and generally

n

qV =qP = ﬂ+i;qi>\EUa,

implying thatq! —— 11, and if the eigenvalues are ordered as assumed, then

t—oo

199 =il = o (1A2").
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1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Matian?

A moment’s thought shows that the transition matrix of anteaty (finite) Markov
chain can be put in the followinganonical form

P 0

0 P

R Q

where ther square matriceBy, ..., P in the upper left corner represent the tran-
sitions within ther minimal closed classe®) represents the transitions among
transient states, arRRirepresents the transitions from transient states to orteeof t
closed classes.

In this ordering, stationary distributions (left eigenigs of P corresponding to
eigenvalue 1) must apparently be of the fams: [y --- 1 0 --- 0]. (Note that
sinceQ has at least one row sum less than 1, by the proof argumenbpoBir

tion 1.9 also all of its eigenvalues have modulus less thdinis the only solution
of the stationarity equatiopnQ= pispu=0.)

Consider then theundamental matrix M= (I — Q) of the chain. Intuitively, if
M is well-defined, it corresponds td = | + Q+ Q?+ ..., and represents all the
possible transition sequences the chain can have with@uigg.

Theorem 1.12 For any finite Markov chain with transition matrix as abovieet
matrix | — Q is invertible, and its inverse can be represented as theergent
seriesM=1+Q+Q*+...

Proof. Since for anyt > 1,
1-QU+Q+-+Q 1 =1-q,

andQ' — 0 ast — oo, the result follows

A transparent stochastic interpretation of the fundamemédrix may be obtained
by considering any two transient stategin a Markov chain as above. Then:

P = | | Xo=1)=Q} 2 q).
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1 g=1-p

SEme

Figure 6: A Markov chain representing the geometric distidm.

Thus,
E[number of visits toj € T | Xg=i € T] = qi(jo) +qi(j1) +qi(j2) 4
lij + Qij +Qi2j +...
Furthermore,

E[number of moves i before exiting taC | Xo =i € T]
= ZFE[number of visitstg e T | Xo =1 € T|
i

= j;mj
(M1),

As another application, ldtj; be the probability that the chain when started in
transient staté € T will enter a minimal closed class via staje= C. Denote
B = (bij)ieT,jec. Thenin factB = MR.

Proof. For giveni € T, j € C,

bij = pij + > Pikbyj-
keT

Thus,

B=R+QB = B=(1-Q) R=MR

Example 1.4 The geometric distributionConsider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in th&se is

- [32)
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G el e

Aloses 9 A wins

Figure 7: A Markov chain representing a coin-flipping game.
NowQ=(q),M=(1—-q)~t=1/p. Thus, e.g.
E[number of visits to 2 before exiting to|Xo = 2] = M1 = Fl)
An elementary way to obtain the same result would be:

E[number of visitf = Z Prinumber of visits= k] - k
K>0

= ZOPr[number of visits> K|
k>

1

1
= 1+q+q2+-~-=ﬁ:5.

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A's success probability equal wand B’s success probability equal te-Jp = q.

The person to first obtaimsuccesses over the other wins. What are A's chances of
winning, given that he initially has successes over B;n <k <n? (A more tech-
nical term for this process is “one-dimensional random wuilk two absorbing
barriers.”)

For simplicity, let us consider only the case- 2. Then the chain is as represented
in Figure 7, with transition matrix:

-2 -1 01 2
-2(1 0 00O
-1l g O p 0O
0/ 0 g O0poO
110 O gqoOwp
2/ 0 0 001
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i.e. in canonical form:

-2 2 -1 01
-2(1 0 0 0O
210 1 0 0O
-1 q 0 0 poO
0O/l 0 O g 0p
110 p 0 g@o

{ 1 —p 0 } o [p+@ p P
= —q 1 —P > > 1 p
0 —q 1 R R A
and soB= MR
+ 3 3
LR g 0 1 qpqzq Ez
| 30 P00 T | @ pa+p?

A loses A wins

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chaften encountered
in algorithmic applications. Many examples of these typeshains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred timeatition at equilibrium, i.e.
any given sequence of states is equally likely to occur iwéod as in backward
order.

A Markov chain determined by the transition matfix= (pjj )i jesis reversibleif
there is a distributiom that satisfies thdetailed balanceonditions:

Tipij =Tpji Vi,jeS

Theorem 1.13 A distribution satisfying the detailed balance conditioassta-
tionary.

Proof. It suffices to show that, assuming the detailed balance tondj the fol-
lowing stationarity condition holds for alle S

T = Z;ijji-
i€
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Figure 8: Detailed balance conditiogp;; = TT; pji.

But this is straightforward:
TPji = ) Tipij =T% » Pji =Tg.
0

Observe the intuition underlying the detailed balance d@mmd At stationarity,
an equal amount of probability mass flows in each step froonj as fromj to
i.(The “ergodic flows™ between states are in pairwise bagat. Figure 8.)

Example 1.6 Random walks on graphs.

Let G = (V,E) be a (finite) graphy = {1,... ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbourtetse as
the next state, uniformly at random. That is,

l . . .
|5 if (i,j)€E o .
P = { 0, otherwise (ch = degi))

Let us check that this chain is reversible, with stationasyridbution
d d d
n:{j j.ujy

d d d
whered = S, d; = 2|E|. The detailed balance condition is easy to verify:
j d; .
Tipij = %'d%:%:ﬁ‘d_l,»:“jpji, if (i,j) €E
0=pji, if (i,j) ¢ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure % diisy to verify that
this chain has the unique stationary distributios- [ 1 1]. However, for
anyi=1,23:
12 2 11 1
TP i+1) =337 g~ T+1Pi+)i =33 5
Thus, even in a stationary situation, the chain has a “peatss” of moving in the
counter-clockwise direction, i.e. it is not time-symmeiri
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Figure 10: Hard-core colouring of a lattice.
2 Markov Chain Monte Carlo Sampling

We now introduceMarkov chain Monte Carlo (MCMC) samplingvhich is an
extremely important method for dealing with “hard-to-aegedistributions.

Assume that one needs to generate samples according toabpitgtdistribution

11, but TTis too complicated to describe explicitly. A clever solutis then to
construct a Markov chain that converges to stationary itigion 11, let it run

for a while and then sample states of the chain. (Howeverpbr@us problem
that this approach raises is determining how long is “for det® This leads to
interesting considerations of the convergence rates amidimixing” of Markov

chains.)

Example 2.1 The hard-core model.

A hard-core colouringpf a graphG = (V, E) is a mapping
&:V—{01} (“empty” vs. “occupied” sites)

such that

(i,j))eE = &(i)=0VvE(j)=0 (no two occupied sites are adjacent)
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E.g. on a lattice graph, the hard-core colouring conditiardats an exclusion
principle, whereby a “particle” at one site excludes thespree of “particles” at
neighbouring sites, cf. Figure 10. In computer science $earhard-core colour-
ing of a graphG corresponds to an independent set of nodes fGom

Denote by the uniform distribution over all th&g valid hard-core colourings of
G. We would like to sample colourings accordingus, €.g. in order to compute
the expected number of ones in a valid colouring:

EMX) =3 n(E)HG(E)Zi > n@)lgis vaiid);
£e{0,1}V £e{0,1}V

wheren(&) denotes the number of ones in colouring

However, the combinatorial structure of distributiagis quite complicated,; it is
far from clear how one could pick a random valid hard-coreuohg of graph
G. (Even computing their total numb2g; is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless FP9 N

Given a graptG = (V,E),V = {1,...,n}, let us consider the following Markov
chain(Xg, X1, ...) on the space of valid hard-core colouringsf

e Initially chooseXg to be any valid hard-core colouring Gt
e Then, given colouring¢, generate colouriny;_ 1 as follows:

1. Choose some node V uniformly at random.

2. If all the neighbours of have colour 0 in, then letX;;1(i) = 1 with
probability 1/2 andX;1(i) = 0 with probability /2.

3. Atall other nodeg, let X1 1(j) = X%(j).

It can be seen that the chain thus determined is irreducsihed all colourings
communicate via the all-zeros colouring) and aperiodicagifor any colouring
E, PEE > 0)

To see that the chain hag as its unique stationary distribution, it suffices to
check the detailed balance conditions with respepttd_eté, &’ be two different
colourings. If they differ at more than one node, thfgn = Pys = 0, so it suffices
to check the case wheégi) # &'(i) at a single node But then

1 11
Prgr = — = = = g (&) Pesg.
MG (&) Pee Za'n'2 Mo (&) Pere
The above hard-core sampling algorithm is a special caseGablas samplefor
a target distributiornmon a state space of the forg=CV.
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The general principle is to choose in step 2 of the state epdidd the new value
for X¢+1(i) according to theonditionalre-distributiorn

Pivc(Xe+1(1) = ¢) = Pm(&(i) = ¢ [ &(j) = X (i), ] #1).

(In addition, the chain needs to be initialised in a stétehat has nonzeror
probability.) It can be seen that the chain so obtained isiaglie and hast as
a stationary distribution. Whether the chain is also ireble depends on which
state<, have nonzerat-probability.

Example 2.2 Sampling graph k-colouringd.et G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in 8gaces= {1,... ,k}V
of k-colourings ofG:

¢ Initially chooseXg to be any validk-colouring of G. (Of course, finding a
valid k-colouring is an NP-complete problem foe> 3, but let us not worry
about that).

e Then, given colouring¢, generate colouring . 1 as follows:

1. Choose some node V uniformly at random.
2. LetC' be the set of colours assigned ¥yto the neighbours af

C'={x()I(ij) €E}
(Note that/C’| < k.) Choose a colour foX;,1(i) uniformly at random
from the set{1,...  k} \C'.
3. At all other nodeg, let X;+1(j) = % (}j).

Note that it is a nontrivial question whether this chain rediucible or not.

Another general family of MCMC samplers are tietropolis chains

Let the state spacghave some neighbourhood structure, so that it may be viewed
as a (large) connected graffh N). Denote byN(i) the set of neighbours of state
i, and letd; = |N(i)|. We assume that the neighbourhood structure is symmetric,

so thati € N(j) ifand only if j € N(i).
Then the (basic)Metropolis samplefor distributiontton Soperates as follows:

e Initially chooseXg to be some statec S.

e Then, given stat; = i, stateX;, 1 is obtained as follows:
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1. Choose somge N(i) uniformly at random.

2. With probability min{fﬁ,"—g;, 1}, acceptX ;1 = j. Otherwise let; 1 =
i

Thus, fully written out the transition probabilities are:

Emin{h,l}, if j € N(i)

d Td| o
pij =4 O, if j&N(i),j#i
1=y p. =i

JEN)

To show that this chain hasas its stationary distribution, it suffices to check the
detailed balance conditions:

TP =mpji Vi,jeS

The conditions are trivial if = j or j ¢ N(i), so let us consider the cage N(i).
There are two subcases:
. ;0 . .
0] Case—mdj > 1: Then:
1
=1
Y
mdj T
T[. s — T[  —_ [ —
iPi J dj md d

TiPij =T§

. T dj . .
(i) Casem_'—m < 1: Then:
N L L
TiPij = T§ g Tl'idj_dj
TG Pii =T -— -1
j Pii j d;

(Note that in both cases pi; = T;pji = min{g,g—;}.) Hencerttis a stationary
distribution of the chain.
Furthermore, the chain is guaranteed to be aperiodic ittleat least onee S
such that% <1(= pi>0)i.e.itisnotthe case thatforallj € S

T T

— = — = const
d  d
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In the latter case the chain reduces to a simple random watkeograph(S N)
with stationary distribution

[ d2 dy
n= lE E"'ﬂ

as seen earlier. Such a random walk is aperiodic, if and drtheigraph(S N)
contains at least one odd cycle, i.e(¥N) is not bipartite.

3 Estimating the Convergence Rate of a Markov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on stateSet{1,... ,n}, with transition prob-
ability matrix P = (pjj) and stationary distributiort.

We would like to measure the rate of convergence of the cloaim ¢.g. in terms
of thetotal variation distance

A\(/I)(t> = d\/(T[(iJ)?T[)v

(i.t)

Wherenj' t (®)

= P, and

1
dv (P, 1) = max|p(A) ~TI(A)| = gsmj — G-

However, we get somewhat tighter results by using instedg tferelative point-
wise distance

dY (p. 1) = max‘pjij.
I’p(p7 ) jeu T[j

Hence, we define our convergence rate function as:

- Py T
20 =gy (r.m =

When we consider convergence over the whole state spadd,+€S, we denote
simply:

A(t) = AS(t).
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Proposition 3.1 For any two distributiong, 1, wherert; > 0 for all j:

1 S
dy < — <
(p,m < 2drp(p7n) = min; Ty

dv(p,10).

Consequentlyd) (t) < 1A(t) for alli,t. o

Define themixing timeof a given regular chain as
1(e)=min{t | A(t)<e Vt >t}

In algorithmic applications, the details of the chain arenfdetermined by some
inputx, in which case we writdy(t), Tx(€) correspondingly.

A chain (more precisely, a family of chains determined byuts) is rapidly
mixingif

Tx(€) = poly <|x|, In :—é) .

Our goal is now to establish some techniques for analysiegomvergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and statiayalis-
tribution Ttis reversible, if and only if the matrix 2PD~1/2 is symmetric, where

DY2 = diag(y/T, /T8, - - - , \/Thn)-

.
Proof. DY2PD1/2 = (Dl/ZpD—1/2> o DP=P'D.

Inspecting this condition coordinatewise shows that itdigotly the same as the
reversibility conditionm pi; = pjiTy Vi, . O

Now it is easy to see that the mati= D¥/2PD~1/2 has the same eigenvalues as
P: if A is an eigenvalue d? with left eigenvectom, then for the vectov = uD~1/2
we obtain

VA= uD /2 (Dl/ZPDfl/Z) —uPD Y2 = \uD Y2 = )\v,

Since matrixA is symmetric for reversibl®, this shows that reversiblé have
real eigenvalues. By the Perron-Frobenius theorem theyhearbe ordered as

AM=1>A>A3>---> Ay > —1.

DenoteAmax= max{|Ai| : 2 <i < n} =max{Az, —An}.
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Theorem 3.3 Let P be the transition matrix of a regular, reversible Maviahain,
and other notations as above. Then for anyl8,

)\t
AU (t) < max

mInTl'.

ieU

Proof. Letel,... . be an orthonormal basis f&" consisting of left eigenvectors
of A, where vecto€ is associated to eigenvalde Especiallye! = nD~1/2 =

VTG, /T

ThenA has a spectral representation

A= i)\.(e')Te' = ~il)\iEi7

whereE; = (¢)T€. ClearlyE? = Ej, andEEj = 0 if i # j.
Thus, for anyt > 0, A' = 51, AE;, and hence

pt — pD-12apY/2— ZAt( 1/2(ei)T) (eiD1/2>

- 1n+;>\t( ~1/2(d )(e‘Dl/2>.

In component form, this means:

p]k —Tﬁ<+\/722)‘tel

Computing the relative pointwise distance convergencs ra¢ thus get for any
ucs

)\}ellei(i
AV(t) = max—
kel \/nj—n'k

;é elK|
mlnn]
jeu

(4)

max
j,keU

IN

ma

AL . . .
7m|r:1anx (by the Cauchy-Schwarz inequality and normality).
j
jeu

IN
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Theorem 3.4 With notation and assumptions as above,
A(t) > Nypax

for all even t. Moreover, if all eigenvalues of P are nonnégatthen the bound
holds for all t.

Proof. Continuing from equation (4) above, whers even or all eigenvalues are
nonnegative, the following holds:

n -
A(t) = AS(t) > max = > AL max-—2
)= 85) = mad e o 2 ma

where€® is a normalised eigenvector corresponding to eigenvaltie atisolute
valueAmax Necessaril)(e'jo)2 > 1; for somej for otherwise

=)

n

€] =S ()2 <y m=1,

=1 =1

contradicting the normality a#°. o

Negative eigenvalues are often a nuisance, but they calysbearemoved, with-
out affecting the convergence properties of the chain magldding appropriate
self-loops to the states. E.qg.:

Proposition 3.5 With notation and assumptions as above, consider the cheain d
termined by transition matrix'P= 3(1 +P). This chain is then also regular and
reversible, has same stationary distributimpand its eigenvalues satisix)/(1 >0
andAmax= A, = 2(1+A2). O

With Theorem 3.3 and Proposition 3.5 in mind, it is clear thatkey to analysing
convergence rates of reversible Markov chains is to find gmotiniques for
bounding the second eigenvalugaway from 1.

An interesting and intuitive approach to this task is via tie¢ion of “conduc-
tance” of a chain.

Given a finite, regular, reversible Markov chain on the state spac&={1,...,n},
transition probability matri¥ = (pjj ) and stationary distributiort= (15), we as-
sociate ton a weighted graple = (S E,W), whereE = {(i, j) | pij > 0}, and
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the weights, or “capacities” on the edges correspond terthedic flowdetween
states:

Wij = TG Pij = TG Dji.

Given a state sek C S, thevolumeof A is defined as

Va=T(A) = ;Tﬁ,
i€
and theergodic flowout of A as
Fa= S mipij = S wij = w(A A).
iA jA

(Note that O< Fa <Va < 1))
Then theconductancef the cut(A, A_), or the(weighted) expansioof A is

_Fa_ WAA)
“Va WA

P

and finally theconductancef ar , or G, is obtained as

CDM = CD(G) = min CDA.
0<m(A)<1/2

Since clearlyFa = F4 for any@ # A ¢ S this may equally well be defined as:

® = min max P, Py).
GAACS X @, Pp)

Theorem 3.6 For a regular reversible Markov chain with underlying gra@
the second eigenvalue of the transition matrix satisfies:

(i)

2
A <1-— (D(;B) ;
(if)
A2 > 1—20(G).

Proof. Later.
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Corollary 3.7 With notation and assumptions as above, the convergenes @it
the chain under consideration satisfy, for agy= A¢ S and t> O:

(i)
1— q>2 2)'
icA T
(i)
At) > (1—20)".
Corollary 3.8 Consider a family of regular reversible chains where allezigal-

ues are nonnegative, parameterised by some input stringcwath underlying
graphs G. Then the chains are rapidly mixing, if and only if

1
p(Ix)’

for some polynomial p and all x.

P(Gy) >

Proof. According to Corollary 3.7 (i):

Alt) < ¢
. (1-02/2)
i mln.eAn; S €
if t- In( ) < In e+In Tinin
<- cD2/2
if —t®?/2 < In €4In Thin
if t > Z(ini+n:l).

