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Preliminaries: Algorithms and problems

• What is an algorithm?

• Analysis of algorithms

• What is a problem?

• Algorithms and problems, computational complexity

• Efficiently solvable and intractable problems

• NP-completeness
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What is an algorithm?

Informally, an algorithm is a finitely described computational

procedure (e.g. a Java program or a Turing machine) that transforms

an input into an output in a finite number of elementary steps and

halts.a

An algorithm is usually specified relative to some well-defined model

of computation (e.g. the Java programming language or Turing

machines).

aWe shall also assume that an algorithm is deterministic, that is, the sequence

of steps is uniquely determined for each input.
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Specifying algorithms

We will for the most part follow the conventions in [Jun].

• Algorithms are described using pseudocode (see

[Jun, Section 2.4]) from which an actual implementation can

be easily produced.

• For some algorithms, a high-level description is more

appropriate. In these cases a more detailed pseudocode

description usually either appears in [Jun] or is

straightforward to produce, possibly with the help of a

standard algorithms textbook such as [Cor].
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Analysis of algorithms

Analyzing an algorithm is to quantify the resources (i.e. running

time, memory usage, etc.) required by the algorithm.

• Analysis is conducted relative to some model of

computation (e.g. Turing machine, Java virtual machine,

. . .).

• For purposes of analyzing an algorithm, we assume that the

underlying model is the random access machine (RAM)

model. See e.g. [Pap, Section 2.6].

• Resource usage is measured as a function of input size.

• Typically, the worst case behaviour is measured.

09. 04. 08 c© Petteri Kaski 2008



S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 5'

&

$

%

• Usually it is hard to determine the exact resource

requirement of an algorithm since this depends on the

low-level implementation of the algorithm and the computer

architecture.

• To avoid the difficulties caused by a low-level analysis it is

customary to conduct the analysis using a realistic but

abstract model of computation (e.g. the RAM model) and

view the elementary operations in an algorithm as simply

taking constant time in the assumed model of computation.

• Asymptotic notation (or rate of growth notation) is

used for indicating the resource requirement of an algorithm

as a function of the input size m.

• If necessary, the analysis can later be refined to take into

account the low-order terms and constants ignored by the

asymptotic analysis.
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Asymptotic notation

• Let f(m) and g(m) be nonnegative real functions defined on

N = {1, 2, 3, . . .}.

• We write

f(m) = O(g(m)) if there exists a c > 0 and an m0 ∈ N such

that f(m) ≤ cg(m) for all m ≥ m0;

f(m) = Ω(g(m)) if there exists a c > 0 and an m0 ∈ N such

that f(m) ≥ cg(m) for all m ≥ m0;

f(m) = Θ(g(m)) if f(m) = O(g(m)) and f(m) = Ω(g(m)).

(Warning: Alternative conventions exist for asymptotic notation.)
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Representing (di)graphs

• For graph algorithms, a natural notion of input size is either

the number of vertices n(G) or the number of edges e(G) (or

both) in the input (di)graph G.

• A graph G is usually given as input to an algorithm either in

adjacency list or in adjacency matrix format. (Other

representations for graphs include list of edges, incidence

matrix, . . .)

• Which representation is used depends on the application.

Each representations has its advantages and disadvantages.

• Unless explicitly mentioned otherwise, we always assume

that the adjacency list representation is used.
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Adjacency list

• The vertices adjacent to each vertex are stored in a list

(i.e. v occurs in the adjacency list of u if and only if u � v).

• Space requirement Θ(e(G)).a

a

b

c

d

e

f

a: b, c, f

b: d, e

c:

d: f

e: c

f : e

aOr more accurately, Θ(e(G) log n(G)).
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Adjacency matrix

• The adjacency matrix of a (di)graph G is the n(G) × n(G)

matrix A, where A(u, v) = 1 if u � v; otherwise A(u, v) = 0.

• Space requirement Θ(n(G)2).

a

b

c

d

e

f

a b c d e f

a 0 1 1 0 0 1

b 0 0 0 1 1 0

c 0 0 0 0 0 0

d 0 0 0 0 0 1

e 0 0 1 0 0 0

f 0 0 0 0 1 0
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What is a problem?

