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“Where the Really Hard Problems Are?”

Yu & Anderson (1985), Hubermann & Hogg (1987), Cheeseman,
Kanefsky & Taylor (1991), Mitchell, Selman & Levesque (1992),
Kirkpatrick & Selman (1994), etc.

Many NP-complete problems can be solved in polynomial time “on
average” or “with high probability” for reasonable-looking
distributions of problem instances. E.g. Satisfiability in time O(n2)

(Goldberg et al. 1982), Graph colouring in time O(n2) (Turner 1988).

Where, then, are the (presumably) exponentially hard instances of
these problems located? Could one tell ahead of time whether a
given instance is likely to be hard?
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Hard instances for 3-SAT

Mitchell, Selman & Levesque (1992): Experiments on the behaviour
of the Davis-Putnam procedure on randomly generated 3-cnf
Boolean formulas.

E.g. satisfiable 3-cnf formula

(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄4)

The expressions in parentheses are clauses and the x’s are literals.

Distribution of test formulas:

number of variables n

m = αn randomly generated clauses of 3 literals, 2 ≤ α ≤ 8
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The Davis-Putnam procedure

The Davis-Putnam[-Logemann-Loveland] (DP[LL]) method for
testing satisfiability of set of clauses Σ on variable set V :

1. If Σ is empty, return “satisfiable”.

2. If Σ contains an empty clause, return “unsatisfiable”.

3. If Σ contains a unit clause c = x±, assign to x a value which
satisfies c, simplify the remaining clauses correspondingly, and
call DP recursively.

4. Otherwise select an unassigned x ∈ V , assign x← 1, simplify
Σ, and call DP recursively. If this call returns “satisfiable”, then
return “satisfiable”; else assign x← 0, simplify Σ, and call DP
recursively again.
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A combinatorial phase transition?

For sets of 500 formulas with 20/40/50 variables, Mitchell et al.
plotted the median number of DP calls required for solution.

Results:

A clear peak in running times (number of DP calls) near the
point where 50% of formulas are satisfiable.

The “50% satisfiable” point or “satisfiability threshold” seems
to be located at roughly α ≈ 4.25 for large n.

The peak seems to be caused by relatively short unsatisfiable
formulas.

Question: Is the connection of the running time peak and the
satifiability threshold a characteristic of the DP algorithm, or a (more
or less) algorithm independent “universal” feature?
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Running times: all instances

Median number of recursive DP calls for random 3-cnf formulas, as
a function of clauses-to-variables ratio α (Mitchell et al. 1992).
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Running times: sat vs. unsat instances

Median number of DP calls for satisfiable and unsatisfiable
50-variable random 3-cnf formulas (Mitchell et al. 1992).
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Satisfiability threshold

Probability of satisfiability of 50-variable 3-cnf formulas, as a
function of clauses-to-variables ratio α (Mitchell et al. 1992).
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Extension to k-SAT

Kirkpatrick & Selman (Science 1994).

Similar experiments as above for k-SAT, k = 2, . . . , 6; 10000
formulas per data point.

Further observations:

The “satisfiability threshold” αc shifts quickly to larger values of
α for increasing k.

For fixed k, the value of αc drifths slowly to smaller values for
increasing n.
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Statistical mechanics of k-SAT

Kirkpatrick & Selman (Science 1994).

A statistical mechanics model of a k-cnf formula:

variables xi ∼ spins with states ±1

clauses c ∼ k-wise interactions between spins

truth assignment σ ∼ state of spin system

Hamiltonian H(σ) ∼ number of clauses unsatisfied by σ

αc ∼ critical “interaction density” point for “phase transition”
from “satisfiable phase” to “unsatisfiable phase”
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Location of satisfiability transition

Estimates of αc for various values of k via “annealing
approximation”, “replica theory”, and observation:

k αann αrep αobs

2 2.41 1.38 1.0
3 5.19 4.25 4.17± 0.03

4 10.74 9.58 9.75± 0.05

5 21.83 20.6 20.9± 0.1

6 44.01 42.8 43.2± 0.2

Phase Transitions in Local Search for Satisfiability – 12/42



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

A first-order analysis

The “annealing approximation” means simply assuming that the
different clauses are satisfied independently. Thus:

Probability that given clause c is satisfied by random σ:
pk = 1− 2−k.

Probability that random σ satisfies all m = αn clauses
assuming independence: pαn

k .

E[number of satisfying assignments] = 2npαn
k , Sn

k (α).

For large n, Sn
k (α) falls rapidly from 2n to 0 near critical value

α = αc. Where is αc?

One approach: solve for Sn
k (α) = 1.

Sn
k (α) = 1 ⇔ 2pα

k = 1

⇔ α = −
1

log2 pk

= −
ln 2

ln(1− 2−k)
≈ −

ln 2

2−k
= (ln 2) · 2k.
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Advanced results

It is in fact known that:

A sharp satisfiability threshold αc exists for all k ≥ 2 (Friedgut
1999).

For k = 2, αc = 1 (Goerdt 1982, Chvátal & Reed 1982). Note
that 2-SAT ∈ P.

For k = 3, 3.14 < αc < 4.51 (lower bound due to Achlioptas
2000, upper bound to Dubois et al. 1999).

Current best empirical estimate for k = 3: αc ≈ 4.267
(Braunstein et al. 2002).
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Local search

Naive, but surprisingly useful idea for (combinatorial) optimisation.
Assume objective function E = E(x) to be minimised. Then:

Start with some randomly chosen feasible solution x = x0.