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

Alt) > €
if )\tz > €
if tlnA2 > Ing
: 1 1
if tln)\—2 < Ing
. 1-A 1 1_ 1-A 1-A
it t-152 < In! Ind=in(1+352) <2 0<r<1
. A 1
if t < %_ng-ln15 .
if t < S5 Ing 1oy Increasing iMm, 1—20 < Ao,.
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Figure 11: Random walk on a ring.

Consequently,
1-2P(Gx), 1 2 ( )
— " In=<14(8) < In——+1In
25(Gy) {8 = 362 T

Example 3.1 Random walk on a ringConsider the regular, reversible Markov
chain described by the graph in Figure 11.

1 1
Clearly the stationary distribution 1= [n, c o]
The conductanc®a = Fa/Va of a cut(A, A) is minimised by choosing to consist

of anyn/2 consecutive nodes on the cycle, &g= {1,2,...,n/2}. Then

TG Pij
Va ';Tﬁ nil T2

Thus, by Theorem 3.6, the second eigenvalue satisfies:

1
2n?’

by Corollary 3.7, the convergence rate satisfies

(2 smne )

and by Corollary 3.8, the mixing time satisfies:

1_§§)\2§1_
n

1-2 1
2/n/”| - <t(e) < an? (Ing—l—lnn)

1 1
N (D—l> In= <1(e) < 2n? (Inn+|n—).
2 € €
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It is an intriguing, and nontrivial, exercise to work out tedue ofA, exactly in
this case, in order to determine whether the mixing time$ are closer to the
given lower or upper bounds as a functiomof

Let us now return to the proof of Theorem 3.6, establishirggdbnnection be-
tween the second-largest eigenvalue and the conductarcklafkov chain. Re-
call the statement of the Theorem:

Theorem 3.6Let & be a finite, regular, reversible Markov chain aid the
second-largest eigenvalue of its transition matrix. Then:

() N2<1-%,

(i) Ap>1-20.

Proof. (i) The approach here is to bouddin terms of the eigenvalue gap af ,
i.e.to show thatb2/2 < 1-—\,, from which the claimed result follows.

Thus, consider the eigenvaldie= A,. (The following proof does not in fact de-
pend on this particular choice of eigenvalue 1, but since we are proving an
upper bound of the forrd?/2 < 1— A, all other eigenvalues yield weaker bounds
thanA,.)

Let e be a left eigenvectoe # 0 such thaeP = Ae. Now e must contain both
positive and negative components, sige = 0 as can be seen:

eP=)\e & Zapij =Aej V]
|

= leapij ZIZQZIOU =\ €

——
=1

g Yea=0
!

DefineA= {i | & > 0}. Assume, without loss of generality, thatA) < 1/2.
(Otherwise we may replaceby —e in the following proof.)

Define further a fenormalised” version oé | A:

L_[e/m ificA
"=\ o, if i ¢ A

Without loss of generality we may again assume that thestaiteindexed so that
Up >Up>...>U >Uy1=...=Uy=0, wherer = |A|.
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In the remainder of the proof, the following quantity will baportant:

2 2
> wij (U —uf)
i<]

S i
|

We shall prove the following claims:

D=

(@) ® <D,
(b) D?/2<1—A,

which suffice to establish our result.

Proof of (a): DenoteAx = {1,...,k}, for k=1,...,r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out ofAhas
follows:

2 2 2 2
> Wij (U —uj) = 5w Z (Ui = Uicr1)
<] i<] i<k<j
r
2 2
= > (Uc—Ui1) > Wi
k=1 €A,
1A

r

2 2
- (Uk—uk+1)FAk.
k=1

Now the capacities of thay satisfyi(Ay) < 1(A) < 1/2, so by definitiord,, >
® = Fp > P -1(Ay). Thus,

r
2 2 2 2

> Wi (U = uf) = (U~ Ui1)Fay

i<] k=1

®. z (&~ &,y A

=o. Z Uk+1 Zlm
;
Z U — Ucs1)

=
;Tquiz.
e

v

HM"II

(OB
P
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Hence,

5 wij (U —uf)

i<]

s
|

=D.

® <

Proof of (b): We introduce one more auxiliary expression:

> wij (U —up)?

i<]

s
|

E=

and establish that: (b[p? < 2E, (b”) E < 1— A. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b’): Observe first that

Zwij(ui-i—uj)zgZZwij(u;Z-i—u‘jz) < ZZTnuiz.
i i ic

i<] i<)

Then, by the Cauchy-Schwartz inequality:

2

S wij (U —uf)
D2: 1<]
S
|
(1) \2 (11 )2
.ZW|J<UI+UJ) ZWIJ(UI—UJ)
< i<] . i<] . < 2E.
> ThL; > ThL;
| |

Proof of (b”): DenoteQ =1 —P. TheneQ= (1—A)eand thus

r

eQU = (1-Aeu' = (1-A) Y muf.

i=1
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On the other hand, writingQU' out explicitly:

Wij

n r
eQu = Gij & Uj Gij=—Pij=——" 1#]
i;gl I ] i ] ij i

r r

T§
> 0ij & U] q-:l—p--:;p-
i;gl ij i i i & ]

= —ZZWijuin—I-ZZWijuiz g ="Tiy, I€A
i€ J_i_ i€A €
A

i

= =25 wijuu+ 5w (uf + uf)
i<] i<)

=y wij(ui—up?

Thus,
E-Smuw?=S wju—u)?><eQu =(1-A)-$mu? = E<1-A
2TW=2 2T

(i) Given the stationary distribution vectare R", define an inner product, )
inRR" as:

(UV)= iimuivi.

By (a slight modification of) a standard result (the Couraischer minimax the-
orem) in matrix theory, and the fact tHRis reversible with respect g, implying
(u,PV)r= (Pu,v), one can characterise the eigenvalueB at:

(u,Pu)
(u,u)

I Tt

u,Pu

Ay = max{< ’ "\uLTr,u;éO}, etc.
(U,U)n

Alzmax{ \u;zéo},

In particular,

<U, PU>T[
for anyu # 0 such that) mu; = 0. 5
<U,U>T[ y ?é IZTTI I ( )

Given a set of state& C S, 0 < T(A) < 1/2, we shall apply the bound (5) to the
vectoru defined as:

Ao >

1 .
—A)’ ifiecA

l —
——— ifieA
A’ if i
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Clearly
Tg Tg
IZTqui :i;@_i;@ =1-1=0, and
Tg Tg 1 1
=3 =5 At L nar ~ ) A

so let us compute the value 0f, Pu) .

The task can be simplified by represent@sP = I, — (I, — P), and first com-
puting (u, (I —P)u)

<U,(| _P)U>T[ = ZTﬁUi Z(' _P)ijuj
! J

== WuipijUj+Z§WUipijui
E NEZ
=5 > T (uf — i)
T A

= Tipij (U —uj)?
i<]
1 1 \?
A <@+@)
i#i

- (%+%)2a,
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Since the bound (6) holds for aryC Ssuch that O< Ti(A) < 1/2, it follows that
it holds also for the conductance

d= min @a.
0<m(A)<1/2

Thus, we have shown thag > 1 — 2®, which completes the proof;

Despite the elegance of the conductance approch, it canrbetisoes (often?)
difficult to apply in practice — computing graph conductaoae be quite difficult.
Also the bounds obtained are not necessary the best pgssilparticular the
square in the upper bound < 1— ®?/2 is unfortunate.

An alternative approch, which is sometimes easier to apig, can even yield
better bounds, is based on the construction of so calledfdaal paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain withiatatry distributionr,
represented as a weighted graph with nod&seid edge sét = {(i, j) | pij > 0}.
The weight, or capacityy. associated to edge= (i, j) corresponds to the ergodic
flow T pj; between stateisand j.

Specify for each pair of statésl € Sa canonical pathy, connecting them. The
paths should intuitively be chosen as short and as non@yerig as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

Denotel” = {yy | k,I € S} and define the unweighted and weighé&sitje loading
induced byf” on an edge € E as:

1

Pe = — TKTY
Wevkuzae

_ 1

Pe = — ) TWTY|Vul,
Wevkuzae

where|yy | is the length (number of edges) of patf. (Note that here the edges
are considered to hariented so that only paths crossing an edge (i, j) in the
direction fromi to j are counted in determining the loadingef Themaximum
edge loadingnduced byl" is then:

p = p(MN) = maxpe

ecE

p = p(I) = maxpe.

ecE

Theorem 3.9 For any regular, reversible Markov chain and any choice afica-
ical paths,
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Proof. Represent the chain as a weighted gr&plwhere the weight (capacity) on
edgee= (i, ) is defined as:

Wij = TG Pij =TT Pji.

Every set of state8 C Sdetermines a cUtA, A) in G, and the conductance of the
cut corresponds to itglative capacity

W(A, A 1
Va T(A) icA jeA

Let thenA be a set with G< Ti(A) < % that minimisespb,, and thus ha®a = @.
Assume some choice of canonical pakhs: {yij}, and assign to each payf a
“flow” of value 15115 Then the total amount of flow crossing the CAtA) is

S T = mA)T(A),
icA jeA

but the cut edges, i.e. edges crossing the cut, have onlycapacityw(A,A).
Thus, some cut edgemust have loading

T(A)TI(A) _omA 1
WA A T 2WAA) 20

1
Pe= — TGTG >
o e

The result follows

Corollary 3.10 With notations and assumptions as above,

1
MN<l-—.
2=1-g5

Proof. From Theorems 3.6 and 3.9.
A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:
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)
D
”i ||n

Example 3.2 Random walk on a ringLet us consider again the cyclic random
walk of Figure 11. Clearly the stationary distributiorris= [ ,%], and the
ergodic flow on each edge= (i,i+1)is

(i) t(¢e) < (In1+ln

n’n’

11 1
We:TTipi,iilzﬁ'Z:%-

An obvious choice for a canonical path connecting nddéss the shortest one,
with length

V| = min{|l —k[,n— [l —K|}.

It is fairly easy to see that each (oriented) edge is now liedydoy 1 canonical
path of length 1, 2 of length 2, 3 of length 3, , J of length 3 (actually the last
one is just an upper bound). Thus:

n/2

_ 1 1,
P = max-- TG Yij| <4ny —-r
4 1Weyk|zae rglfz
n /n
- —.Z._. — 1). 1) == 1 2
63 (2—1— (n+1) 6(n+ )(n+2)
=

1(e)

I IA

Example 3.3 Sampling permutations_et us consider the Markov chain whose
states are all possible permutationgrof= {1,2,...,n}, and for any permutations

site S

1 .
i |f S= t,

Pst = % . (”)71, if scan be changed toby transposing two elements,
0 otherwise

Thus, e.g. fon = 3 we obtain the transition graph in Figure 12.

Clearly, the stationary distribution for this chaintis= [, X ... 1] and the

ergodic flow on each edge= (s,t), with s#t, pst > 0, is:

1 1 /nm\*
T[spstn22~
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Figure 12: Transition graph for three-element permutation

A natural canonical path connecting permutatgto permutatiort is now ob-
tained as follows:

S=9—S1—>— =5 1="L

where at each, sc(k) =t(k). (Thus, eacls matches up to elemenk, s¢(1...k) =
t(1...k).)
Thus, e.g. the canonical path connectirng (1234 tot = (3142) is as follows:
) o
—_—— 1
(1234) — (3|214) — (31]24) — (3142).
Now let us denote the set of canonical paths containing angraasitiont : w —
« by I'(1). We shall upper bound the size bft) by constructing an injective

mappingor : I' (1) — S,. Obviously, the existence of such a mapping implies that
IF(7)] <nl.

Suppose transposes locations+ 1 andl, k+ 1 < |, of permutatiorw. Then for
any(s,t) € I'(1), define the permutation= o¢(s,t) as follows:

1. Place the elements i(1...k) in the locations they appear & (Note that
permutatiorw is given and fixed as part af)

2. Place the remaining elements in the remaining locatiortke order they
appear irt.

Thus, for example in the above example case:
0:((1234,(3142) — (- - 3 _)— (1432
N——

z

w=(3)214), k=1
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Why is this mapping an injection, i.e. how do we recovandt from a knowledge
of T andz = 0:(s,t)? The reasoning goes as follows:

1. t =w(1...k)+ “other elements in same order aszin

2. s="elements inw(1...k) at locations indicated i@’ + “other elements in
locations deducible from the transposition psthsy — 51 — - — =W’

This is somewhat tricky, so let us consider an example. Bay(3 1|2 4),
k=2,z=(1 4 3 2. Then:
1.t=3 1. )+(C 4 2=(3 14 2
2.
s = =1 -3 =1 -3
s = 3 - - ) = s =B 2 1)
w == (31 2 4 2 = (3 1 2 4
S = % 1 2 3 49 S 1 2 3 49
Sy B 21 4 = 5 3 2 1 4
w == (31 2 4 2 = (3 1 2 4

Thus, we know that for each transition

IF()| <n

We can now obtain a bound on the unweighted maximum edgenigadduced

by our collection of canonical paths:

max1 Z T[STrt<<1 1 (
B G o5 () —\n 2

— onl (2) - (%)2 —2. (2) —n(n—1).

By Theorem 3.9, the conductance of this chain is us o

lary 3.8, its mixing time is thus bounded by

2 In ! +1In
®2 € Thnin

= o (mmn+ml)).

IN

Tn(€)

) ) e (A)

! ) < 2(2n(n—1))? (In%—i-lnn!)

= and by Corol-
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3.2 Coupling

An important “classical” approach to obtaining convergenesults for Markov
chains is theeoupling methodAs a simple case, lett = (Xp, X1,...) anda =
(Yo, Y1,...) be two independent Markov chains with the same state sPaee
{1,...,n} and the same regular transition matfix= (pjj), and consequently the
same stationary distributiam

Thus, if one considers the Markov chain x a¢ with random variableg; =
(%, Y:), one obtains transition probabilities

pﬁ,m =Pr(Zi= (k1) [Z-1=(i,]))
= Pr(X% =k | X 1=10)-P% =1 %1 =)
= PikPjl -
Moreover, sincev ands are regular with stationary distributian then so is
ac x a0 with stationary distribution?” = 1t 1t (i.e. T§; = T47T;).

Note once more that “projected” (marginalised) to its firssecond component,
M x o Yields realisations of the same process, i.e.

Pr(Z; = (k,*) | Zo = (ko,lo)) = Pr(% =k | Xo = ko)

= p&)k, independent offy;

Pr(Z = (x,1) | Zo = (ko,l0)) = Pr(% =1 | Yo = lo) (6)

= pl((t)l), independent oko.

Now define a random variable that for any realisation afr x a; indicates the
first time at whichX; andY; have the same value, i.e. theoupling time

T =inf{t > 0% = Y.

One can in fact modify the chaim x 2/ so that after coupling th&- andY-
components not just have the same distributions, but instaictly the same val-
ues (i.eX; =Y Vt >T), yet the marginal properties (6) stay the same. Simply
defineX{ = (X/, %), where

! Xb t < T7
%= { Y, t>T.
Let us denote the resulting nonhomogeneous chaim tyy . Now the projections

of ar |a to its X- andY-components are surely not independent, but viewed in
isolation, as marginals of |« , they have exactly the same stochastic properties.
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In particular, in a coupled chair |« , let us fix an arbitrary initial stat&, = ko

for ar , and similarlyYp = g for ¢ , and denote the respective timdistributions
(t)

asp® = (p )k andq®) = (pl((t)l))| . Then foranyAC S
p!(A) = Pr(X € A)
> Pr(Y € AAX =)
—1-PrY ¢ AVX £Y)
> 1-Pr(% ¢ A) —Pr(X% # ¥t)
=Pr(eA)—Pr(t<T)
= qU(A) - Prt<T),

. e q(A) — p(A) < Pr(t < T). A similar argument shows that alg) (A) —
qV(A) <Prt<T),andsoforanAC S, |p®(A)—qV(A)| < Pr(T >t), implying
that

oy (pY.q) = suplp") (&) gV (4) | < Pr(T >1). (7)

If one establishes the coupling bound (7) so that it holdsaftitrary pairs of
initial states, then it also holds for arbitrary initial ttibutions.

In particular, if the initial state of the chalhis chosen according to the stationary
distribution, theng®) = rtfor all t > 0, and one obtains the convergence bound:

o (p),1) = 3 ¥ [P i < PH(T > 1), ®

Example 3.4 Random walk on a ringConsider again the cyclic random walk
of Figure 11 withn states,n even. To obtain an upper bound on the coupling
probability PT > t), conS|der two independent copi€%), (Y;) of the walk,
initiated atXp = 1 andYp = 5 D4 1.

DenoteD; = min{|Y; — Xt| n—|Y; —X|}. ThenDg= 3, 0< D < 3 for all t,
Pr(Dt+1 <Dt | Dy > 0) > 4, andT =inf{t | Dy = 0} (cf. Figure 13). Thus for any
k>0,

PHT <k 2| T>K) > (V2= (5)"

and consequently

PHT >t) < (1—2"MW /2],
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0 T

Figure 13: A realisation of théD;) chain.

Hence we obtain a geometric bound on the convergence ratesafalk:
dy (pV,m) < (1—2-m)2/M,

The bound is not very tight, mainly because there is no syaierfdrift” effect
that would bring the chaing4) and(Y;) closer to each other: they just eventually
coalesce by random “fluctuation”. A much more interestingli@ation of the
coupling technique will be presented below.

Generally speaking,@uplingof two Markov chaingX;) and(Y;) (or any stochas-
tic processes) is a procegs= (X/,Y{) that hasX;) and(Y;) as its marginal dis-
tributions.

In the case of finite Markov chains this means that:

PrX, 1 =KX =1,¥ = ]) = PriXesa = kX =) = i,
PI(Y,, = 11X/ =¥ = ) = Pr(Xe = % = ) = . ©

The coupling conditions (9) are trivially satisfied by thel@pendent coupling,
WherepﬁkI = pff(p\j(,, but the more interesting couplings are the non-independen
ones.

In the following Lemma, and also later in this section, mgimmes are considered
with respect to the total variation distance, i.e. for now

(e)=1'(e) = min{t | dv(p!¥, 1) <& Vs>tandVinitial states'} :

Lemma 3.12 (“Coupling lemma”) Leta be a finite, regular Markov chain and
Z = (%, Y), t > 0, a coupling of two copies ofr (i.e. (Z) is a Markov chain
whose X- and Y -marginals satisfy the coupling conditi®)svith respect to the
transition probabilities ofa ). Suppose further that:t(0,1] — N is a function
such that given anyg € (0,1], Pr(X # Y;) < € holds for all t > t(g), uniformly
over the choice of the initial stat€Xo,Yp). Then the mixing time(e) of o is
bounded above by#).
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Proof. Let Xo =i be arbitrary, and choos@ according to the stationary distribu-
tion Ttof ar . Fix € € (0,1] and lett > t(€). Then for any set of states

pl(A) = PriX € A)
> PriYi e AN =M1)
> 1-Pr(% ¢ A) —Pr(X # %)
>PriYeA)—¢
=T(A) —€,

and similarly for the sef = S\ A. Thus
PR —mA) <e VEzt(e),
and becausA was chosen arbitrarily, also

dy (p"V, 1) = max|p"V(A) —T(A) <& Vi t(e).