Informally, a problem (or problem class) consists of an infinite set

of instances with similar structure. Associated with each instance is

a set of one or more correct solutions. Both instances and solutions

are assumed to be finite (e.g. finite binary strings).

shortest path: Given a graph G and two vertices

v, w ∈ V (G) as input, output a shortest path from v to w, or

conclude that no such path exists.
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Algorithms and problems

Algorithms can be used to solve problems.

An algorithm solves a problem correctly (i.e. is correct) if it

outputs a correct solution and halts for every instance given as input.

Often the correctness of an algorithm is not immediate and a

correctness proof is required.

Of interest is also how efficient an algorithm is in solving a problem.

Naturally, we would like an algorithm to be as efficient as possible.
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Computational complexity

Computational complexity theory studies problems with the aim

of characterizing how hard (or whether at all possible) it is to solve a

problem using an algorithm.

In general, the hardness of a problem depends on the underlying

model of computation.

For example, it is known that deciding whether a binary string of

length n is a palindrome requires Ω(n2) time from any single-tape

deterministic Turing machine.a On the other hand, it is easy to write

a Java program that correctly detects palindromes in linear O(n)

time.
aThe constant c in Ω(n2) depends on the Turing machine used.
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A central observation in computational complexity theory is that all

known practically feasible universal models of computation are

polynomially related: given any two such models, one can simulate

the other with only a polynomial loss in efficiency. (See e.g. [Pap].)

Thus, the property whether a problem is solvable in worst case

polynomial time is independent of the underlying model of

(practically feasible) computation.
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Efficiently solvable and intractable problems

An algorithm is efficient if its running time is bounded from above

by a polynomial in the input size m. (This is naturally a very

optimistic view on what is efficient. Even an algorithm with a worst

case running time of, say, m5 quickly becomes useless in practice as

the input size increases.)

A problem is efficiently solvable (or easy) if there exists an

efficient algorithm that solves it.

A problem for which no efficient solution algorithm can exist is

intractable (or hard).

Both efficiently solvable and intractable problems exist.
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NP-complete problems

There also exist problems for which it is not known whether they are

efficiently solvable or intractable. The most important family of such

problems is the family of NP-complete problems.

Many graph-theoretic problems are NP-complete. For example, the

problem

hamiltonian cycle (decision): Given a graph G as input,

decide whether G is Hamiltonian (i.e. whether G contains a

spanning cycle).

is NP-complete.
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Theorem A.1 If any one NP-complete problem is efficiently

solvable, then all NP-complete problems are efficiently solvable.

No efficient algorithm for an NP-complete problem has been found

to date, despite extensive research. Consequently, many believe that

NP-complete problems are intractable.
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NP-completeness and characterizing graphs

Suppose that deciding whether a graph G has property P is

NP-complete. For example, we might choose

P = “G is Hamiltonian” or P = “G is 3-colorable.”

Then, NP-completeness theory tells us that we cannot (unless all

NP-complete problems are efficiently solvable) give an easily testable

necessary and sufficient condition for a graph to have property P .

Compare this with an easily testable property, e.g.

P = “G is Eulerian” or P = “G is 2-colorable.”
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The graph isomorphism problem

There also exist problems that are believed to be intractable but not

as hard as NP-complete problems. Perhaps the most important such

problem is

graph isomorphism (decision): Given two graphs G1 and

G2 as input, decide whether G1 and G2 are isomorphic.
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Courses on algorithms and complexity

T-106.4100 Design and Analysis of Algorithms

self-explanatory

T-79.5202 Combinatorial Algorithms

exact and heuristic algorithms for NP-complete prob-

lems, computing isomorphism

T-79.1001 Introduction to Theoretical Computer Science

basics of Turing machines and computability theory

T-79.5103 Computational Complexity Theory

an advanced course on computational complexity; NP-

completeness, approximation algorithms, randomized

algorithms, intractability, . . .
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Literature on algorithms

Many textbooks exist on the design and analysis of algorithms.

