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Problems

1. Verify by direct calculation that in the simulated annealing algorithm the finite-tem-
perature Gibbsian distributions π(T ) for T > 0 do indeed converge pointwise to the
desired limit distribution π∗ as T → 0.

2. Consider a simple state space graph with states S = {σ0, σ1, σ2, σ3} and neighbourhood
structure N(σi) = {σi−1, σi+1}, where the indices are computed modulo 4. Write down
explicitly the transition probability matrix of the simulated annealing algorithm at
temperature t for this system, when the function to be minimised is given by H(σ0) = 1,
H(σ1) = 2, H(σ2) = 0, H(σ3) = 2. Given a cooling schedule where the temperature
at step k of the algorithm is tk > 0, what is the probability that the algorithm when
initialised in the locally optimal state σ0 will stay there forever? Find a sequence tk
for which this probability is nonzero. What kind of cooling schedule would, according
to Theorem 8.5 (p. 96 of the notes) guarantee asymptotic convergence to the globally
optimal state σ2?

3. The NP-complete PARTITION problem is defined as follows: given a sequence of 2n
nonnegative integers x1, . . . , x2n, is there a subsequence of n numbers whose sum is
exactly half the sum of the whole sequence? Formulate the task of finding approximate
partitions of an integer sequence as a minimisation problem, and present a simulated
annealing approach to solving it. What kinds of cooling schedules would Theorem 8.5
suggest for your algorithm in the case of input sequences consisting of 2n numbers from
the interval [0, N ]? (You might consider also actually implementing your algorithm and
experimenting with some more realistic cooling schedules.)

4. Consider a simple self-reduction setting for an NP relation R, where for any input x of
length |x| > n0, the set of witnesses R(x) = {w | R(x,w)} can be partitioned into two
disjoint classes by polynomially computable length-decreasing self-reduction functions
f0 and f1, i.e. for |x| > n0,

R(x) = R(f0(x)) ] R(f1(x)), |f0(x)|, |f1(x)| < |x|.

Assume the availability of a perfect small-scale sampler UR(x) for generating elements
w ∈ R(x) uniformly at random for inputs x of length |x| ≤ n0, and an FPRAS A(x, ε)
for approximately counting the number of elements in R(x) for all x. Show how these
can be combined to obtain an FPAUS S(x, δ) for sampling elements in R(x) almost
uniformly at random for arbitrary inputs x. (For simplicity, you may assume that
A(x, ε) provides its answers with perfect reliability, rather than reliability 3

4 as would
be permitted by the general FPRAS definition.)

5. Continuing the previous problem setting, assume conversely the availability of a perfect
small-scale witness-counter NR(x) for computing the size of R(x) for |x| ≤ n0, and
an FPAUS S(x, δ) for sampling elements in R(x) almost uniformly at random for all
x. Show how these can be combined to obtain an FPRAS A(x, ε) for approximately
counting the number of elements in R(x) for arbitrary inputs x.