Thust(e) <t(g). g

Example 3.5 Gibbs sampler for graph colouringd.et G = (V,E) be an undi-
rected graph with maximum node deguee Without loss of generality assume
thatV = {1,...,n}. A g-colouringof Gisa mapo:V — {1,...,9} = Q such
that

(i,j) €E = a(i) #o(j).

According to so called Brooks’ Theorer@, has ag-colouring for anyg > A+ 1.
(In fact, already forg > A unlessG contains a A+ 1)-cliqueKa,1 as a compo-
nent.)

Forq > A+ 2, one can set up the following Gibbs sampler Markov chairto
sampleg-colourings ofG asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colourings € QV:
(i) selecta nodee V uniformly at random,;

(i) select a legal colouc for i uniformly at random ¢ is legal fori if ¢ #
o(j)Vier ()

(iii) recolouri with colourc (i.e. move fromo to 0, whered’ (i) = candad’(j) =

o(j) for j #1).
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Let us verify thaty is regular forqg > A+ 2:

1. Irreducibility: Any colouring can be reached from anyatby recolouring
the nodes in increasing order; becagse A+ 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numd@eighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-looplataility, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibilityr has as its stationary distributionthe
uniform distribution over the set of legal colourings- QV.

Let us then consider how quickly the chain converges tar, in terms of thedy
distance. To introduce the ideas, consider first the troaakE = & (= S=QV).

In this case one can effect a coupling between two copies @&s follows: in a
transition(X, ;) — (Xt+1, Yi+1):

(i) selecta nodec V uniformly at random,;

(i) select a colourc € Q uniformly at random and recolouiwith colourc in
bothX; andY;; let the resulting colourings b& .1 andY;. 1.

Now clearly(X;) and(Y;) are both faithful copies ofz , i.e. the marginal transition
probabilities work out OK:

Pr(X.1=0 | X =0,Y%.=n) = Pr(0,0),
PriYiy1=n'| X% =0,% =n) = Pr(n,n’).

On the other hand, it is clear that the time required for trard(X;) and(Y;) to
coalesce is not very much larger th@rbecause at each step of the coupled chain,
a randomly chosen node is coloured similarly in both and ().

More precisely, introduce the random variable

Dy = #{i € VX (i) # W (i)}

ThusD; =0 & X =Y < T <t.
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Furthermore,

D
E(Dty1 | D) =

t n— D¢ 1
2 D1 Di=(1-2)-D
. (Dt —1)+ - t < n) t

l t
= E(Dt | Do) = (1_6) -Dg

1\' _
M) (D> 0] Do) < E(Dx Do) < (1 1) -n< e

Thus, choosing > nin? suffices to guarantee that (Rf # ;) < €, which by
Lemma 3.12 implies that the mixing time satisfig¢s) < nin 2.

For the general case we need a more complicated couplingder to take into
account the constraints on colour choice caused by the eéd@es

We observe that by a simple construction, it is possible tolmae two finite state
setsA andB to a single state s& so that there are random variabdg and Xg
such that

0 Prixa=x ={ g/ SN

Pr(Xg = X) = { C1)7/|B|’ i; S; (10)
) B
(i) Pr(Xa=Xg) = %.

Denotel (i) ={j €V | (i, ) € E}, X(i) = colour of nodd in colouringX;, and
X(U) = {X(i) |[ieU}.
Consider the following coupling%, Y;) — (Xt+1, Yi+1):

(i) selectanodeée V uniformly at random,;

(i) select coloursx € Q\ X (I (i)), oy € Q\ Y (I (i)) uniformly (but not inde-
pendently) at random, using the joint sample space indidatéL0);

(i) recolour node with colourcy in X; to yield X 1; similarly with colourcy
inY; to yield Y 1.
DenoteA=A; = {i €V | X(i) = ¥;(i)}. ThusD; = |A| = [V \ A.

Now clearlyD;1 € {Dy+1,Dt, Dt —1}. Let us compute the probabiliti®D; 1 | D)
for each of these cases:
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() Di+1 =D+ 1. In this event the chosere A, andcx # cy.
Denote byt = [Q\ X (T (i))[,n =[Q\Y(T(i))], {=|Q\ (X(F (i) U%(F(i)))]

the number of legal values fag, cy, and their overlap, respectively. Thus,
the probability that the same colour is choseniforboth X1 andY; 1 is
¢/max{&,n}. Denoted’(i) = |I'(i) \ A| (recall thati € A). Then

q—A<En<q+d(i).

Hence:
.t max{&,n} —d'(i)
PO =) = faxEn] = maxE.n)
d'(i)
>1- q——A

and consequently:

B 1od@)
e

wherem' = Siad'(i).

(i) Diy1 =Dt — 1. Inthis event the chosere A_\ andcy = oy.
Denoteg, n, as in case (i), and” (i) = | (i) N A|. Now

q—-A<En<I+(B-d"(i)).
As in case (i), we obtain:

2 maxgn) — (A-d(i)

PHOx =) = ax(E.n) = max{&,n}
> l_A—d”(l) _ q—2A+d"(i)
q—A q—A

wherent = 5,_3d" (i) = Sicad ().
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Denoting for brevity

g-—2A m
a—= 5 b:brr{ g ,
(@ & M) = a—an
we see that

Pr(Dt+1 =Di+ 1) < b, Pr(Dt+1 =D — 1) >ab; + b.

Assume that > 0, i.e. thatg > 2A. Then

E(Des2/De) < b(Dy-+1) + (aby +b) (Dy — 1) + (1 — aby — 2b)Dy
(l— a)Dt.

Thus,E(Dy) < (1—a)'Dg < (1—a)'n, and hence by Markov’s inequality

Pr(D; > 0) < (1—a)'n< ne®.
Thus PtX; #Y;) <efort > %'n g and so by Lemma 3.12, the mixing time of the
chain satisfies

qg—A

1(g) < q_ 20

n n
‘nin—= < (A-i—l)nlnE

m

for q > 2A.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing mdtfar producing
samples from a Markov chagxactlyaccording to its stationary distribution. This
exact samplingor “coupling from the past”) technique eliminates the neéed
compute Markov chain convergence rates for quality contwblen the algorithm
stops, itis guaranteed to produce a perfect sample. Hoi@av&owly converging
chains stopping will take a long time, so convergence ratestil of importance
from the point of view of algorithm efficiency. (There are@lsome other effi-
ciency caveats in the method besides slow convergence dirtindated chain.
These are discussed below.)

Let « be aregular reversible Markov chain with stateSet {1, ... ,n}, transi-
tion probability matrixP = (pjj), and stationary distributiort.
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Consider an explicit simulation off by the following method: at each stépa
uniformly distributed random numb& € [0, 1) is chosen, and the state transition
of o is determined aX;1 = s(%, R ), where

17 ifre [07 pi1)7
. 2, ifrepi1, pir+ Pi2),
s(i,r) =1 |
n, ifre [pi1+...+ pi(n,l),l).

It is clear that transition probabilities according to thmin 4 can equivalently
be computed with respect to sequen@&s and the above deterministic transition
rule, e.g.

Pl = PrX = %o = i) = Prg(s(i,R) = ),
where

sU(i,(ro,r1,... ,re—1)) = s(s(---s(s(i,ro),r1) -+ ), re_1).
t

Now let us consider the following curious simulation metHodthe chainas ,
from further and further away in thmast(t=—-T, T =1,2,4,8,...) to the present
(t=0):

Algorithm PW (Propp-Wilson):

setT «+ 1

generate random numbersr, ... .r_; € [0,1) uniformly at random;

(1) simulate the chainr as above, using the random numbers
r-r,...,r_a, from every possible initial staté 1 € S

if all the simulations lead to the same stXte= ip, then outputg
and stop;

otherwise generaf€ more random numbers ,t,...,r_t_1 € [0,1)
uniformly at random;

setT « 2T; goto (1).

For a three-state chain, a run of the PW algorithm might lo®klastrated in
Figure 14. Here the algorithm has required two restartsthmithird run from
T = —4 has resulted in all the simulated realisations of the cba@tescing, with
common resultp = 2.

In the following, we shall assume that the PW algorithm alsvegnverges with
probability 1. Ensuring this may require some care in vantthat the determin-
istic update rules(i,r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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Tesd Te3 Tes Teol T
O
OyaO,
© O

Figure 14: A Propp-Wilson simulation of a 3-state Markovioha
Theorem 4.1 Let Y be a random variable indicating the eventual outputestd
the PW algorithm, under the above assumptions and notatitmsn

Pr(Y=i)=Tm, VieS
Proof. Fix some value € S. To prove the Theorem, it suffices to show that for
anye >0

IPR(Y =i) —T15| <€&.

So fix an arbitrang > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value dfsuch that

Prr(PW simulation converges for chains of length> 1 —¢. (12)

Now consider running the actual chain from timé& to time O, starting with the
stationary distribution:

P(X_1 =i) =T.

In this case, of course also the varialdigs distributed according to the stationary
distribution:

Pr(Xo=1i) =Ts.
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However, if the coalescence event (11) occurs for a givenesszeR of random
numbers, theXo =Y, and so Rg(Xo # Y) < €. Thus,

Pr(Y =i)—15 = PrY =i)—Pr(Xo=1)
< PriY =i, X0 #1)
< g,

and by a similar argument
5 —Pr(Y =i)<e.

Thus,|PrY =i) — 15| < g, and the claim is provedy

Note that the PW algorithm cannot be “simplified” by simulgtithe chains for-
wards from timel = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcgsiin

1. The need to store long sequences of random numbers fa (eas be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all posilitial states (in-
feasible in many applications where the number of systetesia expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modifidatithe algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a soluticat ttan be applied
when the states of the system have a suitable partial ardesspected by the
update rule.

Specifically, assume that the states of the system to be aietuform a partial
order(S= {01,...,0n},C) with a unique largest elemerit (“top”) and unique
smallest element. (“bottom”), and satisfying the condition

oCo = s(o,r)Cs(d,r), Vo,0 €Sandrel0,1). (12)

Then it suffices to simulate the “top” and “bottom” chainsiltitey couple, since
their coupling implies the coalescence of all the other mhas well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulaifosay, 2 parallel
chains to just 2.
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Figure 15: Coalescence of an ordered Propp-Wilson sinaulati

1/2

1/2
1/2 1/2 1/2 1/2
O O ORI O
N

Figure 16: A one-dimensional random walk with semi-reflegtoarriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk enstiate set
S={1,...,n} with, say, semi-reflecting barriers to ensure regularitthefchain
(Figure 16). Assume the state transition rule is:

s(ir) = max{i — 1,1}, ifo<r<3,
T U min{i+1,n}, if3<r<i1.

The the natural ordering of states fulfills the condition){12

i<j= s(ir)<s(j,r) Vi,j=1,...,n,re€[0,1).

Interestingly, also complicated systems such as the Igmgglass model admit
such orderings. In the case of the Ising model, the orderdmtvstates, o’ €
{-1,+1}"is determined simply by

ocCd if g <o Vi=1...,n

Clearly L =(-1,...,—1)andT = (1,...,1) with respect ta_, and also condi-
tion (12) can be verified.
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Combinatorial Models

5 A Sketch of Basic Statistical Physics

Statistical physics= Thermodynamics (macroscopic)
+ Statistical mechanics (microscopic)

5.1 Thermodynamics

A thermodynamic systeis characterised by (macroscopic, observable) variables
T (“temperature”) andXy,...,X,. These variables determine “all interesting”
properties of the system.

E.g. in the classical ideal gas model a sufficient set of éegisT, p, V andN.
(N ~ the number of molecules is here for simplicity thought of aatinuous
quantity. This might be easier N was replaced byr = N/No, the amount in
moles of gas, wherlly = 6.02- 10?3 is Avogadro’s number.)

The system is inthierma) equilibriumif it satisfies a characteristgtate equation

(T, Xq,..., %) =0

E.g.ideal gaspV — NKT = 0, wherek = 1.38- 10~23J /K is Boltzmann’s constant
or pV —nRT =0, whereR = 8.32]/Kmol is thegas constant

A potentialor energy functiorior the system is some sufficiently smooth function
F=F(T,Xyg,...,%n).

55
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In classical thermodynamics, a key role is given totittal energyfunction de-
termined by thd-irst Law of Thermodynamics

dU =dQ+dw, (1)
wheredQ is the amount of “heat” added to a system aWl is the amount of

“work” performed on it.
Integrating the potential given e.g. the state equatioh®ideal gas yields

1+1/2
U(T,D,N)ZUo-l-(}fN-i—N—So) (T—To)—NTIn<<1) @)7
2 To D

whereUg, S, To andpy are reference values arigd2 a constant (“specific heat?).

In classical thermodynamics, the system variables arelelivintoextensiveand
intensive depending on whether their values depend on the “size”@jfstem
or not. E.g.T andp are intensivey andN extensive.

Two systems at the same temperature may be “combined”, & ibtherwise a
function of extensive variables only, then it is linear, i.e

F(T,X1+X1,..., X0+ X)) =F(T,Xg,..., Xn) +F(T,X{,..., X}).
By the total derivative formula:

oF

n /oF
dF = (6_T) dT-i—iZ\ <ﬂ> dX. 2)

State variables areonjugate(with respect td-), if

oF oF

X =2 Y=2",
vy & axX

In classical thermodynamics conjugates of extensive blasaare intensive, and
vice versa. The conjugate dfw.r.t.U,

oU

S:a_T

is called theentropyof the system.

1To be precise, since andp are not “natural” variables of the energy functidrarising from
its differential definition (1), this equation refers to aieat of U expressed in terms df, p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged vialtbgendre transformyielding
new forms of a given potential function. E.g. in the case @f ideal gas with
fixedN,U =U(SV) and

dU = TdS- pdV.

Here we may interchang&for T by considering instead & the Helmholz free
energy F=U — ST. This satisfies:

dF =dU —-SdT-TdS=TdS— pdV—-SdT—TdS= —SdT— pdV.

For this potential function the “natural” variables areandV, i.e.F = F(T,V).

In the classical setting, it is a law of nature (tBecond Law of Thermodynanjics
that in equilibrium processes (evolutions) entropy newareases:

dS>0.

Processes for which entropy stays constd®=£ 0) are callecadiabatic

5.2 Statistical Mechanics

Let us consider a thermodynamic energy function framed rimgeof extensive
variables:

U=U(SXy,...,%n),

and assume that the valudbkexpresses in fact only tteverageof a large number
of microscopic potentials:

U=(H)= poH ().

The micropotential functiotd (w) is also called thédamiltonianof the system.
We shall furthermore assume, motivated by the additivity pthat the Hamilto-
nian of a system consisting of two independent subsystethsiamhal equilibrium
can be decomposed as:

H ({001, 002)) = H(wy) +H(wy).

What is now the distribution of the microstates, given the constraint thdH ) =
U? We assume that all microstates with the same value of thdltdaran are
equally probable, so thak, has the formp,, = g(H(w)).

2There is an unfortunate sign difference here as comparemuia (2). We could have fixed
this by defining= = ST— U, but this would have been against convention.
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Figure 1. A heat bath.

To further specify the functional form of the distributiathjnk of our systeny
as being in thermal equilibrium with, but otherwise indeghemnt of, a much larger
system or “reservoir’z . Denote the total system consistingsofandz by 7
(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote B(u) = |H1(u)| the number of its microstates
at potentialu. (Whether we are referring to, x or ¢ should always be clear
from the context.) Fix some reference potential ldve}> U for the total system
7 , and observe that by our assumption, all microstates with potentialE have
the same probability.

Now for every microstateo of s, there are exactlf2(E — H(w)) microstatesy’
of & such that the combined staf®, ") of 7 has potentiak. Since all of these
are equally probable, it follows that, 0 Q(E — H(w)). Taking logarithms and
applying Taylor’s formula yields:

Inpy, = INQ (E —H(w)) 4 const.

— INQ(E)—BH(®) +---,

wherep3 = dInQ/0E is a parameter whose value is to be determined later.

Taking exponentials again, we obtain the so catéobs(or Boltzmanidistribu-
tion

P 0 e P 3)
with normalisation constant (actually, function)

zznggww, (4)
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known as thepartition function 2 Now the value of3 is in principle determined
implicitly by the condition

(H) = 2

NI

Y e PH9H(w) =,
[BN)

but we shall obtain a more transparent representation beiaw.

The (logarithm of the) partition function (4) can be useddampute several macro-
scopic quantities:

First:

dlnZ EO_Z
oB ZopB

‘%Z _ %;aixiewwm
_ %%ewwm (_BaHg‘;m)
L
_ _B<0H((;;2>Q>>
= —Bu

3In fact, Z = Z(B,X1,...,%n). Note also thaZ is a kind of agenerating functiorfor the
sequence of value®(u), sinceZ(B) = ,Q(u) - (e P)u.
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Third:

dinZ = aILZdB Zlalizd)ﬁ
= —UdB—B_ZlMdX

= —d(BU) +pdU — B_iu«dx.

J

BTdS

. TdS= Bd(InZJrBU)

1 1
—=KkT, dS=kd(InZ+pU k= —— = constant
‘B (nz+BU), k=g
%_kT S= klnz+$+const~klnz+¥
L B= %, —kTInZ~U —-TS=F (Helmholz free energy)

Conversely, let us expand the entropy variable as a micpisewerage:
S=kInZ+kBU

= kinZ+ kz PewBH (w)
w

= k(InZ— Z Po(INZ+1n pw))
w
= _kz Peo !N Peo- pr:l
w

One more, simplified expression for entropy: partition thege of possible po-
tential values into narrow bands (of widU, say), and denote the number of
microstates falling in bandas

Q(Uy) = ’{oo: Ur < H(w) <U; +AU}
Then the partition function is approximately

Z~ ZQ (Uy)e RUr
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In fact, since the number of microstates in a typical systehupe, the microstate
potentials are highly concentrated around the avelthge(H ), and so in fact

Z~QU)e Y,
whence

S= %(—F +U) :klnz+¥ ~ kan(U)—BkUJ# ~kInQ(U).

———
=0

6 The Ising Model, Spin Glasses and Neural Net-
works

6.1 The Ising Model

The following model was introduced by Ernst Ising in 1925xplain magnetism
in materials.