[Aho] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Read-

ing MA, 1974.

[Cor] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction

to Algorithms, MIT Press, Cambridge MA, 1990.

[Sed] R. Sedgewick, P. Flajolet, An Introduction to the Analysis

of Algorithms, Addison-Wesley, Reading MA, 1995.
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Literature on computational complexity

[Sip] M. Sipser, Introduction to the Theory of Computation,

PWS Publishing Company, Boston MA, 1997.

[Gar] M. R. Garey, D. S. Johnson, Computers and Intractability:

A Guide to the Theory of NP-completeness, W. H. Freeman

and Co., San Francisco CA, 1979.

[Pap] C. H. Papadimitriou, Computational Complexity, Addison-

Wesley, Reading MA, 1994.

[Köb] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism

Problem: Its Structural Complexity, Birkhäuser, Boston

MA, 1993.
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Part II. Graph algorithms

Main reference:

[Jun] D. Jungnickel, Graphs, Networks and Algorithms,

2nd ed., Springer, Berlin, 2005.

Outline for part II:

1. Searching a graph, applications

2. Shortest paths and minimum spanning trees

3. Matching in bipartite and general graphs

4. Flows and circulations

5. The deletion–contraction algorithm and graph polynomials
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1. Searching a graph, applications

Searching a graph means systematically following the edges so as to

visit all the vertices [Cor].

We will consider two fundamental algorithms for searching a graph:

• breadth-first search (BFS); and

• depth-first search (DFS).

These algorithms enable us to obtain much information on the

structure of a graph, which can be used to obtain an efficient

(linear time) solution to many elementary graph problems.

09. 04. 08 c© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 24'

&

$

%

Sources for this lecture

Elementary graph searching algorithms are discussed in almost any

algorithms textbook.

The material for this lecture has been prepared with the help of

[Cor, Chapter 23], [Jun, Section 3.3], and [Jun, Sections 11.2–11.5].
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Breadth-first search (BFS)

Breadth-first search searches a graph G in order of increasing

distance from a source vertex s ∈ V (G).

Procedure BFS takes as input the pair G, s and outputs two arrays

indexed by v ∈ V (G):

d[v] contains the distance d(s, v); and

p[v] contains a vertex that follows v in a shortest path

from v to s.

We have p[v] = undef if either s = v or no path connecting v to s

exists; in the latter case also d[v] = ∞.
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Procedure BFS(G, s; d, p)

(1) empty the queue Q;

(2) for each v ∈ V (G) do

(3) d[v]←∞;

(4) p[v]← undef;

(5) end for

(6) d[s]← 0;

(7) append s to Q;

(8) while Q is nonempty do

(9) v ← the first vertex in Q;

(10) remove v from Q;

(11) for each w ∈ N(v) do

(12) if d[w] =∞ then

(13) d[w]← d[v] + 1;

(14) p[w]← v;

(15) append w to Q

(16) end if

(17) end for

(18) end while

09. 04. 08 c© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 27'

&

$

%

Correctness of BFS

Procedure BFS clearly halts for all inputs G, s. The following

theorem shows that the content of the arrays d[·] and p[·] is as

claimed when the procedure halts.

Theorem A.2 Let m ∈ {0, 1, . . . , ǫ(s)}. Then, line (9) of Procedure

BFS is executed for a vertex v ∈ V (G) that satisfies d(s, v) = m.

When line (9) is executed for the first time for such v, we have

d[u] =







d(s, u) if d(s, u) ≤ m; and

∞ otherwise.

Moreover, the queue Q contains at that point of execution all and

only vertices u ∈ V (G) that satisfy d(s, u) = m.
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Proof: By induction on m. The base case m = 0 holds when line (9)

is executed for the first time. (Note that the source s is the only

vertex with d(s, u) = 0.)