If value of E(x) is not “good enough”, search for some
“neighbour” x′ of x that satisfies E(x′) . E(x). If such an x′ is
found, set x← x′ and repeat.

If no improving neighbour is found, then either restart at new
random x = x0 or relax the neighbourhood condition
[algorithm-dependent].

Power of stochasticity?

Good experiences for 3-SAT in the satisfiable region α < αc: e.g.
GSAT (Selman et al. 1992), WalkSAT (Selman et al. 1996).
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GSAT

Selman et al. 1992 . . . 1996.

Denote by E = EF (s) the number of unsatisfied clauses in formula
F under truth assignment s.

GSAT(F):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- find a variable x whose flipping causes

largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.
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NoisyGSAT

GSAT augmented by a fraction p of random walk moves.

NoisyGSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- with probability p, pick a variable x

uniformly at random and flip it;
- with probability (1-p), do basic GSAT move:

- find a variable x whose flipping causes
largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.
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WalkSAT

NoisyGSAT focused on the unsatisfied clauses.

WalkSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a random unsatisfied clause C in F;
- if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

- with probability p, pick a variable x
in C at random;

- with probability (1-p), pick an x in C
that breaks a minimal number of presently
satisfied clauses;

- flip x.
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WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic)
experiments in Selman et al. (1996), WalkSAT outperforms
NoisyGSAT by several orders of magnitude.

Phase Transitions in Local Search for Satisfiability – 19/42



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

Recent results and conjectures

Barthel, Hartmann & Weigt (2003), Semerjian & Monasson
(2003): WalkSAT with p = 1 has a “dynamical phase transition”
at αdyn ≈ 2.7− 2.8. When α < αdyn, satisfying assignments

are found in linear time per variable (i.e. in a total of cN “flips”),
when α > αdyn exponential time is required.

Explanation: for α > αdyn the search equilibrates at a nonzero
energy level, and can only escape to a ground state through a
large enough random fluctuation.

Conjecture(?): all local search algorithms will have difficulties
beyond the clustering transition at α ≈ 3.92− 3.93 (Mézard,
Monasson, Weigt et al.)

Conjecture(?): WalkSAT seems to work in linear time up to the
1RSB stability transition at α ≈ 4.15 (Aurell et al. 2004), but
maybe not beyond that (Aurell, Montanari et al.)
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WalkSAT experiments (3-SAT)
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Normalised solution times for WalkSAT, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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WalkSAT linear scaling
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WalkSAT optimal noise level?
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WalkSAT sensitivity to noise
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Cumulative solution time distributions for WalkSAT at α = 4.20 with
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WalkSAT small-scale effects
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Record-to-Record Travel (RRT)

Very simple stochastic local optimisation algorithm introduced by
Dueck (1993). Dueck claimed good results on solving 442-city and
532-city TSP’s; after that little used.

RRT(E,d):
s = initial feasible solution;
s* = s; E* = E(s);
while moves < max_moves do
if s is a global min. of E then output s & halt,
else:

pick a random neighbour s’ of s;
if E(s’) <= E* + d then let s = s’;
if E(s’) < E* then:
s* = s’; E* = E(s’).
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RRT in action (d = 2)
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Focused RRT

In applying RRT to SAT, E(s) = number of clauses unsatisfied by
truth assignment s. Single-variable flip neighbourhoods.

Focusing: flipped variables chosen from unsatisfied clauses.
(Precisely: one unsatisfied clause is chosen at random, and from
there a variable at random.)

⇒ FRRT = focused RRT.
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FRRT experiments (3-SAT)
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Normalised solution times for FRRT, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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FRRT linear scaling
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FRRT linear scaling (cont’d)
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Focused Metropolis Search

Arguably the most natural focused local search algorithm. Variable
flip acceptance probabilities determined by a parameter η,
0 ≤ η ≤ 1.

FMS(F,eta):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:

pick a random unsatisfied clause C in F;
pick a variable x in C at random;
let x’ = flip(x), s’ = s[x’/x];
if E(s’) <= E(s) then flip x, else:

flip x with prob. eta^(E(s’)-E(s)).
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FMS experiments (3-SAT)
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Normalised solution times for FMS, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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FMS linear scaling
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Cumulative solution time distributions for FMS with η = 0.3.
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FMS optimal acceptance ratio?
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FMS optimal acceptance ratio cont’d
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FMS optimal acceptance ratio cont’d
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Analysis?

Whitening

Contact processes
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Whitening

Technique introduced by Parisi, Braunstein, Zecchina et al. to
determine the “frozen” variables (spins, degrees of freedom) in a
given configuration. A variable is frozen in truth assignment s to
3-SAT formula F , unless determined white by the following process:

WHITENING(F, s):
mark all clauses white except those that
have exactly one true literal;

loop:
mark all variables white except those that

appear as the unique satisfying literals
in non-white clauses;

halt, if all variables are white (full whitening);
halt, if no new variables became white (core found);
mark those clauses white that contain

at least one white variable.
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Whitening (cont’d)

The “whiteness” of solutions seems to have many connections to
the behaviour of local search algorithms. Consider e.g. the following
plots of runtimes of an FRRT variant vs. the “whiteness depth” of
the solutions found by it:
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Focused search as a contact process
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