At a microscopic level, Ising’s model system consistdldditesarranged in a lat-
tice, either 1-D, 2-D Nl = L?), or maybe even 3-D. At each site=1,...,N is
located a magnetic ion @pinpointing eitherup or down(S = +1). Neighbour-
ing sites(ij) are related by amteraction coefficient;J, which in Ising’s model
is uniformly either a positivd > 0 (“ferromagnetic case”) or a nonpositiye< 0
(“antiferromagnetic case”). A system whose internal iatéions are all weak
(Jij = 0) is “paramagnetic”. In addition, there may beexternal field hinfluenc-
ing the orientation of each of the spins. (More generallg oould have separate
fieldsh; for each spirfy.)

The Hamiltonian of spin state = (S;,... ,Sy) is

H(0)= -3 SS—hY S,
(i)

where the sum is taken ovaearest neighbour pair§j) and periodic boundary
conditions are assumed for simplicity.

Stateso yielding the global minimum value dfl (o) are calledground state®f
the system. For a ferromagnetic system, the ground stateithas all§ = +1 if
h>0,orall§ =-1if h<O0. If h=0, these two states are both equally good.
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As a very simple example, let us compute the partition funmctor a trivial Ising
paramagnet withN spins andl = 0. DenoteQ = {+1, —1}N. Then:

Z[3 — Z e_BH(o)

0eQ

= %exp(BhZS
= > 3 ey IS

S=4+1S=+1 SN +1

ef+e X
= ehhs hx =
(S:Zil ) cos 5
= (2cost{ph)) N

Define the(total) magnetisatiof statec as

:iis,

The corresponding thermodynamic average at gf/en
1
(M) = Z Z)M(G)GXD(—BH(OD
=2 % S) exp(~BH(0)).

J

(%)
However now in fact{>) = ﬁ so fortuitously:

1 0Z 0dInZ
Zo(Bh) ~ a(ph)
dIn(2costiph))
o(ph)
_ | 2(0cost(Bh)/a(Bh))
2 cosliph)
_N 2sinh(Bh)
2 cosliph)
= Ntanhfh).

(M) =
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<M>/N
1,
0.5
h/kT
-3 2 -1 1 2 3
0.5
_1,

Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisagosity” of a totally
decoupled Ising paramagnet at external flrelthd temperatur® = 1/kp equals

(M) = tanh(%) .

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solkalwith somewhat
more work. The 2-D ferromagnetic case whh= 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. ZHe case with
h # 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glassegeneralise the Ising model with more general interactiéiso the
spins may be nonbinary, in which case such models are daditd glasses

The general form of the (binary-state) spin glass Hami&dons
H(o)=-3 JjSS - ) hS,
{j) '

whereJjj, hi € R. Also the neighbourhood relation may correspond to anrarlyit
graph not necessary a lattice.

Several varieties of spin glass models have been introdecgd
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Figure 3: Frustrated spin glass configuration.

e The Sherrington-Kirkpatrick model: Hamiltonian as abax@nplete inter-
connection graph, coefficienig according to a specific probability distri-
bution.

e The Edwards-Anderson model: Hamiltonian
H(o)=— ;JijSSj,
(1)
regular lattice topology (e.g. cubic); independent Gaussian variables.

A phenomenon that makes spin glass models even less tedhkan the Ising
model isfrustration E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by tmiktmian can have a
very complicated structure, with large numbers of localimay and no obvious
location for the globally minimal ground state.

In fact, the problem of determining the ground state of a i%«K-spin glass
instance(J, h) is NP-completeeven withh = 0.

This can be seen by reduction from the well-known NP-conepMAX CUT
problem: Given a grap&® = (V, E), determine the partitiod =V, UV, that max-

imisesw(Vy,Vs) = ‘{(i, ) EE i eViA ] evz}‘.
The reduction is as follows:

Given a graplG = (V,E), let J be an SK system with sites corresponding/to
andJ;; determined by

J: = _17 if <i7j>€E7
71 0, otherwise.
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Let thenC = (V1,V>) be a cut inG, and divide the edges i@ corresponding as

E1 = {<I7J> ekE: I?J €V1}7

Eo> = {<I7J>EEI7J EV2}7

Ec = {(i,j) eE:ieViA]eVa}.
Consider the spin glass stataletermined as

1 ifiew,
S={+ 1

-1, ifieVW.
For this,
H(o) = - > %jSSj= > SS
() (if)ekE
= SSj+ SSj+ ; SS;
(ij)€E1 (ij)€E2 (ij)€Ec
= |Ea| + |Ez2| — |Ec|
= |E| - 2|Ec]
= |[E| —2w(C).

Conversely, given any spin glass stateone obtains a cu satisfyingw(C) =
3[E|—3H(0).

Thus, graph cuts and spin glass states correspond onestavithw(C) 0 —H (o),
and minimising one is equivalent to maximising the other.

The result means that the SK spin glass ground state problenaisense “univer-
sal” difficult problem, i.e. it contains as special casegdladl~2000 other known
NP-complete problems.

ForJ;; > 0 and arbitranh the problem reduces to network flow, and can be solved
in polynomial time. For planaG andh = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 198&)wever, for planar

G with h= 0, and for 3-D lattices the problem is NP-complete (BaraH®&®). It

is also NP-complete for every other nonplanar crystaldattjraph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to tbenplexity of the
ground state problem; the key is rather the planarity of mberconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, totheeSK model as
a basis for “neural associative memories”. The idea is tateranN-site SK



66 Part Il. Combinatorial Models

system whose local potential minima correspond to a sét-bit vectors to be
stored. These local minima are also stable states of themigstieterministic
(O-temperature) “Glauber dynamics”. When such a systemitialised at a state
which is “close” to one of the stored stable states, the dycsifpresumably)
tends to return it to the nearby local minimum. Thus smaltybations in the
stable states tend to get corrected, and the system has-temecting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a sysgeas follows: at a
given discrete time instant, a randomly (or in a round-rahanner) chosen site

is updated according to the local rule:

S = Sgﬂ(%\]kjsj' + hk>
Kj

It can be seen that each time a site changes state, the vali@pidecreases:
AssumeS, # S.. Consider

H(a') —H(o) = _%Jijsl,slj -y h§
i [

+> JjSS§+ ) hS
{i5) !

= —<Z>kagk5j + Z>kaS<Sj —h(Sc— S
3] (k]

= - (S <Z Jk151+hk>
—— \& ’
v

< 0,

wherev and A have the same sign.
Thus, since the value &f (o) is lower bounded by

H(o) > —;}IJijl—Zlhil,
1

the system converges eventually to a local minimum of its Haman.



6. The Ising Model, Spin Glasses and Neural Networks 67

How should one then craft the interaction coefficients sbaltgven set of patterns
become stable states of the system’s dynamics? This caimiigde be done in
various ways, of which Hopfield proposed the following adaiph of “Hebb’s
rule”:#

Consider first a single pattern = (Sp,...,Sy) € {+1,—1}N and choosel =
o0’ —1 =[SSj]ij —1,h= 0. Then the dynamics operates as follows:

sgnJo) =sgn((oa" —1)0) = sgn((]|o||*—1)0) = o,

l.e. 0 is a stable state of the dynamics.
Given then a (smallish) set of patters ... ,0n, choose

m 1
J=1Y o,0! —ml or normalised = = S on,0" —1 | .
> 0w} - o]

If the patterns are random, independent identically distad bit vectors, and
there are onlyn < N of them, they are “almost orthogonal”, and we may approx-
imate:

sgnJoy) = sgn (g Opap — mI) ok>

p=1

= sgn (IIOkII —m) 0k+

S|gnal
n0|se
= Ok,

“with high probability”.

This analysis has been performed rigorously many timesrnufitferent assump-
tions, and the number of pattermgthat can be reliably stored has been estimated
under different criteria. Typically, the “reliable” stgya capacity comes out as
m= 0.14N...0.18N.

The deterministic Glauber dynamics of SK spin glasses asaher computa-
tionally interesting features. One can e.g. show that cgaree to a stable state

4In a 1949 book, D. O. Hebb suggested as a basic mechanismmimamemory that simul-
taneous activity reinforces the interconnections betwemmons. Physiologically this suggestion
is still controversial, but mathematically the idea hasrbased as a basis of several learning
mechanisms in artificial neural networks.
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can require a number of spin flips that is exponentidNifA. Haken et al. ca.
1989), and that one can in fact embed arbitrary computaiionlse dynamics
(Orponen 1995). (More precisely, determining whether @mgitoutput spin” is
+1 or—1 in the local minimum reached from a given initial state iS?P&PACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable famflfithess land-
scapes”.

A fitness landscapss a triple (X, R, f), whereX is the configuration(or statg
spaceR C X x X is aneighbourhood relatioon X, andf : X — R is afitnesgor
objectivg function.

A pointx € X is alocal optimum(of f on X) if
f(y) < f(x) VyRx

and aglobal optimum(maximuny if
fly) < f(x) VyeX

Questions of the “ruggedness” of landscapes (correlatinetsire), number and
height of local optima, sizes of “attraction basins” of Iboeptima with respect to
“hill-climbing” algorithms etc. are of great interest foatural landscapes.

In Kauffman’s NK modelsX = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences thedapdsharacteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic intereciio chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, a&hromosomés anN-vector ofloci (genes “positions”),
each of which has a value from a setailfeles A(usually justA = {0,1}). A
“filled-in” chromosomea € AN is called agenotype

The fitness of each gernes {1,...,N} in a genotypex = (ay,...,an) € AN de-
pends on the allelg andK other aIIeIea‘l, e ,a‘K via some local fithess function
fi(a) = fi(a;al,...,al), usually normalised so thdt(a) € [0,1]. The total fit-
ness of a genotype € AN is the normalised sum of its genes’ local fitnesses:

Zlf'(ai;a'l,... ,a)  €1[0,1].
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(@K <N (b)K ~ N

Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

NN NN

(\Q\/A\)

N NS

Figure 5: An NK interaction network witNl =5, K = 2.

Figure 5 illustrates an NK network with five loci and two “epitgtic interactions”
per locus.

In Kauffman’s versions of the model, th€ loci affecting locusi can either be
systematically selected as eig-1,...,i + K(modN), or the chromosome can be
simply “randomly wired”. Thef' are usually determined as randomly generated
2K+1_element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model Mi#ipins can be seen
as anN2 network wheref'(§;S-1,S5+1) = %(3—13 +SS+1), and an SK spin
glass with coefficientd;; and local fielddy as anN(N — 1) network where

fi(s;c\{S}) = :—2L<Z>JijS|Sj +hS.
i]

Basic properties of the NK model, for binary allekes- {0,1} and varying values
of K, include the following:

K=0:

If £1(0)# f'(1)Vi=1,...,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hiitrbing” algo-
rithm.
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Expected length of the hill-climbing path /2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed atle step.)

Neighbouring genotypes, a’ are always highly correlated, as necessarily
|f(a)—f(a’)| <1/N.

1<K<N-1IL

For K = 1, a global optimum can still be found in polynomial time. For
K > 2, global optimisation is NP-complete. However, for adjacaffect-
ing loci (i ~i+1,...,i+K), the problem can be solved in tinog(2KN)
(Weinberger).

K=N-1

-

Neighbouring genotypes are totally uncorrelated.

= Probability that a given genotype is a local optimum is equal to the
probability thata has the highest rank within its 1-mutant neighbourhood.
This probability is equal to AN+ 1).

= The expected number of local optima f$/ZN + 1).

The expected number of improvement steps for 1-mutanthitibing to hit

a local optimum is proportional to Ig®N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement stepgapprtional
toN.

Random Graphs

7.1 The Erdds-Renyi Model(s)

Two closely related “uniform” random graph models introdddn 1959 by P.
Erdds & A. Rényi and E. N. Gilbert.

Consider the family; , of all (labelled, undirected) graphs annodes. Denote
N = (3); then|gn| = 2V.

Define the following two probability spaces

[Erd6s & Rényi:] g (n,M) = all G € g, with exactlyM < N edges, taken with

uniform probability, i.e.

PH{Gy = H) = (N)7*, if H hasM edges
0; otherwise.
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[Gilbert:] ¢ (n, p) = all G € g, taken so that each edge has occurrence probabil-
ity p, 0< p <1, independently of the other edges, i.e.

Pr(Gp=H)=p" (21— pNM if H hasM edges.
q

These spaces are in a precise sense “clogd’+f pN, and are often both referred
to (unfairly to Gilbert) as the “Erdés-Rényi random grapbdel”, or alternatively
as theg (n,M) andg (n, p) random graph models.

LetQ,,n=0,1,2,... be a sequence of probability spacesrafode graphs. Say
thatalmost everya.e) graph inQ, has propertyQ if

Pr(G € Q, hasQ) — 1, asn — co.

Converselyalmost nagraph inQp, has propertyQ if a.e. graph i, has property
-Q, i.e.

Pr(G € Q, hasQ) — 0, asn — co.

Theorem 7.1 Let H be a fixed graph and p a constaft< p < 1. Then a.e.
G € g (n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whdsead sub-
graph is isomorphic tél.

Proof. Let k= |H| = number of nodes ik. Then a graplG with n= |G| > k
nodes can be partitioned inta/k| disjoint sets ok nodes (with some left over).
For each of these sets, the probability that it forms an iedwopy ofH isr > 0.

. k
(Preciselyy = ‘Au';ﬁ peH)g(2)—eH) )

Thus, the probability that none of these sets forms an irdlaopy ofH is

(1—r)K — 0, asn — w.g

Letk,| € N. Say that a grap® = (V, E) has propertWy if VU, W, |U| <k, |W| <
I,UNW =@, Gcontains anodec V \ (UUW) such thavis adjacent to alll € U
and now € W (cf. Figure 6).

Lemma 7.2 For every constant pQ < p< 1, and all k| € N, a.e. Ge g (n, p)
has property Q3.
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Figure 6: Propertyy.

Proof. For a fixedU,W,v e V \ (UUW), the probability that the condition is
satisfied is

pV g™l > pkqf

The events are independent for differgnso the probability that no appropriate
exists is

<1_ puqlW|>n—U—|W < (1_ pkql)n—k—l .

There are at most! (U, W)-pairs to be considered, so the probability that some
pair has no good is bounded by
nt(1— pgH)" k! = 0, asn — oo
1
<

Thusina.eG € g (n, p) all (U,W)-pairs have some appropriateq

Corollary 7.3 Let p,0 < p < 1, be a constant. Then (i) a.e. &g (n,p) has
minimum degreé> k, for given constant k (ii) a.e. @ g (n, p) has diameter 2
(iii) a.e. G g (n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G € g (n,p), no two nodesus, Uy can be separated by a cutset of
sizek— 1, because we may choose in Lemmal.2 up,u;, W =wq,... ,Wk_1

for arbitraryws, ... ,w¢_1, and obtain a patli;—v—u, connectingu;, u, and
avoidingws, ... ,\Wx_1. O
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Corollary 7.4 Let @ be any first-order sentence about graphs (i.e. quantificatio
over nodes, relations @, Vv) + identity). Then either G= @ or G |= —¢ for a.e.

Geg(np).

Proof. Skipped.

Thus, all the first-order properties af(n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes disdus®d/or the prob-
ability p depends om.

Given graphG, denote:

independence numberG)
cligue numbew(G)
chromatic numbeg(G)

size of the largest independent se@Gn
size of the largest clique 1B,

smallest number of colours needeed for
colouring nodes i so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n> k > 2, random G< ¢ (n, p):

Proof. Probability that giverk-set of nodes irG is independent isq(g). Total
number ofk-sets is(}). O

Theorem 7.6 Let p0 < p < 1ande > 0 be constant. Then for a.e. &g (n, p):

In1/g n n
> — = — ) = |
X(G) = 2+¢ Inn Q (In n> large

Proof. By Lemma 7.5, for any fixed > k > 2:

Pr(a(G) > k) < (n) q() < nkg(®)

_ qk{ﬂ—ng%k(k—l)

k
= q2
— O forklarge,

[~ |r21|1n/r24+k*1]

i.e. when

k{ 2Inn

é —m—Fk—l} — 00,
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A sufficient condition for this to hold is th&> k(n,&) = (2+¢) lr'ﬁ;‘q. Thus for

largen, almost no grapl® € ¢ (n, p) can have a colouring that would assign the
same colour tk(n,€) or more nodes. Hence, a proper colouring of almost any

G € g (n, p) requires at leasg s = 'gi/sq - - colours.

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. &g (n, p):
w(G) € {d,d+1},

where d= d(n, p) is the largest integer such that

(2) p(g> >1Inn.

(This implies d= 2log, /,(n) + O(loglogn.).) o

A graph property Qs an isomorphism-closed family of graphs, i.eGiie Q (or
“GhasQ”) and G~ G, then alsdG’ € Q.

A threshold functiorior a graph property Q is a functidn N — R such that

1if p>-t,
Pr(G € g (n,p(n)) hasQ) —— { 0,if p<t,
where:
. p(n)
Pt Im ey ==
im PN _
p<t< rlmnwt(n) =0
Further notation:
. p(n)
Pt im ey =2

pat & p(n) = O(N)).

Denote:Pr?(p) =Pr(G e g (n,p) hasQ).

For technical reasons, we will actually use the followinglstly stronger defini-
tion for a threshold functiont(n) is a threshold function for graph propeyif
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Figure 7:Pr?(p) for (&) small, (b) intermediate and (c) large

for any sequence; < np < ... of graph sizes ang(n;), p(ny), ... of associated
edge probabilities,

_p(nk)
T

—o = P(p(Y) =1, (+)

JI‘EL E)((::)) =0= PR(p(n)) =0. (%)

A graph property isnonotondf it is preserved under addition of edges, i.e. if
G = (V,E) andG’' = (V,E’) are graphs such th& C E’ andG hasQ, then also
G’ hasQ. For monotond it is the case thap; < py = Pr9(p1) < Pr?(pz), so the
inverse oﬂ%?(p) is well-defined:

pQ(a) = the smallesp such thaP{(p) > a.

In fact for monoton&) one can show th@nQ( p) is a continuous, strictly increasing
function of p, so actuallyan(cx) = unique psuch thaPr?(p) =aq.

Figure 7 illustrates the evolution of the functiBf, and a corresponding threshold
functiont(n), for a monotone graph proper@from small to large values of.

Lemma 7.8 A function {n) is a threshold for monotone graph property Q if and
only if t(n) ~ p(r?(cx) forall0<a < 1

Proof. Suppose that(n) is threshold function fo, butt(n) % pg(a) for some
0 < a < 1. Denoting for brevityp(n) = pﬁ?(a), this means that either there is a
sequenceas, Ny, ... such that

p(Nk) /t(nk) — oo,
or there is a sequeneg, ny, ... such that

p(nk)/t(nk) — 0.
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However, since for alh it holds thatPr(P(p(n)) = Prﬁ?(pﬁ?(a)) =0a,0<a<1,
the former case violates condition (*) and the latter casaditmn (**) in the
definition of a threshold function.