To prove the inductive step, suppose that the claim holds for m,

where m < ǫ(s). Then, no vertex v with d(s, v) = m + 1 has been

encountered so far during execution. We trace the execution further

until the first vertex with d(s, v) = m + 1 is encountered during

execution of line (9). By the inductive hypothesis, the queue Q

contains all and only vertices v that satisfy d(s, v) = m. We show

that after all these vertices are dequeued, the claim holds for m + 1.
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Proof: (cont.) Consider any v with d(s, v) = m and let w ∈ N(v).

By definition of distance, m − 1 ≤ d(s, w) ≤ m + 1. By the inductive

hypothesis, we have d[w] < ∞ unless d(s, w) ≥ m + 1. Thus, each

time the for loop on lines 11–17 is executed for a v with d(s, v) = m,

only vertices w ∈ N(v) with d(s, w) = m + 1 are appended to the

queue.

On the other hand, all w ∈ V (G) with d(s, w) = m + 1 will be

appended to the queue since (by definition of distance) for each such

w there exists a v with w ∈ N(v) and d(s, v) = m. �
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Analysis of BFS

Each edge vw ∈ E(G) in the component of G that contains s is

considered twice on line 11 during execution of Procedure BFS.

Thus, the worst case running time of Procedure BFS is

Θ(n(G) + e(G)), which occurs (for example) when G is connected.
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Breadth-first search trees

Theorem A.3 Suppose Procedure BFS has been invoked on input

G, s and output p[·] is obtained. Let T be the graph with

V (T ) := {s} ∪ {v : p[v] 6= undef},

E(T ) := {p[v]v : p[v] 6= undef}.

Then, T is a spanning tree for the component of G that contains s.

Furthermore, dG(s, v) = dT (s, v) for all v ∈ V (T ).

We say that T is a breadth-first search tree with source s.
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Proof: We have e(T ) = n(T ) − 1 since Procedure BFS leaves

p[s] = undef. Furthermore, T is connected since there is a path from

an arbitrary vertex v to the source s. Thus, T is a tree

[Wes, Theorem 2.1.4].

By Theorem A.2, we have dG(s, v) = dT (s, v) for all v ∈ V (G) that

satisfy dG(s, v) ≤ ǫ(s). In particular, T spans the component of G

that contains s. �
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Applications

Using Procedure BFS, it is straightforward to solve the following

problems with worst case running time Θ(n(G) + e(G)):

components: Output the components of G.

shortest paths from source: For every v ∈ V (G), output

a shortest path from s to v if and only if v is connected to s.

spanning tree: Output a spanning tree for the component

of G that contains s; or, if G is connected, a spanning tree

for G.
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A further application: Bipartition

Procedure BFS can be modified to detect whether a graph contains

an odd cycle (i.e. whether a graph is bipartite).

The following theorem tells us how odd cycles can be detected during

BFS. Note that we assume G is connected.

Theorem A.4 Let G be a connected graph, let s ∈ V (G), and let T

be a breadth-first search tree of G with source s. Then, G contains an

odd cycle if and only if there exists an edge uv ∈ E(G) \ E(T ) such

that dT (s, u) = dT (s, v).

09. 04. 08 c© Petteri Kaski 2008

S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 35'

&

$

%

Proof: (⇐) Because dT (s, u) = dT (s, v), the path from u to v in T

has even length. The edge uv completes this path into an odd cycle.

(⇒) Let C be an odd cycle in G. Then, there exists an edge

uv ∈ E(C) such that dG(s, u) = dG(s, v). (Exercise.) Now, since T is

a breadth-first search tree with source s, we have dT (s, u) = dT (s, v)

by Theorem A.3. This implies uv /∈ E(T ) because otherwise uv

would complete a cycle in T , which is impossible. �
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Thus, we can solve the following problem in worst case time

Θ(n(G) + e(G)).

bipartition: Given a graph G as input, either output a

bipartition of V (G), or conclude that none exists by

exhibiting an odd cycle in G.

Note that if G is not connected, then we need to apply Theorem A.4

to each component of G.

The bipartition of a component of G is given by the sets of vertices

reachable by even-length and odd-length paths, respectively, from a

vertex of the component. See [Jun, p. 71] for pseudocode.
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Girth

BFS can be used to solve the following problem.

girth: Given a graph G, find a cycle of minimal length in G,

or conclude that none exists.