“<" Assume then that(n) is nota threshold function foQ. Then there are either
a sequencas, ny,... and a constard < 1 such that

P(nK) /t(n) — o but PR (p(ne)) < a,
or a sequencer, ny,... and a constard > 0 such that
p(n)/t(n) — 0 but PR(p(nk)) > a.
In the former case,
t(n) < p(nk) < PRy (@),
and in the latter case
t(n) = p(n) > pR, ().

Thus in either case(n) & pr(a) for some 0< a < 1. 0
Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denot¢)(r?(0() = p(a). Choose some arbitrary9a < % The
goal is to prove thap(a) ~ p(1— a), thus establishing e.g.

t(n)=p (%) =Py (%)

as a threshold function for Q. (Sing¢a) < p(3) < p(1-a).)

Let me N be such thatl—a)™ < a. Let p= pn(a) and consider a sample of
mindependent graphS;,...,Gy from g (n, p). Then the graplGiU--- UG €
¢ (n,q), whereq=1—(1—p)" <mp, and so

Pr(GiU---UGm hasQ) < Pr(G € g (n,mp(a)) hasQ).

On the other hand, sind@ is monotone, if anys; hasQ, then so doe&1U--- U
Gm. Thus,

Pr(G1U--- UG, does not hav®) < (1—Pr(G;j hasQ))™
=(1-a0)"<a.
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Hence,
PR(Mm(a)) > P(G1U--- UG hasQ) > 1-a,
and so

Pn(a) < pn(1—0a) < mp(a),
i.e.p(a) ~ p(1—a). (Sincemdepends only o, not onn.) o
Consider a graph proper) defined as G hasQ” if X(G) > 0, whereX >0is a
random variable og (n, p).

E.g. if X(G) denotes the number of spanning tree$sothen propertyQ corre-
sponds to connectedness.

Recall the two properties characterising a threshold fanetn):

(i) p(n) <t(n)= almostnoG € g (n, p(n)) hasq.

(i)  p(n) >t(n) = almost allG € g (n, p(n)) haveQ.
If X is integral, then one can aim to verify conditions (i) andl lfly the so called
“first-moment method” and “second-moment method”, respelst

The first-moment method consists simply of upper-boundiegikpectatiok [X|
and applying Markov’s inequality:

Pr(X > 1) < E[X] ( more generally, foa> 0

p(X >a) <E[X]/a).

More specifically, one aims to show that if the choice of edgbabilities satisfies
p(n) < t(n), thenE[X,] — 0. By Markov’s inequality it then follows that also
PR(p(n)) = Pr(X, > 1) — 0.
The second-moment method is based on lower-bourigiigandupper-bounding
Var[X].
Denotepn = E[Xq], 02 = Var[X,] = E[(Xn — tn)?] = E[X?] — 123. Recall Cheby-
shev’s inequality (a simple consequence of Markov’s inéty)afor any A > 0,

2

o
Pr((X—p >A) < I

Lemma 7.10 If p, > O for n large, and%ﬁ — 0 as n— oo, thenPr(X, >0) — 1
as n— oo,

Proof. If X, =0, then|X, — | = 1. Hence

2
(0]
Pr(X = 0) < Pr(|Xq — | zun)SESﬁOasn*w- O
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For the next result, denote the number of nodes in a g&pli |G|, the number
of edges bye(G), and define itslensityasé(G) = % Aay that a graplG is

balancedif 8(G’) < 8(G) for all subgraph&’ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function®).

Proof. DenoteX(G) =number ofH-subgraphs of a given gragh Letk = |H|,
| =e(H), sod(H) =1/k, and letG € ¢ (n, p), wherep = yn-1/3H) — yn=K/! for
somey = yn. Let us first apply the first-moment method to show that i O,
then almost n@ contains a subgraph isomorphichio Denote

s = {all copies ofH on vertex-set 0G}.

Then|s | = (Ph < (k! < nk, whereh is the number of different arrangements
of H on a set ok verticesh = k! /|Aut(H)|. Thus

EX|= ¥ PrH CG)=|x]-p
H' e
< n'pl = =y ——0,

and by Markov’s inequality the desired result follows.

For the other part, we wish apply the second-moment methahow that if
y — oo, then almost every graph contains a subgraph isomorphicHo For this,
we need to verify that = E[X] > 0 for all sufficiently largen, and then show that

2
% - é(E[XZ] 12 0 asn— .

The first condition is easy to check: without loss of gengralissume thay =
Vn > 1 for alln. Then:

h=EX] =] p

— <E)h.y'n.n—k

> const nk-h-y,-nX
> 0.
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For the other requirement, let us try to compute:

E[X?] = Pr(H'UH"” C G)
H/,H" e
_ pe(H’)+e(H”)fe(H’ﬁH”)
H' H"es
< p?-id(H),
H’,H" €as

wherei = |[H'NH"|. (Note thatd(H' "H") <d(H).)

Denote thens;2 = {(H’,H") € s ?: [H'NH"| =i} and compute separately for
eachi the sum

A= ZPr(H’UH” CG)

7;

Case i=0:

Ag = ZPr(H'UH” cG)
"o

Pr(H' C G)-Pr(H" C G) H’,H” independent
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Case i> 1:

A = S Pr(H'UH" C G)
2

=Y Y PrHUH'COG)

Hex  H™
[H'NH"|=i

(0 G =

< |y—[ | . Clnk_ihp2| (yn—k/l )—il/k
=N Clnkfihplyfil /kni
= p-can‘hpy /K

= uc (D hply /¥
——

| |

— 2 cy K

< 2oy /K.

VAN

Thus, denotings = ke, we get the estimate

E[X?] Ao | i 1k
- (%) srror!
and hence
o’ EX -

—/k
uz - uz S CSV / —>wa O
The desired result then follows by Lemma 7.10.

Corollary 7.12 For k > 3, the property of containing a k-cycle has threshold
t(n) = n~1. (Note that the threshold is independent ofg.)

Corollary 7.13 For k > 2, the property of containing a specific tree structure T
on k nodes has threshold functigm} = n=%/(<1) 4

Corollary 7.14 Fork > 2, the property of containing a k-clique:(Ky) has thresh-
old function {(n) = n~%/(k-1) 4

Denoted*(H) = max{d(H’)|H’ is subgraph oH }.

Theorem 7.11’ The graph property “G has a subgraph isomorphic to H” has
threshold function n?/%" 1) 5
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Threshold functions for global graph properties

Also known as the “phase transition”.

The “epochs of evolution”: Consider the structure of randpaphsG € ¢ (n, p),
asp = p(n) increases. The following results can be shown (noterthataverage
node degree):

0. If p<n~2, then a.eG is empty.
1. Ifn=?2 < p<n1 then a.eGis a forest (a collection of trees).

e The threshold for the apperarance of &agode tree structure ig =
n—X/(k=1)

e The threshold for the appearance of cycles (of all constaes}kis
-1
p=n-.

2. If p~cntforanyc<1 (i.e.np— c < 1ash— o), then a.eG consists
of components with at most one cycle a@dogn) nodes.

3. “Phase transition” or “emergence of the giant componahp ~ n~1 (i.e.
np— 1).

4. If p~cntforanyc> 1 (i.e.np— c > 1), then a.eG consists of a unique
“giant” component witl®(n) nodes and small components with at most one
cycle.

5. 1fnt<p=< '”T” then a.eG is disconnected, consisting of one giant com-
ponent and trees.

6. If p> '”T” then a.eG is connected (in fact Hamiltonian).

Theorem 7.15 Let p (n) = "9 () = "9 \wheregy(n) — oo. Then

n

(i) a.e. Ge g (n, p) is disconnected,;

(i) a.e. Ge g (N, py) is connected.

Proof. We shall use the second moment method on random varizblesxy(G)
= number of components da with exactlyk nodes.

Assume without loss of generality thafn) < InIinn andw(n) > 10.
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(i) Setp = p; and computgt = E(X;), 0% = Var(Xy). By linearity of expectation,

U= E(X) = n(1— )"t = nn-1n(-p)
< neP — ne MO _ gl oy

n—oo

Furthermore, the expected number of ordered pairs of mbladdes is
E(Xy (X1 —1)) =n(n—1)(1— p)*" 3.

Hence,

0? = Var(Xy) = E(X{) — 12
= E(X (X1 — 1)) +u— |~
n(n—1)(1—p)?"3+n(1—p)" ! —n?(1-p2

< n(1—p)" ' pre(1-p)™3
< U+ (lnn_w(n))nefZIrerZw(n) (1_ p)73
<2

< p+ L:nez‘*’(”) <u+1  forlargen.

Thus,ﬁ—j < %21 — 0 asn — o, and by lemma 7.10,
Pr(G is disconnected> Pr(X1(G) > 0) — 1 asn — co.

(i) (Here basic expectation estimation, of*inoment method” suffices.)

Setp = py = 29 and compute

[n/2]
Pr(G is disconnected= Pr( Z Xg > 1)
K=1
[n/2] [n/2]
SE[ D A= E(X)
K=1 K=1

3 /2] 7 L ok :
< 2 l)@=-p ()

=1
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Split the sum (5) in two parts:

@ (”) (1- )k
1< kgne'/ 4 K

emk L in_ki—
< 3 ?> k(n=K)(~p)

1<k<n3/4

=3 ﬂ') K e-knpgkep
1<k<nd/4 k

< kXpkekek(Inn+w(n)) *2inn/n
1<k<n3/4

_ kfke(lfw(n))keZKZIn n/n

1<k<n3/4

|
< e o, exp(—kln K+ K+ 2k2m)
1<k<n3/4 n

J

v~

<3
< 3g @,

) (1) =pir®
n¥/4<k<n/2

< 3 ﬂ‘)"é«nk)(m

n3/4<k<n/2 K

IA

enl/“)kn”/4

n3/4<k<n/2

e/2n-an®?

VAN

n
2
nfn3/4/5

n3/4
=exp — 5 Inn

< e @M for largen.

IN

Thus, altogether

Pr(G is disconnected< 4e " —— 0.

n—oo
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What happens at the “phase transitign* n*~1? For fixed values of andN =
(5), consider the space of “graph processész (G}, where at each “time
instant”t a new edge is selected uniformly at random for insertion amto-node
graph. (Thus, picking grap@; from a randomly chosen proce&se ¢ (n,M),
whereM =t.)

Theorem 7.16 Let ¢> 0 be a constant ana(n) — . Denote = (c—1—Inc)~?
andt=t(n) = |cn/2]. Then

(i) Atc< 1, every component C of a.e; Gatisfies
5
’|C| -B (Inn— élnlnn>

(i) Atc= 1, for any fixed h> 1 the h largest components C of a.q.<atisfy

< w(n).

IC| = ©(n?/3).

(i) Atc> 1, the largest componenp©f a.e. G satisfies
[ICol —yn| < a(n)-n/2,
where0 < y=y(c) < 1is the unique root of

e¥=1-vy.

The other components C of a.q. §&atisfy also in this case
5
'|C| -B (Inn—élnlnn)

Thus, the fraction of nodes in the “giant” component of &gefor t = cn/2 be-
haves as illustrated in Figure 8.

< w(n).

Let us prove one part of this result, the emergence of a gdeindmponent sizes
of G€ g (n,p) atp ~ n~L. (This corresponds tb~ Ny ~ n/2.)

Theorem 7.17 Let a> 2 be fixed. Then for large rg = ¢(n) < 1/3 and p=
p(n) = (1+¢)n~L, with probability at leastl — n~2, a random G< ¢ (n, p) has
no component C that satisfies

8a g2
—Inn<|C| < —n.
€2 <! |_12
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y(c)
1.

1 2 3 4 c

Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider “growing” the componedtu) of an arbitrary node in G
incrementally as follows:

1. (Stage 0:) Sedy = @,Bp = {u}.

2. (Stagei + 1:) If B; = A, then stop withC(u) = B;. Otherwise pick an
arbitraryv € B; \ Aj; setA; = AjU{v}, Bi+1 = BiU {neighbours of/ in G}.

Now what is the probability distribution dB;| (=size of seB;)?

Consider any nodec G\ {u}. It participates in independent Bernoulli trials for
being included irB;, each with success probability equalgoThus the inclusion
probability for any fixeds # uis 1— (1— p)', independently of each other.

Consequently, the size of eaBhobeys a simple binomial distribution

Prel = = (" )@ @ p - pi D,

This gives also for eackian upper bound on the probability
Pr(|C(u)| = k) = Pr(|Bij| = kA process stops at stage

Denotingpx = Pr(|C(u)| = k) for any fixedu € G, it is clear that
Pr(G contains a component of sikg < np,

and to prove the theorem it suffices to show that

kg

—a-1
;Opkgna 5
k=
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whereky = [8ag72Inn], ky = [€2n/12].
Since presumablig < ki, we may assume* > 26inn > 1

We may now estimate

k2

n
Pk < Pr(|Bi| = k) < Ee—%(kp)k(l_ p)Knk-1) ©)
because
n—l) nk K ( j) K e
= 1-=) < —e 7, and
( k k! Jll n Kl
(1-p)*>1—kp.

Applying Stirling’s formula
K\ 1 %
V21K (é) < k! < elxy/ 21K (é)

and the boundky < k < k; to (6) we obtain

—k? &k K(1+¢)
< -
P = exp< 2n 3 * n )

—g2k k2
P\ 3T

(=)
exp( —— )

and consequently

IA

IN

kq

k
Zlvpk < Zoeszkm < i/t (1 _ g e/ -1
KE KE

5 —£%ko/4 —2a
< e /4 <5\/n-n

_ gp-2atl/2 _ qa-l

for largen. o
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7.2 Nonuniform Models
Introduction

Obviously (in hindsight), most large “real-world” netwarklo not conform to the
Erdods-Rényi random graph model. Consider e.g. the Iatethe WWW, traffic
networks (airline connections, roads), collaboratiorwoeks (scientists, artistic,
business), etc. All these exhibit strong nonuniformitiekistering, nodes with
exceptionally high degree, (“hubs”) etc.

This was noted (vaguely) in the social sciences at leastarl@60’s (Milgram,
“six degrees of separation”) and also in popular culturen@h worlds”, “the
Kevin Bacon game”).

Curiously, the first serious mathematical (physical) itigegion of the phenomenon
seems to have been Duncan Watts’ Ph.D. thesis (under Sténagga®) in 1998
(?), and the “letter” to Nature by Watts and Strogatz in Jus@81

The Watts & Strogatz paper set off a veritable avalanche okwothe area —
fueled in no small part by the current interest in modeling khternet and the
WWW.

“Small World” Networks

Watts & Strogatz 1998 etc.

Empirical measurements of real networks vs. predictione®ER random graph
model showed that the ER model is not an adequate model digaiatetworks.

Statistical measures on a gra@h= (V,E), |V| =n:

e Characteristic path length = average distance between nodes:

£(G) = (2) _1u§vdist(u,v),

where distu, v) is the length of the shortest path betwessndv.

e Clustering coefficient
c(G)=n"typ(r),
\

wherel y is the subgraph of induced by the neighbours of nogen G,
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Figure 9: The SW random graph model: circulant graph andreglgraph.

and for a grapi with k nodes and edges, thelensityof I" is®

o) =1/(3):

Watts and Strogatz considered the following three empigcaphs 6 = number
of nodesp = average node degree; only the largest component of eaph gias
chosen):

e Hollywood film actors collaboration network: = 2252266 = 61
e Power grid of the western US: = 4941,0 = 2.67

¢ Neural network of nematodgaenorhabditis elegan® = 282,06 = 14

Watts and Strogatz obtained the following comparisansz(@ndcgr denote the
corresponding values for ER random graphs of comparaldeasid density):

‘ L LER c CER
Film actors| 3.65 2.99 0.79 0.00027
Power grid| 18.7 12.4 0.08 0.0005
C.elegans| 2.65 2.25 0.28 0.05

The empirical conclusion is thus that “real networks” haa¢hgdength compara-
ble to ER random graphs (= short) but considerably highesteting. To model
such observations, Watts and Strogatz introduced a spésifiall world” (SW)
random graph model, whereby one starts with a “circulanplgt&, x, and then
randomly “rewires” some small fractiomof the edges. (Cf. Figure 9.)

5To be precise, the definition requires tkat 2. For nodes with 0 or 1 neighbours, it is most
convenient to stipulate that the neighbourhood densityesponds to the global density, i.e. that
p(Tv) = [E[/IVI.
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Figure 10: Path length and clustering coefficient in SW ramdoaphs.

Watts & Strogatz experimented on the effect of the rewirirgppbility pon = (G)
andc (G) in this model and obtained results as indicated in Figure@f/és nor-
malised byc (Cy k) andz (Chk); n = 1000,k = 5). Thus, the “small world” phe-
nomenon of smalt and larger seems to occur fgp in the range M0O05...0.05.

Watts and Strogatz call all graph families with this quaba property “small
world graphs”. The notion has also been quantified by Wal8Bg}in terms of
the proximity ratio

- c/c
CER/LER

Thus, presumably > 1 for small world graphs. However, this quantity does
not seem to be very invariant over various SW graph famikeg. forC. elegans
H~ 4.8 and for the power grid graph~ 106, but for the actors’ netwogk~ 2400.

For analytical simplicity, Newman et al. (1999, 2000) maetifthe Watts-Strogatz
SW model to simply adding a fractiop of random cross edges, rather than
rewiring. This variant of the model is called the “solvabM/'S or SSW model.

Other Small World Models

¢ Kleinberg's (2000) lattice model: Basis is ans x s square lattice, with
Manhattan (1) metric:

d(u,v) =d((i, ), (k1)) = [k=i[+ [ = ]].

Each nodau has local connections to all nodes within distadce p, and

in additiong > O directed “long distance” connections. The probability of
creating a long distance connection betweaemdyv is proportional to thei
distance, Pf(u,v)) Od(u,v)~",r > 0.
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Figure 11: A Kleinberg lattice.

e “Caveman graphs”: (Watts 1999; old idea?) Deterministic SW graph
model. Connect a collection of“k-man caves” K-cliques) together in a
systematic manner.

Figure 12: A collection of six 5-caves connected together Gacycle.

Scale Free Networks

So are small world graphs a good model of real world networkis®? always.
(Usually not?)

One aspect of real networks that SW graphs often do not maeleisithe degree
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exponentially
falling tall

5G) k

Figure 13: Degree distribution of an ER random graph.

distribution. In an ER random graph € ¢ (n, p), the degree distribution is al-
most binomial with parameters— 1, p. For largen and smallp, the distribution
approaches Poissay)( whereA = np.