The design of a solution algorithm for this problem is left as an

exercise.

Hint: Consider what happens during Procedure BFS if the source s

belongs to a cycle of minimal length in G. How do we detect this

cycle?
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Solving a maze

How do you locate the exit of a maze (assuming that you are in the

maze, on your own, and equipped with, say, a magic marker or a

large supply of pebbles for keeping track of progress)?

Preferably, you would like to walk as little as possible, so

breadth-first search is not a good solution (why?).
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The obvious strategy is to explore the maze until either

1. a dead end; or

2. an already explored part of the maze is encountered.

When this happens, turn around and backtrack to the most recently

visited intersection with an unexplored choice and continue.

This strategy is depth-first search in action:

The maze can be viewed as a graph where each intersection is a

vertex and the edges represent passages between intersections.

For an example, see [Jun, Exercise 11.2.6 on p. 337 and p. 525–527].

Depth-first search can be considered in a sense “optimal” strategy in

terms of the length of the required walk (why?).
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Depth-first search (DFS) on a digraph

Let G be a directed graph. (We will return to DFS on undirected

graphs later.)

Procedure DFS takes as input a digraph G and outputs three arrays

indexed by v ∈ V (G):

d[v] contains the discovery time of v;

f [v] contains the finishing time of v;

p[v] contains either the vertex that precedes v in the

search or undef if no predecessor exists.

A vertex is discovered when DFS first encounters it. A vertex is

finished when all of its outgoing edges are explored.
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Below is a recursive implementation of depth first search.

Procedure DFS(G; d,f ,p)

(1) for each v ∈ V (G) do

(2) d[v]← undef;

(3) f [v]← undef;

(4) p[v]← undef

(5) end for

(6) t← 1;

(7) for each v ∈ V (G) do

(8) if d[v] = undef then

(9) DFS-Visit(v)

(10) end if

(11) end for

Procedure DFS-Visit(v)

(1) d[v]← t;

(2) t← t + 1;

(3) for each w ∈ N+(v) do

(4) if d[w] = undef then

(5) p[w]← v;

(6) DFS-Visit(w)

(7) end if

(8) end for

(9) f [v]← t;

(10) t← t + 1

The counter variable t and the arrays d[·], f [·], p[·] are assumed to be

accessible from Procedure DFS-Visit, which performs the actual

search.
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Correctness and analysis of DFS

Procedure DFS halts for every input since DFS-Visit is called

exactly once for each vertex v ∈ V (G). In particular, each edge

vw ∈ E(G) is explored exactly once on line 3 of DFS-Visit.

The worst case running time of Procedure DFS is therefore

Θ(n(G) + e(G)).
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Arborescence, root

DFS has a very useful concept analogous to breadth-first search trees

in BFS. We require some preliminary definitions.

Let G be a digraph. A vertex r is a root in G if there exists a path

from r to v for each v ∈ V (G).

An oriented tree that has a root is called an arborescence.
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Predecessor subgraph, ancestor, descendant

Let G be a digraph. Suppose Procedure DFS is invoked with input G

and output d[·], f [·], p[·] is obtained. We say that the subgraph P

defined by

V (P ) := V (G),

E(P ) := {p[v]v : p[v] 6= undef}

is a predecessor subgraph of G.

Let u, v ∈ V (G). We say that v is an descendant of u (or,

equivalently, u is a ancestor of v) if there exists a path from u to v

in P . An ancestor/descendant is proper if u 6= v.
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It is straightforward to show (cf. Theorem A.3) that the predecessor

subgraph P is a vertex-disjoint union of arborescences. The roots of

the maximal arborescences in P are precisely the vertices v with

p[v] = undef.

The graph P is sometimes called a depth-first search forest;

similarly, the maximal arborescences in P are depth-first search

trees. Note that this is somewhat inaccurate because trees and

forests are by definition undirected graphs.
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Classification of edges

It will be useful to classify the edges in G into types based on the

predecessor subgraph P :

tree edges are edges in P ;

back edges are edges uv that connect u to an ancestor v;

forward edges are nontree edges uv that connect u to a

proper descendant v;

cross edges are all other edges in G.