More precisely, itXx = Xx(G) = number of nodes i with deg =k, then

E ~1 1k npnPX 58
P(k)z (:](k) _ (nk )pk(l—p> 1-k p(nkF')) ~e 5@7

whered = average degree of grajgh Thus, the degree distribution of a typical
ER graphG looks as illustrated in Figure 13.

The degree distributions of SW graphs are typically evenenpmaked around
5(G). E.g. in WS graphs based on the circul@ht, approximately fraction
1—2tp of the nodes has degree equal to(call thatp < 1 is the rewiring

probability).

However, many real world networks seem to have very heaigdidiegree distri-
butions, well matched by “power laws”

P(k) Ok,

wherey = 2...4. This indicates that there are some nodes with unreasonabl
large (in the ER or SW models) degrees. Also, such netwokgalied “scale
free”, because there is no characteristic “scale” or nodgedevalue at which
large networks would concentrate.

On a log-log plot, the degree distributions of such netwdok& somewhat as in
Figure 14

For instance, the following values fgrhave been estimated for real world net-
works (Barabasi & Albert 1999)
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log X,

slope =—y

logk

Figure 14: Degree distribution of a “scale-free” randompgra

n o %
Film actors 212250 28.8 2.3 0.1
WWW (local) | 325729 5.46 2.1 0.1
Power grid 4941  2.67 4

Barabasi & Albert (1999) proposed the following attraetigrowth and preferen-
tial attachment” model (BA model) to explain the emergentcsuzh power law
degree distributions in networks:

e The network is initialised at time= 0 with some small set of nodes and
edgesGo = (Vo, Eo)

e Attimet+ 1, a new node is introduced to the network, wittly edges that
are preferentially attached to the existing nodesV; so that

Pr((u,v) € Ery1) O deg(v).

Barabasi and Albert argue heuristically and experiménthht this growth pro-
cess yields networks with power law degree distributions

P(k) Ok3.

They also claim that with nonlinear preferences the expoypean be adjusted
also to values different than 3.

These arguments have been made rigorous by Eriksen & Hist{002) and by
Krapivsky (2000). (However some problems still remain wittnlinear prefer-
ences?)

Finally, note that the popular experimental graphs (Irggractors, power grid,
etc.) have both small world and scale free properties, sherdhe SW nor the BA
model (which are mutually contradictory) provides a fullyisfactory explanation
for them.
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Stochastic Algorithms

8 Simulated Annealing

Global optimisation (say, minimisation) of an objectivenétion H (o), framed
as a Hamiltonian of a statistical mechanics system, via aesexg of Metropolis
samplers for the Gibbs distributions determinedHiy) at decreasing values of
the temperature paramefer— 0.

Let H : S— R be a function to be minimised over a finite (but typically very
large) state spacg Assume thaShas some neighbourhood struct@e (S N)

(cf. page 24).

In any specific application of the method, the algorithm gesr typically has a
lot of freedom in the choice of the most appropriéite This choice can have a
significant effect on the efficiency of the algorithm: one \blike to haveN such
thatN(o) is small for eacho € S, yet the resulting Metropolis chains converge
rapidly.

The Gibbs distribution determined by at temperatur@ is (recall page 58):

T) _ _ 1 Honr 1
ré, Prr(0) ZTe ZTe ;

wheref = 1/KT.

A relevant observation is that @s— 0 (or f — ), the distribution Pf(0) gets
more peaked according té. Denoting byS* = {0* € S| H(0") = min} the set
of global optima oM, one observes that:

PIT(0) _ B(H(o)-H(o") ; { 0,0¢S
T—0

(B—0)

93
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Thus, in the limit one obtains:

L [0, 0¢S
o = Jim Prr(0) = { 1/|S|,0¢€S

Of course, one cannot directly sample accordingttpbut the idea is that by
starting at a high value df and then slowly (but how slowly?) decreasing it, one
obtains a nonhomogenous Metropolis chain that converges®nably fast (?) to
.

As regards the convergence of the chains at each Tixed, we can appeal to the
general results concerning Metropolis samplers from pdgenivards.

Let us just check the form of the acceptance probabilitiggoposed move — T,
wheret € N(0), is accepted with probability:

. [ Thdg
= _— l
Pot mln{ a }

) e_BH(T) d0
— m|n{m . d—T,l

if (S N)isregulari.e/N(og)| = |N(1)| forall o,T.

Thus, for a regular neighbourhood structure, and dendliig= H(t) — H(0),
a proposed transitioa — T is accepted always #H < 0, and with probability
e PO if AH > 01

In summary, one obtains the following general method forimising a function
H over a state spac®with regular neighbourhood structuxe

Algorithm SA(H, S N):

T < Tinit;
O < Oinit,
while T > T¢jna dO

L < sweep();
for L times do

1in the general case of nonregular neighbourhoods, poténtigeasing transitions should be
accepted with probabilitg PAH . dy /d;.
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chooser € N(o) uniformly at random;

AH — H(1) —H(0);

if AH <0 theno «T;

else choose € [0, 1) uniformly at random;
if r <exp(—AH/T)
theno — T;

end for;
T «— lower(T);

end while;
result— o;

The obvious question is now how to choose appropriate fanstiower{) and
sweep(), i.e. what is a good “cooling scheduléTp, Lo), (T1,L1),...

In practice, it is customary to just start from some “hightnfgeratureTy, and
after each “sufficiently long” sweelpdecrease the temperature by some “cooling
factor’a ~ 0.8...0.99:

Tk =0alk.

Theoretically this is much too fast, as we shall see, bunaseems to work well
enough.

Consider an inhomogenous Markov chain with transition imesP©), P, P2 .
Denote

P(m,k) = PMp(m+1) .. p(mtk-1)
i.e.Bj(mK) =Pr(Xmk=j | Xm=1).
The chaimws is weakly ergodidf for all m > O:
lim supdy (W"P(m,k),vTP(mk)) =0
—% 1y

andstrongly ergodidf there is some distributiort such that for alin > O:
lim sup dy (" P(m,k), 1) =0
—o
Let Q be ann x m stochastic matrix. ThéDobrushin) ergodic coefficierdf Q is

defined as:

P=p(Q =maxdv(Gai) g (q....,qm)

1 m
=5 ”i{?xk; |Cfik — lj|
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The following key technical lemmas will possibly be proveter. The proofs are
not exceedingly difficult.

Lemma 8.1 (“Dobrushin’s inequality”)
Given the stochastic matriceg @ [0,1]™™ Q, € [0,1]™!:

P(Q1Q2) < p(Q1)p(Q2).

Lemma 8.2 (“Dobrushin convergence rate bound”)
Given the stochastic matrix P and the distributions:u

oy (WPVTP") <dv (1, v)p(P)".

Lemma 8.3

An inhomogeneous Markov chain with transition probability matrices ¥,
P, ... is weakly ergodic if and only if either (and hence both) of filleowing
conditions hold:

(i) forany m> 0: limy_..p(P(mK))=0;

(i) for some increasing sequen@ec mp <m < ---

(o]

> (1-p(Pm, M) =

i=
Lemma 8.4
Let # be a weakly ergodic Markov chain with transition probalyilinatrices

PO, pA, .. Suppose that there exists a sequence of distributifistid, ...
such that

(i) ™PM — 1™ for each m> O;

(il §||n<m>_n<m+1>||1<oo_
m=0

Thenas is also strongly ergodic, with limit distribution

TG = lim m(m).

m—oo
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Theorem 8.5
Consider a simulated annealing computation on inpdt SN). Assume the
neighbourhood grapkS N) is connected and regular of degree r. Denote:

A=max{H(t)—H(o) | ce Ste N(0)}.
Suppose the cooling schedule used is of the {@giL), (T1,L), (T2, L),. .., where

L > min maxdist(o,o* 1
> min maxdist(0,0"), ®

wheredist(o,c*) is the distance in grap(S N) fromo to ¢*, and for each cooling
stage 1> 2
LA
N> (butT—0). (2)

In | —o00

Then the distribution of states visited by the computatamverges in the limit to
T, where

|0, ifo¢S
o = {1/|9|, ifoes
Proof: Denote byP(®, P . the sequence of transition matrices for the Markov
chain onS determined by the SA algorithm with the given parameters.sWal

show, based on Lemma 8.4, that this chain is strongly ergeiticthe given limit
distribution.

Let us first verify weak ergodicity using Lemma 8.3 (ii). Let € S* be some
ground state achieving the lower bound in condition (1). Wallsshow that for
anyo € Sandk > kg, wherekg is sufficiently large:

L
Pac (k1) = (Fe %) @

wherety = T/ | = cooling temperature at stép

It then follows from condition (3) and from the faigt — q| = p+q—2min{p.q}
that

1—p(P(k,k+L))
ZS“DOV(k: k+L) — Py (k,k+L)|

ve

= min ;min{Pw(k, K+L),Pwv(k,k+L)}
S

0,1
v

1
= 1-— -—max
0.1

aesS

> rLe LA/t
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and so (choosingy =1 -L):
S 1- S P(IL,IL +L
|Z>( p(P(m,m1)) l% +L)))

ZO —L —LA/t > r—L ZO
- I
I

Thus, let us check that condition (3) holds for some suffitydargekg. Observe
first that for anyo € Sandt € N(0):

Por(K) = %min{e(H(T)H(O))/tk, 1) > %eA/tk.

Similarly, for anyc™ € S* there is somé&g such that for alk > ko:
1
Py-o+ (K) > Fe*A/‘k.
Namely, letd = min{H (1) —H(0*) | 0* € S",1 € N(0") \ S*}. Now d > 0, unless

H is a constant function. Thus for &> kg, wherekg is sufficiently large:
1— g k> e_A/tk,
and so
Poror = 1— Z PG*T(k>
1eN(o*)

—1- ¥ 1-HO-H©O) /A

Z :_Le_A/tk.

r

Thus, for anyo € Sandk > kp:

Poc*(k,k—i— L)
= ZZ... Z POT]_(k)PTlT2<k+ 1)“'PT|_710'*(k+L—1)

1 T2 T

> P001<k) P0102(k+ 1) U P0L710*(k+ L)

L
Z (:_LeA/tk) ,
r
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whereo,01,0o,...,0._1,0" is a shortest path frora to ¢* in (S N), with pos-
sibly statec* repeated several times if the length of the actual path stlesn
L.

Having now established the weak ergodicity of our chainygetheck conditions
(i) and (ii) of Lemma 8.4 to complete the proof.

For condition (i) it suffices to observe that the stationasgribution at stagé of
the algorithm:

h_ 1 —Hoym _ T o HO)/T
= —€ , 4= )e )
T'é Z | 0;

satisfies the condition!)P(™ = n!), for values ofmfromIL to (I + 1)L —1.

For condition (ii), one can show by a somewhat tedious catmn (cf. Aarts
& Korst, “Simulated Annealing.. ”, p. 22) that for each of the intermediate
stationary distributions(!:

T 0 1) _q
if o eS*,thenaTrré*<0,

if 0¢ S, then aiTnﬁP > 0forl > I sufficiently large
As T.1 <T, at each stagk it thus follows that:

T[E,+1 ZTIE,) foro” €S
Tlﬁ,+1 gm(,) foro¢ S andl > I

Thus, forl > 14:

-4 -

1
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Hence, denotingd™ = m(l™WLD):

00

2

m=0

ﬁ(m)_ﬁ(m+1)Hl _ i ﬁ(l)_ﬁ(l—i—l)Hl
=

I w
- go T[<|)_T[<l+l)Hl+l=g+1

§2|1+2< S - S rrE,'ﬁ”)

o*eS o*eS
< 21+2< o,

ﬁ(|)_ﬁ(|+1)Hl

This completes the proof, because according to Lemma 8¢hthia has the limit
distributiontt*, where

T T i —H(o)/T, _ 0, ifO'@éS*
T‘éﬂ'ﬂﬂé = [im ¢ =\ 1/s|, ifoes U

9 Approximate counting

Let >~ be an alphabet (without loss of generality= {0,1}) andRC Z* x Z* an
NP relation ovek*, i.e.

e for some polynomiap(n), R(x,w) = |w| < p(|x
length of string z

), where|z| denotes the

¢ the conditionR(x,w) can be tested in polynomial time, for any giveqw)
Well-known examples of NP relations:

e SAT(@p,t), wheregis (an encoding of) a Boolean formula ahdVary —
{T,F} is atruth assignment to its variables; relation holdgévaluates to
T undert.

e COL4(G,0), whereG = (V,E)isagraphand :V — {1,...,q} is a can-
didate g-colouring of its nodes; relation holds d is valid for G, i.e. if
(uv)eE = o(u) #o(v)vuveV.

DenoteR(x) = {w € Z*|R(x,w) holds}.
One may consider different computational problems reltié
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e existence problengivenx, determine ifR(x) # @
e counting problemgivenx, determineNgr(x) = |R(X)|

e sampling problemgivenx, providew € R(x) uniformly at random

A randomised approximation scheme (rém)the counting problem associated to
Ris a randomised algorithi#(x, €) such that for anx € ~*, € > 0:

PH{(1~ £)NR(X) < AlE) < (1+E)NR(X) > .
where the probability is with respect to the random choicaderby the algorithm.
The ras idully polynomial (fpras)f its running time is polynomial inx| and 1/«.
An almost uniform sampler (auf)r Ris a randomised algorithi®(x, &) such that
for anyx € £*,§(x,0) € R(x) anddy(S(x,0),Ur(X)) < 8, whereS(x,d) denotes
(by slight abuse of notation) the distribution of the outptiS(x, ), andURr(X)
denotes the uniform distribution ovB(x). An aus isfully polynomial (fpaus)s
its running time is polynomial ifx| and In1/d.

It can be shown (Jerrum et al. 1986, Sinclair 1993) th& i$ “self-reducible”,
thenR has an fpras if and only if it has an fpaus.

Self-reducibility ofR means roughly (the exact definition is somewhat more gen-
eral) that there is a small collection of polynomial timedtionsf;, gi,i=1,... kK,
such that for anyk € =¥, |fi(x)| < |x| and

k

R() = J gi(x R(fi(x)))-

i=1

E.g. for the SAT relation SATE) = SAT(@r) USAT(@=), wherer (¢e) is the for-
mula obtained fromp by substitutingl (F) for the first variable and simplifying.
Almost all “natural” NP-complete relations are self-reihle.

Let us see concretely, in the case of low-degree graph dalpurow an efficient
fpaus (pages 46-50) can be converted into an efficient fpras.

Given a graplG = (V, E) with maximum node degref < g, denote for brevity
Q(G) = COLy(G), and assume the existence of a fp&(S, d) for g-colourings.
(Actually, the fpaus-construction on pages 46-50 requirese strongly thaf\ <

q/2.)
One possible self-reduction for graph colouring is

Q(G) =9(G,Q(G)),
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whereG' ~ G with one edge (e.g. highest-numbered one) removed, and

(G,0) = o if oisvalid forG
9(%,0) = 1 otherwise

where_L is a “null-value” (SU{ L} = Sfor anyS).

Assuming|E| = m, denoteG = Gy, G' = Gm_1,...,G™ = Gg = (V, ). Now
clearly|Q(Gop)| = q", wheren = |V|. Then the quantity we are interested in can
be expressed as:

- _ QG)ml  [QC)m-1] [Q(C)a|
NG = 1) = 1G] @Gzl [2G)
= Pm-Pm-1-P1-d", (4)
where
o — QG|
1Q(G)k-1|

Now each of the ratios ipx and hence the product (4) can be estimated using
our presumed fpaus to generate a “sufficiently large” nundfesamples form
eachQ(Gy_1) and seeing how many of those fall alsdMGy). Some analysis is
needed to determine the appropriate numbers.

Before going into the analysis, let us note that the sameoagpr combined with
more complicated samplers, has been used to provide fprasuét important
problems as:

e approximating the volume of a convex body (Dyer, Frieze, ian1991)

e approximating the partition function of a ferromagnetia¢smodel (Jerrum
& Sinclair 1993)

e approximating the permanent of a positive matrix (Jerrumgl8ir & Vigoda
2001)

Let us then complete the analysis of the graph colouringsfRecall that
1Q(G)| = Pm-Pm-1-+-p1-0",

where each

_ 1Q(G)

= QG
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Now clearly eachQ(Gy) C Q(Gk_1), so thatpy < 1. On the other hand, each
colouringo € Q(Gk-1) \ Q(Gk) must be such that it assigns the same colour to
both endpointsl, v of the edgee removed fromGy to obtainGk_;. Letu be the
lower-numbered of the nodes. Thertan be transformed to a valid colouring of
Gk by recolouringu with one of the> q— A > 1 colours free for it. On the other
hand, each colouring iQ(Gy) is generated by this process in at most one way.
Thus

1Q(Gk-1) \ Q(Gi)| < |1Q(G)],

1
and sopk > 5.

Assume then without loss of generality tat> 1 and 0< € < 1. (Recalle ~
error tolerance for the fpras to be constructed).

Let Zy € {0,1} be a random variable obtained by running the presumed fuawus f
Gk_1 and testing whether the resulting colouring is also validG@@ (— Zx = 1)
or not (— Zx = 0). Denote = E[Zy].

By settingd = & in the fpaus one may ensure that
€ €
< < _—
P g S WS Pt ey (5)
and noting the bounds @, that
€ €
S— < < — ) Pk
(1 3m> Pr= M= (1+ 3m> Pk (6)

Note also that by (S > 1.

To decrease the variance of qestimate, |ez,£1),... ,Zlgs) bes= [74e~2m] <
75¢~?mindependent copies of variatig, and let

= 12

be their mean. TheR[Z,] = E[Z] = 1 and

Var(Z) s s Varz) s w1
aL% K _S suﬁar( K _S (IJ:ﬁ p‘k)zs—l(ulzl_l)SZSfl

We shall take as our estimator fi@(G)| the random variabl¥ = q"py - - - .
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The variance of can be bounded as:
Var(Y) var(Zy - - Zp)
E(Y)? (Mo~ km)?

_lr_“|< VaLkZ))_l

2\M 2 2
S(Hg) —1 s=[740] = 2< & =
g2 \M
14— ) —
- < Jr37m)
<é/er1 e — 1—x+2|+3|+
small!
L
— 36
Since by Chebyshev’s inequality:
1 Var(Y)
Pr(lY —E > ANE(Y —
(1Y~ E(YV) 2 AE(Y)) < 5 gy
i.e.
Y 1 €
- > < -

we obtain, by choosing = €/3, the bound

Pr((l—%) W< g Y < (1+§) ul---um) >

But from inequality (6) we obtain the bound

Al

(1—%)mpl---pm§ Mi---Hm < (1+3im)mp1---pm

(1——) P Pm < Hi- Hm < <1+§) P1---Pm

Putting these two bounds together yields the desired famagiton:

Hlw

Pri(1-g)d'p1-Pm <Y <(1+€)q°1---Pm | >
—— ——
1Q(G)| 1Q(G)]
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10 Markov Chain Monte Carlo Simulations

This is a very broad area and would actually merit a full maicti®n of its own.
Maybe later.