The edge classification can be performed as the edges are explored

during DFS with the help of the arrays d[·] and f [·] (exercise).
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Properties of DFS

We establish some properties of DFS before discussing its

applications.

The following two observations are immediate corollaries of the

structure of DFS-Visit.

Theorem A.5 Let u, v ∈ V (G) such that d[u] < d[v]. Then, either

d[u] < f [u] < d[v] < f [v] or d[u] < d[v] < f [v] < f [u].

Theorem A.6 Let u, v ∈ V (G). Then, v is a descendant of u if and

only if d[u] ≤ d[v] < f [v] ≤ f [u].
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A vertex w ∈ V (G) is undiscovered if d[w] = undef.

Theorem A.7 Let u, v ∈ V (G). Then, v is a descendant of u if and

only if at the time DFS-Visit is invoked with input u, there exists a

path from u to v in G consisting of undiscovered vertices only.

Proof: (⇒) By Theorem A.6 we have d[u] ≤ d[w] < f [w] ≤ f [u] if

and only if w is a descendant of u. Thus, the path from u to v in P

consists of vertices with d[w] = undef at the time DFS-Visit is

invoked with input u.
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Proof: (⇐) Let u = w1, w2, . . . , wn = v be the vertices of a path

from u to v consisting of undiscovered vertices only. Clearly, w1 = u

is a descendant of u. If n = 1, we are done. Otherwise, suppose wj is

a descendant of u, where 1 ≤ j < n. We prove that wj+1 is a

descendant of u. Because wj is a descendant of u, we have

d[u] ≤ d[wj ] < f [wj ] ≤ f [u]. Since wj+1 is undiscovered when

DFS-Visit is invoked with u, we must have d[u] < d[wj+1]. There

are two cases to consider. If d[wj+1] < d[wj ], then

d[u] < d[wj+1] < f [u], so d[u] < d[wj+1] < f [wj+1] < f [u] by

Theorem A.5. On the other hand, if d[wj ] < d[wj+1], then

wj+1 ∈ N+(wj) implies that the call DFS-Visit(wj+1) must finish

before the call DFS-Visit(wj). Hence, f [wj+1] ≤ f [wj ]. Combining

inequalities, d[u] ≤ d[wj+1] < f [wj+1] ≤ f [wj ] ≤ f [u]. Therefore, in

both cases wj+1 is a descendant of u by Theorem A.6. �
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Applications of DFS on digraphs

We will consider three standard applications of DFS on digraphs:

• determining whether a digraph is acyclic;

• topologically sorting the vertices of an acyclic digraph; and

• determining the strong components of a digraph.

Each of these problems has a linear time (i.e. O(n(G) + e(G)))

solution using DFS.
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Detecting cycles with DFS

A digraph is acyclic if it does not contain a cycle.

Note: loops are cycles.

Theorem A.8 A digraph is acyclic if and only if there are no back

edges.

Proof: Exercise. �
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Topological sort

Let G be a digraph. A topological sort of G is a linear order “≺”

on V (G) that satisfies u ≺ v for every edge uv ∈ E(G).

Theorem A.9 A topological sort of G exists if and only if G is

acyclic.

Proof: (⇒) If G contains a cycle, then clearly no linear order on

V (G) is a topological sort.

(⇐) We can obtain a topological sort for any acyclic digraph using

DFS; this is the content of the following theorem. �

09. 04. 08 c© Petteri Kaski 2008



S-72.2420 / T-79.5203 Preliminaries, searching a graph, applications 53'

&

$

%

Theorem A.10 Let G be an acyclic digraph. Then, f [v] < f [u] for

any edge uv ∈ E(G).

Proof: Let uv ∈ E(G). Loops cannot occur in an acyclic graph, so

u 6= v. If d[u] < d[v], then v becomes a descendant of u by Theorem

A.7 since both u and v are undiscovered when DFS-Visit is invoked

with input u. Hence, f [v] < f [u].