In many practical applications of Markov chains, one isr@s¢ed not just in sam-
pling according to the stationary distribution but also in computing expected
values of various quantities with respect to it:

Enl[f] = Z f(o)y (also denotedf)y)

o€S

E.g. one might want to compute the average magnetisatiorspiineglass model
at a given inverse temperatysécf. page 62):

(M)='3 M(0) e P19z,
N———

oeS X -
Gibbs density

The task could be approached by producing many independenjils state®
according tat, computingf (o) for each and controlling the estimation error.

However, it is customary to compute the estimates from aleifay a few) long
runs of the chain:

1 N
Enlf]~ < 5 f(X(w)), Nlarge
N2,
(More precisely, maybe

1 N
Bl i, g, )

whereNp is an initial “burn-in” time to eliminate systematic effeabf choice of
the initial state.)

For this approach to work properly, the Markov chains mustagh-ergodic” in
the sense that the stationary distribution is sampled plppéng almost every
individual path of the chain.

In fact, if the word was not already so overused, we could dediMarkov chain
M = (X1,X2,...) to beergodic with stationary distributiont if for any initial
distributionp and for all stateg € S.

1 XN
lim ngllg(xk) =Ty p-almostsurely

N—o
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N
Pru<lim % 3 lo(Xi(®) #no) -0,

k=1

wherelg is an indicator function for state:

1 ifi=0
|o(§)={0, ifE£o

Luckily, all regular (finite) Markov chains are ergodic alsdhis strong sense. In
fact, even more is true:

Theorem 10.1 (Ergodic Theorem for Regular Markov Chains)
Letar = (X1,X2,...) be aregular Markov chain with state space S, andsf- R
any function. Then for any initial distribution p:

1 X
|\|||Lnooﬁ k; f(Xk) = En[f] p-almost surely

We do not have all the tools (or the time) to give a completeopad Theo-
rem 10.1, but here are the key components:

Theorem 10.2 (Kolmogorov’'s Strong Law of Large Numbers)

Let Xi, Xo,... be a sequence of independent identically distributed ramdari-
ables defined on probability spa¢@, # ,P), and such that EX|] = E[|Xy|] <
for all k. Then

.1
’\||Im N(X1+...+XN) =E[X1] P-almost surely

Lemma 10.3 (Regenerative Cycle Lemma / Strong Markov Propey)

Let s = (Xo,X1,...) be a regular finite Markov chain with state space S. Fix
any state0 € S. TherD is visited on any given sample pathsf infinitely often
(almost surely), and denoting), 11, T, ... the successive times of visit@the
sample path segments

{XTk7 XTk+17 s 7XT|(+1—1}7 k Z 07

are independent and identically distributed.
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Proof of Theorem 10.1Recall that for any € S

T1

> Ix=0]

n=1

ps_ 1
My =0 = = Eq
Ho Ho

Y

1
> I[Xn=0}|[T1>n}] = E0

n>1

whereEg[-] = E[-|Xo = 0], 11 is the time of first return to 0, angh = E[t4].

Given a sample path starting at state O1iet, ... be the successive return times
to 0, and define

Up = % f(Xn)-

n=Tp+1

By Lemma 10.3, th&Jy’s are independent and identically distributed random-vari
ables. Assumindg > 0 we obtain:

E[Uo] — Eo Tzlf<xn>]

“Eo[3 S f(0)ixea

~ S f(0)E

T1
> xe—o]
0€S n=1 ]

= Ho Zsf(c)ﬂo = HoEn(f]

By Theorem 10.2 (Strong Law of Large Numbers), then:

n—oo N

1 n
lim — Z Up = E[Uo] = WoEr{f] n-almost surely,
p=1

lim = Z f(Xk) = WEr{f] n-almost surely. (7)
Define then random variablegn) as:

n
V(N = 3 Ixe=0
k=1
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(~ number of returns to 0 by tim@). Clearlyt,n < n < Tyn)4q for all n, so that

1 W 1 n 1"
o) k; f(X¢) < Wk;f(Xk) < ) Z f(Xx) almost surely.
n) —

Since by Lemma 10.3)(n) — o asnh — o, we obtain from equation (7):

Tn+1

lim — Z f(Xg) = lim = Z f(Xk) = WEn[f] almost surely. (8)

n—oo V n—oo N

However, asymptotlcally also
v(n)—1
N~ Ty = % (tiya—T) almost surely,
i=

so by Lemma 10.3 and Theorem 10.2:

n 1 v(n)—1
v(in) ~ v(n) i; (Tiyr—Ti) =E[ta) = o almost surely.
Thuspgv(n) ~ n, and by combining equations (7) and (8):

n

lim = f(Xg) = lim almost surel
n—oo N Z n—oo uov kZ y

= Eq{f].

The case of generdl: S— R can be handled by treating separately the nonnega-
tive functions
f™ =max{f,0} andf~ = max{—f,0}

and summing up the resulting equalities.

Convergence Rates of MCMC Simulation Algorithms

Letar = (Xo,Xy,...) be aregular finite Markov chain with state sp&ce{1,...,r},
transition probability matri¥, and stationary distributiort. Denote:

m: - T,
n=1| " , (i.e. for any distributiony, u' M =17").
™ -+ Tk

Thefundamental matriof chainar is defined as
Z=(I—-P-n)?
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Proposition 10.4 For a regular chairmws , the fundamental matrix Z is well-defined,
and

Z=1+% (P"-1).

A>1

Proof: It is easy to verify that for alk > 1:
PRk =nkp=n.

Thus,

(P—N)" = i <E)(—l)”kPkl'I”k

k=0

_ P”+:;1) (E) (—1)"kn

=P"—n.
Therefore, withA=P —T1,
I=A) 1 +A+A . + A" = —A" =1 +P" T,
and consequently

+ZA” = I|m |+P"—M)=1.

n>1

Hence the matrix —A=1— (P—) is invertible, and

(I=P-M) T =1+5P-M"=1+5 (P"

n>1 n>1

The fundamental matrix has many uses (analogous to the rfuertal matrix of
transient states) in computing expected recurrence tihges e

We, however, quote only the one of main interest to us (and theg without its
somewhat technical proof). Given a Markov chain with finite state spac§,
and any function$,g: S— R, denote:

(f,9)n=Erf(X)a(X)] = Z;T(i)f( )9(i)

Vary(f) = Ey[(f(X) = £)?] = Ey[f(X)?] = (Eulf (X)])?

f
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Theorem 10.5 (Asymptotic variance of Ergodic Estimates)
For a regular chainss , and any function f S— R,

I|m Varu<2f )—Zfo) (f,(l—i—l'l)f>E

Denote ‘(f,P,n)

for any initial distribution p.

Proof: E.g. Brémaud 1999, pages 232-234.
Since by Theorem 10.1,

FN:NZ —>f_En[f]

by Chebyshev’s inequality we see that for @&y 0 and for “largeN”:

s = 1 ~ v(f,P Tt
Pr(|fi— 1] > 8) < 5 Var(fy) = 62N2 (Zf )m%

independent of the initial distributigm

Suppose then that the transition probability mafikasr distinct eigenvalues
1=A1>A2>---> A, > —1, with associated left and right eigenvectoss... , u
andvy, ...,V respectively (normalized so thaﬁvi =1 Vi). Then?

r r
PN = Zl)\i”vi ul =N+ ;)\i”vi ul,
= =

and so

n _ LN )
Z=I +n;(P —n)=1 Jri;lf)\iv.u,T
Thus
V(F,PT) = 2(F,Zf)— (£, (1 + 1) F)m
—2(t, f>n+2.iﬁ<f,vi>n<urf> By (1)

;

_ Ai , T,

= (f, (I H)f)n+2i;1_)\i<f,v,>n(f Ui).
Varn(f(Xo))

2Cf. page 16. Also left eigenvectors are here representediasia vectors, however.
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For a reversible chairDY/2PD~1/2 symmetric),u; = Dv; and thereforef Tu; =
(f,vi)n. Applying the decompositiofi = ;(f,vi)nvi we obtain in this case

v(f,Pm) = ;m\<f,v,>n| :

Let us then consider the task of designing good “Metroplitis-reversible Markov
chains with given stationary distributionand as good convergence rate as possi-
ble.

To achieve a given stationary distribution the detailed balance conditions re-
quire only that

T pij = T pji, forallstates,jeS (9)
There are potentially an infinite number of transition neasP satisfying condi-
tions (9). Let us focus on solutions of the form

Pij = 4ij ij,
whereQ = (q;) is an irreducibleeandidate-generation matrianda;; € (0, 1] are
theacceptance probabilitie®r given tentative state transitions.

W. Hastings (1970) proposed the following general classoéptance probability
matrices guaranteeing the validity of the detailed balaocelitions (9):

aji = _Si
1) 1+t|J 1)
where
TGGij
b =g
T qji

ands; = s;i are numbers chosen so thaf € (0,1], i.e.
0<sj <1+min{tj,t;} Vi, j. (10)
Enforcing equality in condition (10) results in the MetrdipeHastings algorithm
_ TTQ
ajj = mln{l,ﬂ}
TG Gij
(check this!), whereas always choosimg= 1 defines the so calleBarker’s al-
gorithnt
_ 4G
T dji + T4Qj
Let us then compare the various Hastings-type MCMC algasthvith respect to

their asymptotic variance (Theorem 10.5). We quote th@Wahg result without
proving it:

(Xij
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Theorem 10.6
Let P= (pij) and P = (pj;) be regular transition matrices over finite state space
S, with the same stationary distribution If pj; > pi’j foralli # |, then

v(f,Pm) <v(f,P,m

holds for all functions f S— R.
Proof: E.g. Brémaud page 300.

Corollary 10.7
For a given candidate-generation matrix Q, the Metropdiiastings algorithm
has optimal asymptotic variance in the class of Hastingsiallgms.

Proof: Since theajj are probabilities, the upper bound gp given in condition
(10) cannot be exceeded. The Metropolis-Hastings alguaritiatches the upper
bound.

11 Genetic Algorithms

Genetic algorithms (GA) are a general-purpose “black-taptimisation method
proposed by J. Holland (1975) and K. DeJong (1975).

The method has attracted lots of interest, but its theortilisrcomplete and the

empirical results somewhat inconclusive. Advantages eftéthnique are that
it is general-purpose, parallelisable, and adapts incnésilg to changing cost
functions (“on-line optimisation”). Disadvantages, oe thther hand include that
GA's are typically very slow — thus the technique should bedusith moderation

for simple serial optimisation of a stable, easily evaldatest function.

Some claim that GA's typically require fewer function eaions to reach com-
parable results as e.g. simulated annealing. Thus the chetlhg be good when
function evaluations are expensive (e.g. require someahphtysical measure-
ment).

11.1 The Basic Algorithm

We consider the so called “simple genetic algorithm”; alssngnother variations
exist.
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Assume we wish to maximise a cost functiodefined om-bit binary strings:
c:{0,1}" - R.

Other types of domains must be encoded into binary stringsshwis a nontrivial
problem. View each of the candidate solutians {0,1}" as anindividual or
chromosomeAt each stagegeneration t the algorithm maintains population
of individualsp; = (s, ... ,Sm).

There are three operations defined on populations:

e selectiono(p) (“survival of the fittest”)
e recombinatiomp(p) (“mating”, “crossover”)

e mutation | p)

The Simple Genetic Algorithns then as follows:

function SGA(o, p, W):
p < random initial population;
while p “not convergeddo
P —a(p);
P’ —p(p);
p—up”)
end while;
return p (or “fittest individual” in p).
end.

Selection

DenoteQ = {0,1}". The selection operatar: Q™ — Q™ maps populations prob-
abilistically: given an individuas € p, the expected number of copiessh o(p)

is proportional to théitnessof s in p. This is a function of the cost afcompared
to the costs of othes' € p.

Some possible fitness functions are:
¢ Relativecost(=- “canonical GA’):

f(S) C<S) A C<S)

:%;q@ ¢
€p
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e Relativerank:
r(s) 2
f(s) = =
m =

wherer (s) is the rank of individuasin a worst-to-best ordering of &l € p.

~r(s),

Once the fitness of individuals has been evaluated, setectin be performed in
different ways:

¢ Roulette-wheel selectidfstochastic sampling with replacement”):

— Assign to each individua € p a probability to be selected in propor-
tion to its fithess valud (s). Selectm individuals according to this
distribution.

— Pictorially: Divide a roulette wheel inton sectors of width propor-
tionalto f(s1),..., f(sm). Spin the wheemtimes.

e Remainder stochastic sampling

— For eachs e p, select deterministically as many copiesask indicated
by the integer part of (s). After this, perform stochastic sampling on
the fractional parts of thé(s).

— Pictorially: Divide a fixed disk intan sectors of width proportional
to f(s1),...,f(sm). Place an outer wheel around the disk, with
equally-spaced pointers. Spin the outer wheel once.

Recombination

Given a populatiorp, choose two random individuasss' € p. With probability
Pp, apply acrossover operatop(s,s’) to produce two new offspring individuals
t,t’ that replaces, s’ in the population. Repeat the operatiop2 times, so that on
average each individual participates once. Denote thédéitt on the popula-
tion asp’ = p(p). (A practical implementation: choo§§ -mrandom pairs from
p and apply crossover deterministically.) Typicaly ~ 0.7...0.9.

Some possible crossover operators are illustrated in Eigur
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11010011001:><i01100011001
01101011011 11011011011

(a) 1-point

11010011001:><i11101011001
01101011011 01010011011

O 0O

(b) 2-point

11010011001><01011011001
011010110112 11011011001

(c) uniform

Figure 1: Typical crossover operators.

Mutation

Given populationp, consider each bit of each individual and flip it with some
small probabilityp,. Denote the total effect on the population pls= p(p).
Typically, py = 0.001...0.01. It appears that fon-bit strings a good choice is
pu=1/n.

Theoretically mutation is disruptive. Recombination ametestion should take
care of optimisation; mutation is needed only to (re)introel “lost alleles”, al-
ternative values for bits that have the bits that have theesaatue in all current
individuals.

In practice mutation plus selection equals local searchtaltain, even with quite
high values ofy,, can be efficient and is often more important than recomiainat

Analysis of GA’'s: Hyperplane sampling

The notion of hyperplane sampling presents a heuristic \@iéWwow a genetic
algorithm works.

A hyperplane(actually subcube) is a subset@f= {0,1}", where the values of
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some bits are fixed and other are free to vary. A hyperplanebeagpresented by
aschema He {0,1,«}". E.g. the schema 01« «’ represents the 3-dimensional
hyperplane (subcube) ¢D, 1}° where bit 1 is fixed to 0, bit 3 is fixed to 1, and
bits 2, 4, and 5 vary.

An individual s € {0,1}" sampleshyperplaneH, or matcheshe corresponding
schema if the fixed bits dfi match the corresponding bits én BY some abuse
of notation, this situation is denoted as< H”. Note that a given individual gen-
erally samples many hyperplanes simultaneously, e.gvithakl '101’ samples
'10%’,'1 % 1’, etc.

Define theorder of a hyperplanéd as:

o(H) = number of fixed bits irH
=n—dimH.

Theaverage cosof hyperplaneH is then:

c(H) = 2”7%’('*)3;(3@'

Denoting bym(H, p) the number of individuals in populatiomthat sample hy-
perplaneH, theaverage fitnesef hyperplaneH in populationp is defined as:

1
mH, D) oo P

A heuristic claim is then that selection drives the searetatds hyperplanes of
higher average cost (quality).

f(H7p):

Consider e.g. the cost function and partitiont»dinto hyperplanes (in this case,
intervals) of order 3 presented in Figure 2. Here the curpapulation of 21
individuals samples the hyperplanes so that e.g.30@nd ‘010« *’ are sampled

by three individuals each, and '18@’ and '101x x’ by two individuals each.
Hyperplane '01& %’ has a rather low average fitness in this population, whereas
'"111x %’ has a rather high average fitness.

The result of e.g. roulette wheel selection on this popoitaiight lead to elimi-
nation of some individuals and duplication of others, as@néed in Figure 3.

Then, in terms of expected values, one can show that

E[m(H,0(p))] =m(H,p)- f(H,p).
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c(s)

| | | | | | | |
000% ' 001 | 010% | 011* | 100% | 101% | 110% @ 111% | o

Figure 2: A population sampling hyperplanes.

c(s)

| | | | | | | |
000% ' 001% | 010% | o011 | 100% = 1017 | 110% | 111% | g

Figure 3: A sampling population after selection.
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The effect of crossover on schemata
Consider a schema such as

H=%%11++01%1xx
—_—
AH)=7

and assume that it is represented in the current populayicofnes € H.

If sparticipates in a crossover operation and the crossovet isdocated between
bit positions 3 and 10, then with large probability the offeg are no longer ifd.

In this case schentd is said to badisrupted On the other hand, if the crossover
point is elsewhere, then one of the offspring stayd jrandH is retained

Generally, the probability that in 1-point crossover a schéd = {0,1,x}" is
retained, is (ignoring the possibility of “lucky combinaris”)

. A(H)
Pr(retainH) ~1— —~
( Jel-

whereA(H) is thedefining lengttof H, i.e. the distance between the first and last
fixed bit inH.
More precisely, ifH hasm(H, p) representatives in populatignof total sizem:

Pr(retainH) > 1— ﬁ(_Hl) <1_ m("r|n, p)) .

The Schema “Theorem”

The Schema Theorem, proposed by J. Holland (1975), proadesuristic esti-
mate of the changes in representation of a given sclt¢fnam one generation to
the next.

Denote:

m(H,t) =number of individuals in population at generation
that sampleH.

Then:

(i) Effect of selection:

m(H,t") ~m(H,t)- f(H)



11. Genetic Algorithms 119

(i) Effect of recombination:

m(H,t") ~ (1— pp)m(H,t") 4+ pp [ m(H,t") Pr(retainH) + m- Pr(luck)

——
> (1~ pp)m(H,t') + pom(H, t') <1‘ A<_H1) <1_ m(kr:w,t/)»

= m(H,t) (1— ppﬁ(_Hi (1— m<H’t/)n )

(i) Effect of mutation:

m(H,t+1) ~ m(H,t") - (1— p,)°H)

In summary, then:

m(H,t+1) > m(H,t)- f(H)- (1— ppﬁ(_Hi (1— m<t'n’t/))) (1= pyp .