If d[v] < d[u], we cannot have f [u] < f [v] because then u would be a

descendant of v and uv would be a back edge, which is impossible by

Theorem A.9. Hence, f [v] < f [u] also when d[v] < d[u]. �

Thus, the linear order “≺” on V (G) defined by u ≺ v if and only if

f [v] < f [u] is a topological sort of G.
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Strong components

Recall that a strong component in a digraph G is a maximal

strongly connected subgraph. Moreover, each vertex in G belongs to

a unique strong component, and two vertices u, v ∈ V (G) are in the

same strong component if and only if there exist paths from u to v

and from v to u.

The following algorithm for computing strong components using DFS

appears in [Cor, Section 23.5] and [Jun, Section 11.5].

Aho, Hopcroft, and Ullman (1983) attribute this algorithm to

R. Kosaraju (1978, unpublished) and M. Sharir (1981).

An alternative algorithm is due to Tarjan (1972).
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Before describing the algorithm, we characterize the strong

components in a digraph using DFS.

Suppose DFS is run on the digraph G. Associate with each vertex

u ∈ V (G) the vertex φ(u) (the forefather of u) that has the largest

finishing time among the vertices reachable from u in G.

In other words, φ(u) is the unique vertex for which there exists a

path from u to φ(u) and the inequality f [w] ≤ f [φ(u)] holds for all

vertices w reachable from u.
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Theorem A.11 Let u ∈ V (G). Then, u is a descendant of φ(u).

Proof: There exists a path from u to φ(u) by definition of a

forefather. Denote by t the first vertex discovered from this path

during DFS. Then, φ(u) becomes a descendant of t by Theorem A.7.

Consequently, f [φ(u)] ≤ f [t]. Since there is a path from u to t, we

must have f [φ(u)] ≥ f [t] by definition of a forefather. So, φ(u) = t

and φ(u) is the first vertex discovered from the path. In particular,

d[φ(u)] ≤ d[u]. Thus, u is a descendant of φ(u) since f [u] ≤ f [φ(u)]

by definition of a forefather. �
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Corollary A.1 Let u ∈ V (G). Then, u is in the same strong

component with its forefather φ(u).

Proof: Clear by definition of a forefather and Theorem A.11. �

Corollary A.2 Let u, v ∈ V (G). Then, u and v are in the same

strong component if and only if φ(u) = φ(v).

Proof: (⇒) Since u and v are in the same strong component, a

vertex w is reachable from u if and only if it is reachable from v.

Hence, by definition of a forefather, φ(u) = φ(v).

(⇐) By definition of a forefather, there exists a path from u to φ(u).

Since v is a descendant of φ(v) (Theorem A.11), there exists a path

from φ(v) to v. Thus, φ(u) = φ(v) implies that there exists a path

from u to v. We obtain a path from v to u by exchanging the roles of

u and v in the above argument. �
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The observations below form the basis of the algorithm.

• The vertex v that finishes last in DFS must be a forefather

since its finishing time is the maximum in V (G).

• By Corollaries A.1 and A.2, the strong component of v

consists of precisely the vertices that can reach v.

• Equivalently, the strong component of v consists of precisely

the vertices reachable from v when the direction of each edge

has been reversed.
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The following procedure computes the strong components of G.

Procedure Strong(G)

(1) run DFS on G;

(2) reverse the direction of all edges in G;

(3) while G is nonempty do

(4) determine the vertex v ∈ V (G) for which f [v] = maxw∈V (G) f [w];

(5) compute the vertices S ⊆ V (G) reachable from v;

(6) report S as a strong component;

(7) delete the vertices in S from G

(8) end while

This procedure can be implemented so that it runs on worst case

time Θ(n(G) + e(G)).

In practice, the algorithm of Tarjan (1972) is more efficient for

computing strong components.
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Depth-first search on undirected graphs

Depth-first search on undirected graphs is in many ways simpler than

on digraphs.

Procedure DFS works on an undirected graph G if we replace

“w ∈ N+(v)” with “w ∈ N(v)” on line (3) of DFS-Visit.

It will be useful to insist that the predecessor graph P obtained from

DFS is a digraph even though G is undirected. In particular, the

concepts of a descendant and ancestor remain well-defined in this

case.

With this assumption Theorems A.6 and A.7 are valid also in the

undirected case.
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Edge classification in the undirected case

Let G be a graph and let P be the predecessor digraph obtained from

Procedure DFS.

Theorem A.12 For every undirected edge uv ∈ E(G), either u is a

descendant of v or v is a descendant of u.

Proof: The claim is an immediate consequence of Theorem A.7. �

Thus, cross edges do not exist in the undirected case.

An edge of G is a tree edge if it belongs to the graph underlying P .

All other edges in G are back edges (since DFS explores a nontree

edge first in the direction from descendant to ancestor).
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Applications of DFS on undirected graphs

• A graph G is acyclic if and only if DFS on G produces no

back edges. (Theorem A.8 holds also in the undirected case.)

• A graph G is connected if and only if the predecessor graph

P has exactly one root. (This is an immediate consequence

of Theorem A.7.)

• The cut-vertices, cut-edges, and blocks of a graph can be

computed using DFS.
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Cut-vertex, cut-edge, block

A vertex (edge) of a graph G is a cut-vertex (cut-edge) if its

removal increases the number of components in G.

A block of G is a maximal connected subgraph of G that has no

cut-vertex.

Example. See [Wes, Example 4.1.17].

A graph G is 2-connected if it is connected, has no cut-vertex, and

has at least three vertices.
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Properties of blocks

Two distinct blocks of G may have at most one vertex in common

[Wes, Proposition 4.1.9].

A vertex v ∈ V (G) is a cut-vertex of G if and only if there exist two

blocks B1, B2 such that V (B1) ∩ V (B2) = {v}.

A block of G with two vertices is a cut-edge of G. Every edge in G

occurs in a unique block.
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Identifying cut-vertices and cut-edges using DFS

Let G be a graph and suppose DFS is invoked with input G.

Let ℓ(u) be the set of vertices consisting of the vertex u and all

vertices v such that there exists a back edge wv, where w is a

descendant of u. Denote by L(u) the minimum value of d[v] among

the vertices v ∈ ℓ(u).

Clearly,

L(u) = min {d[u]} ∪ {L(w) : p[w] = v} ∪ {d[v] : uv is a back edge}.

Thus, L(u) can be computed during DFS (see [Jun, p. 342–343]).
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Theorem A.13 A nonroot vertex u is a cut-vertex if and only if

there exists a tree edge uv (where d[u] < d[v]) such that L(v) ≥ d[u].

Proof: (⇒) We may assume that G is connected. (Otherwise

consider the component that contains u.) Let s be the root vertex

and let V1, . . . , Vk be the vertex sets of the components that result if

u is removed. Suppose s ∈ V1 and let uv be the first edge explored by

DFS such that v /∈ V1 (say, v ∈ V2) and u 6= v. Clearly, uv becomes a

tree edge and d[u] < d[v]. Furthermore, all and only vertices in V2

become descendants of v since u is a cut-vertex. Hence, L(v) ≥ d[u]

because an edge with only one endvertex in V2 must have u as the

other endvertex.
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Proof: (⇐) Denote by D the set of descendants of v. Let xy be an

edge with exactly one endvertex in D, say x ∈ D. Then, v is a proper

descendant of y by Theorem A.12. Because L(v) ≥ d[u] and uv is a

tree edge, we must have y = u. Thus, all paths from D to the

complement of D contain u. Since s /∈ D and s 6= u, removing u

disconnects s from v. Hence, u is a cut-vertex. �
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Theorem A.14 A root s is a cut-vertex if and only if s is incident

with more than one tree edge.

Proof: Exercise. �

A linear time algorithm for computing the cut-vertices and blocks of

a graph G that relies on these observations appears in

[Jun, Algorithm 11.3.8]. The algorithm is due to Tarjan (1972).
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