The formula leads to so calléBuilding Block Hypothesis! In a genetic search,
short, above-average fitness schemata of low order (“Ingldiocks”) receive an
exponentially increasing representation in the poputatio

The following criticisms have been expressed as regard$Sitieema Theorem”
and the Building Block Hypothesis, however:

e Many of the approximations used in deriving the “Schema Té®Jd im-
plicitly assume that the population is very large. In pate, it is assumed
that all the relevant schemata are well sampled. This islgleat possible
in practice, because there afefssible schemata of length

e The result cannot be used to predict the development of thalaton for
much more than one generation, because:

— firstly, the long-term development depends on the coevaiubf the
schemata, and the “theorem” considers only one schemalatimo

— secondly, an “exponential growth” cannot in any case comtifor
long in a finite population.
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11.2 Genetic Algorithms as Stochastic Processes

A proper mathematical treatment of GA's would view them axclsastic pro-
cesses. It is unfortunately very difficult to obtain any ol analytical results
in this direction. Here we outline a simple Markov chain miqaesented by Vose
& Liepins (1991) and Rudolph (1994).

Consider the “canonical GA’, i.e. the Simple Genetic Algom using the relative
cost fitness function and standard proportional (“routettesel”) selection, in the
form:

p < random initial population;

p<«— o(p); (selection)

while p “not converged'do
P — p(p); (recombination)
P’ — up) (mutation)
p—o(p”); (selection)

end while.

Encode a population ahindividuals, each an-bit string, as an integer (in binary
representation)

pe{0,1}™={0,1,...,2"™"—1}.

/

-~

Zymn

Then the CGA can be modeled as a Markov chain on state shacewith the
transitions probability matri = CMS where

C isthe recombination (“crossover”) transition probalgilbatrix
M is the mutation transition probability matrix
S is the selection transition probability matrix

A stochastic matriP = (pjj) is:
(1) positive if pjj > 0 for alli, j;
(ii) primitive, if PKis positive for somék > 0;
(i) reducible if it can be converted to the form
~ (O]
= [w7)

whereC and T are square matrices, by applying the same permutation to
the rows and the columns;
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(iv) irreducible if it is not reducible.

The interpretation of these definitions is that primitivetntas correspond to the
irreducible and aperiodic Markov chains defined before. riedaicible matrix, the

upper rows correspond to a “closed” or “absorbing” classates, the lower rows
to “transient” states. Note that a positive matrix is trilyigorimitive.

Theorem 11.1
Let P be a primitive stochastic matrix. Then the sequerfaeoRverges as k> o
to a stochastic matrix Pwhich has the form
pOO
PP=1 11,
pOO
where 8 is a stochastic vector with all components positive. (Thetorep™
represents the stationary distribution of the chain.)

Theorem 11.2
Let P be a reducible stochastic matrix of the form

CO
- [&7)
where C is primitive, and T does not contain an irreduciblbreatrix. Then the
sequence ©converges as k> « to a stochastic matrix ® of the form
p* 0
POO — . .

p* 0
where [ is a stochastic vector with all components positive.

Lemma 11.3
The transition probability matrix - CMS of the “canonical genetic algorithm”,
with mutation probabilityd < p, < 1 is positive and hence primitive.

Proof: DenoteC = (ci),M = (my),S= (). ThenP = (pjj), where
Pij = ;Cik”klay

Observe:
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(i) Vidki:cy > 0 (Becaus€ is stochastie= Vi : 5 Cix = 1)

(i) M is positive: denot& = mn d(k,I) = Hamming distance between popu-
lationsk,|. Then:

(k1) )N—d(k,l)

mk|:pﬂ (1—pu > 0.

(i) V j:sjj > 0 (Because with nonzero probability, selection does nohgba
the population.)

Thus:

pij = ;Cikmdslj > Cik; Mk jSjj > 0. 0

Theorem 11.4
The CGA with mutation probabilit§ < p, < 1 converges to a stationary distri-
bution of populations where the probability of every popiolais nonzero.

Proof: Follows from Theorem 11.1 and Lemma 11:3.
Assume the CGA is defined so as to maximize the funatiof0,1} — R. Denote

c" =max{c(i) | i € {0,1}"},
and for a population= (i, ... ,im):

c'(I) = max{c(ix) | k=1,...,m}.

Denote byi) the population of the CGA at time The algorithmconverges to
global optimumif

lim Pric*(iV) =¢*) = 1.

Note that the simulated annealing algorithm convergesdbajloptimum in ex-
actly this sense.

Corollary 11.5
If nonoptimal solutions with respect to the cost functiorxiste(i.e. if j) < c*
for some je {0,1}"), then the CGA does not converge to the global optimum.
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A,

Proof: Let | = (j,j,...,j) be a population such thet(]) < ¢* By Theorem 11.2,

A

lim PriV = ) =e >0,
and thus

lim Pric'(iV)=c)<1-e<1. g

Theorem 11.6

On the other hand, if the best solution found is always kegh@épopulation
(“elitist” selection) and not mutated, then the CGA doesenge to the global
optimum.

Proof: Simple corollary to Theorem 11.2: the transition prob&pinatrix P re-
duces in this case to the form

co
o= [R7)

where the upper rows correspond to the unique closed clgsspefiations con-
taining a globally optimal solutions

Note that for practical purposes, such (non)convergenselteeare of course
largely irrelevant. The important (but difficult) questgare:

e How fast does the CGA with elitist selection converge towsaad optimal
solution?

e Does the CGA without elitist selection converge to a popoitatvith mostly
optimal solutions, and how fast?

12 Combinatorial Phase Transitions

12.1 Phenomena and Models
“Where the Really Hard Problems Are” (Cheeseman et al. 1991)

Many NP-complete problems can be solved in polynomial tilme &verage” or
“with high probability” for reasonable-looking distridons of problem instances.
E.g. Satisfiability in timeo (n?) (Goldberg et al. 1982), Graph Colouring in time
o (n?) (Grimmett & McDiarmid 1975, Turner 1984).
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Where, then, are the (presumably) exponentially hard mestsof these problems
located? Could one tell ahead of time whether a given instamdikely to be
hard?

Early studies of this issue done by: Yu & Anderson (1985), étalann & Hogg
(1987), Cheeseman, Kanefsky & Taylor (1991), Mitchell,ns@h & Levesque
(1992), Kirkpatrick & Selman (1994), etc.

Hard Instances for 3-SAT

Mitchell, Selman & Levesque (AAAI 1992).

Experiments on the behaviour of the Davis-Putnam[-Logerawveland] (DP[LL])
procedure on randomly generated 3-cnf Boolean formulas.

E.g. satisfiable 3-cnf formula
(X1 VX2 VX3) A (X1 VX2V Xg)
The expressions in parenthesis el@usesand thex's areliterals.
Distribution of test formulas:
e number of variables

e m= anrandomly generated clauses of 3 literals; & < 8

TThe Davis-Putnam[-Logemann-Loveland] (DP[LL]) methad festing the sat-
isfiability of a set of clausex on the variable sét:

1. If Zis empty, return “satisfiable”.
2. If Z contains an empty clause, return “unsatisfiable”.

3. If Z contains a unit clause = x*, assign tox a value which satisfies,
simplify the remaining clauses correspondingly, and c&lLD recursively.

4. Otherwise select an unassigned V, assignx <— 1, simplify Z, and call
DPLL recursively. If this call returns “satisfiable”, theeturn “satisfiable”;
else assigx < 0, simplify Z, and call DPLL recursively again.

For each set of 500 formulas, Mitcell et al. plotted the mediamber of DPLL
calls required for solution.

The results of this experiment are illustrated in Figuread 3. Discussion:
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4000 T T T T T
2()—variable formnlas -©—
] 4{)-vanable formnlas —+—
3500 - i 50—variable formulas &= ]
3000
2500
Numbar
P 2000
callz

1500

1000

500

Ratio of clanzses—to—variables

Figure 4. Number of DPLL calls required to determine satisliy (Mitchell et
al. 1992).

10000 : — : . .

9000 - : Compoeite &— |
: Satisfiable —4—

8000 - : Uneatisflable == |
7000 : 50%-satisfiable point, - -+

Numb

op e 6000

P

or 5000

4000
3000
2000
1000

Ratio of clanzez—to—variables

Figure 5: Number of required DPLL calls according to typeahfula (Mitchell
et al. 1992).
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1.0 4 : T T T

0.9 | . Probability of being satisfiable &— |
. 50%eatisfiable point - -

0.8 4
LA 4
LE 4
Probability 05 - i
04 - 4
03 4
02 - 4
0l 4

0.0 L ! & I
2 3 4 5 G ki 8

Ratio of clanzez—to—variablez

Figure 6: Probability of satisfiability for random 3-cnf foulas (Mitchell et al.
1992).

e Aclear peak in running times (number of DPLL calls) near tbhmpwhere
50% of formulas are satisfiable.

e The "50% satisfiable” point or “satisfiability threshold”eses to be located
at roughlya =~ 4.25 for largen.

e The peak seems to be caused by relatively short unsatisfabielas.

A fundamental question is whether the connection of theingntime peak and
the satisfiability threshold a characteristic of the DPLgaalthm, or a (more or
less) algorithm independent “universal” feature?

The “50% satisfiable” point or “satisfiability threshold”rf@-SAT seems to be
located atr =~ 4.25 for largen.

12.2 Statistical Mechanics ok-SAT (“1st-Order Analysis”)

Kirkpatrick & Selman (Science 1994)

Similar experiments as above fR#SAT, k = 2,...,6, 10000 formulas per data
point. Results illustrated in Figure 7. Further observagio

e The “satisfiability threshold®&. shifts quickly to larger values af for in-
creasingk.

o For fixedk, the value ofx. drifths slowly to smaller values for increasing

A statistical mechanics model okacnf formula:
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Thrzwahslda £=x Z2AT, 23AT, 43AT, 22AT, and E2AT
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Figure 7: Probability of satisfiability for randokicnf formulas (Kirkpatrick &
Selman 1994).

20 a0 =1 &0
[T

e variabless ~ spins with states-1
e clausex ~ k-wise interactions between spins

truth assignmentr ~ state of spin system

e HamiltonianH (o) ~ number of clauses unsatisfied by

0c¢ ~ critical “interaction density” point for “phase transitibfrom “satis-
fiable phase” to “unsatisfiable phase”

Estimates ofo for various values ok via “annealing approximation”, “replica
theory”, and observation:

Oann  Orep Oobs
2.41 1.38 1.0
519 425 4.1#0.03
10.74 9.58 9.7%0.05
21.83 20.6 20.20.1
44,01 42.8 43.20.2

OOl WNX

The “annealing approximation” means simply assuming thadifferent clauses
are satisfied independently. This leads to the followingreste:

e The probability that a given clauseis satisfied by a random: py=1—
27K,
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e The probability that a random satisfies alm= an clauses assuming inde-
pendencepy".

e Total number of satisfying assignmert2"pi" £ ().

e For largen, §(a) falls rapidly from 2' tp O near a critical valuel = ac.
Where isa.?

e One approach: solve f&(a) = 1.

So)=1«2p =1
1 In2 In2
- = ~———=(In2)- 2%
log, pk In(1—2-K) 2k (In2)

Itis in fact known that:

e A sharp satisfiability threshold, exists for allk > 2 (Friedgut 1999).

e Fork=2,0;=1 (Goerdt 1982, Chvatal & Reed 1982). Note that 2-SAT
P.

e Fork=3, 314 < a¢ < 4.51 (lower bound due to Achlioptas 2000, upper
bound to Dubois et al. 1999).

e Current best empirical estimate far= 3: a¢ ~ 4.27 (Braunstein et al.
2002).

12.3 Local Search Methods for 3-SAT

Local search methods (e.g. simulated annealing, gengticigdms) can be used
for finding (with high probability) satisfying truth assigrents to randomly gen-
erated 3-cnf formulas in the satisfiable phasén(= a < ac).

Consider first a general objective functién= E(x) to be minimised. Then the
basic local search scheme is:

e Start with some randomly chosen feasible soluigaxg.

e If value of E(X) is not “good enough”, search for some “neighboxirdf x
that satisfieg€ (X) < E(x). If such anX' is found, sek «+ X' and repeat.

¢ If noimproving neighbour is found, then either restart avmandomx = X
or relax the neighbourhood condition [algorithm-depenfen
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In the setting of the 3-SAT problem, the objective functiofé minimised i€ =
Er (s) = the number of unsatisfied clauses in formilander truth assignmest
Whena < a¢, an assignmerg satisfyingE(s) = 0 exists with high probability,
and local search techniques are surprisingly powerful ofiffigg such assignments.

The first systematically tested algorithm of this type wasftillowing procedure
GSAT by (Selman et al. 1992):

GSAT(F):
s =initial truth assignment;
while flips < max_flips do
iIf s satisfies F then output s & halt, else:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then smallest increase);
- flip x.

An improvement to GSAT is to augment it with a fractignof random walk
moves, leading to algorithm NoisyGSAT (Selman et al. 1996):

Noi SyGSAT(F, p) :
s =initial truth assignnent;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- With probability p, pick a variable x
uniformy at randomand flip it;
- with probability (1-p), do basic GSAT nove:
- find a variable x whose flipping causes
| argest decrease in E (if no decrease is
possi bl e, then snallest increase);
- flip x.

A subtle butimportant change to NoisyGSAT idocusthe search on the presently
unsatisfied clauses. This leads to the current “industrydstal” WalkSAT algo-
rithm (Selman et al. 1996):

Wl kSAT(F, p):
s =initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a randomunsatisfied clause Cin F;
- if some variables in Ccan be flipped w thout
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breaki ng any presently satisfied clauses,
then pick one such variable x at random el se:
- with probability p, pick a variable x
in Cat random
- With probability (1-p), pick an x in C
that breaks a mninmal nunmber of presently
satisfied clauses;
- flip x.

The focusing seems to be important: in the (somewhat unsgsie) experiments
performed by Selman et al. (1996), WalkSAT outperforms NGSAT by several
orders of magnitude.

Also other local search techniques can be applied to thefisduility problem.
Good results have been obtained e.g. with the following Retm-Record Travel
(RRT) method first introduced in the context of the TSP prob(Bueck 1993):

RRT(E, d):
s = initial feasible solution;
s* =s5; E* = E(9);
whil e moves < max_noves do
if sis aglobal mn. of E then output s & halt,
el se:
pi ck a random nei ghbour s’ of s;
if E(s’) <= E* +dthenlet s =5s;
if E(s’) < E* then:
s* = s, B = E(s').

In applying RRT to SAT, one chooses ag&ifs) = number of clauses unsatisfied
by truth assignmerg, together with single-variable flip neighbourhoods. Impos
ing thefocusingheuristic of always selecting the flipped variables fromatiséied
clauses (precisely: one unsatisfied clause is chosen abmgrahd from there a
variable at random) leads to the “focused RRT” (FRRT) abhyomi for 3-SAT,
which is quite competitive with WalkSAT (Seitz & Orponen &Z)0

12.4 Statistical Mechanics oK-SAT (“Replica Analysis”)

The analyses in this area are rather technical, so we pres¢sbme basic ideas.

Consider again the statistical mechanics mod& 8AT formulas discusses on p.
126. l.e. we consider the ensemble of randeamf formulas withn variables and
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m= an clauses. The Boolean-valued variableare mapped to binary-state spins
asx € {true false} — spin§ € {+1,—1}.

A formula consists of a set of claus€srepresented in terms of an “interaction
matrix” C = (G;;):

+1, if G includesx;
Ci =< —1, if G includesx
0, otherwise

Thus,

i\CnS =-K

if and only if all the literals in claus€; are “wrong”, i.e. the clause is unsatisfied
by truth assignment (spin stat8)= (S,...,S).

We consider the Hamiltonian function

m n
E[SC]= )8 <ZC“S + K) = number of clauses i@ unsatisfied bys,
=1 \iS

1, ifu=0
o(u) = {O, otherwise

The ground state potential (minimum number of unsatisfiadsgs) of a given
systenmC is E*[C] = minsE[S,C]. For randomly generated, Pr(E*[C] = 0)with
high probability whena is small, and we would like to approximate the value
a = ac(K) where this property ceases to hold.

This is however a very difficult problem, so we approach itriectly by consid-
ering rather the average Bf[C| with respect taC, denotedEgs= E*[C]. (Such
averages with respect to system parameters are called chheeraverages”, as
opposed to the more usual “thermal averages” computed e#pect to system
states.)

For largen, the distribution oE*[C] is highly concentrated arourttss= Egs(a, K).
(E* is said to be “self-averaging”.) In particular:

Ecs ~ 0in the sat. phas@ < a¢(K)),
Ecs > 0in the unsat. phage > o¢(K)).

Thus, we use the behaviour B§sas a guide to determining the valueoqf.
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It is known that
Ecs= —TInZr[C]+ 0 (T?)
asT — 0, where
Z1(C) = 3 exp(~EIS.CI/T).
(This follows by averaging from the fundamental thermodyi@aformulaF =
E—TS=—kTInZ (p. 60).)

The important, but complicated quantltyZ can be estimated using the so called
“replica method”.

Consider the Taylor expansion &Y as a function of for smallv:
7' ="M —14vIinZ+o0 (V?)
Thus, for a fixedZ > 0:

V_
InZ = lim z l.
v—0 V

Applying this to InZy [C] and averaging oveg yields:
Ny — )
— _ _ v __
Egs=—T lim = (ZT[C] 1) +0(T?) (11)

asT — 0.
Now assume that the “smalf is in fact an integer. Then:

Zr[C = (ZGXP(—E[SC]/T)>

_ g...,gexp<—r§E[S,C]/T)>

Thus we have transformed the problem of compuﬂ_)f\go the consideration of
interconnected “replicas” of the original system.

This modified structure can further be viewed as a singleesystonsisting of
n vector-valued sping; € {+1,—1}",i = 1,...,n, with (non-random) potential
function

Eet[01,...,0n] =—TIn !exp( i E[S,C]/T)} )
r=1
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One can easily check that with this choice:
v ff ~
Z1=7""= 'Y exp(—Eeri[{6}]/T).
{6i}
This partition function may in some cases be so concenttasdor largen:
V=72 e ) 1 nfr(v),

wheref7 (v) is some nonlinear function witfy (0) = 0.
Plugging this estimate in formula (11) yields

E(33% —T lim 7_nfT (V>

= Tnf}(0).
v—0 V nT(O)

The replica method has been partially mathematically ciaigid, i.e. the requisite
“analytic continuation” from integer to realis justified under some conditions,
although not generally.

From an application point of view, approximating the funatift (v) is the diffi-
cult part of the technique.
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