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T–79.5202 Combinatorial algorithms

Combinatorial:
1: of, relating to, or involving combinations
2: of or relating to the arrangement of, operation on,
and selection of discrete mathematical elements
belonging to finite sets or making up geometric
configurations

Algorithm:
a procedure for solving a mathematical problem (as
of finding the greatest common divisor) in a finite
number of steps that frequently involves repetition
of an operation; broadly : a step-by-step procedure
for solving a problem or accomplishing some end
especially by a computer
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Combinatorial structures

A list: an ordered collection of elements, e.g.
X = [0,1,3,0]

A set: an unordered collection of elements without
repetition, e.g.X = {1,3,4}. |X| is the number of
elements in X. The Cartesian product
X × Y =

{[
x,y

]
|x ∈ X ∧y ∈ Y

}
.

Subset: Set X is a subset of set Y , if for all x ∈ X also x ∈ Y .
If |X| = k, then X is a k-subset of Y .

A graph: G = (V ,E), where V and E are the set of vertices
and edges, respectively. Each edge is a set of two
vertices.

Harri Haanpää 4



T–79.5202 Combinatorial algorithms Spring 2008

Example: Latin squares

A set system: (X,B), where X is a finite set and B a set of
subsets of X. (e.g. a partition of X)

A Latin square: n×n array, each of whose
rows and columns contains
each of the numbers
Y = {1, . . . , n} exactly once,
e.g.

A =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1


as a set system: X = Y × {1,2,3},
B =

{{(
y1,1

)
,
(
y2,2

)
,
(
Ay1y2 ,3

)}
|y1, y2 ∈ Y

}
A transversal design TDλ(k,n): (X,B), where

|X| = kn; X = X1 ∪ . . .∪Xk; |Xi| = n;
|B ∩Xi| = 1 for all B ∈ B and 1 ≤ i ≤ 3;
for all x ∈ Xi, y ∈ Xj, i ≠ j there are λ blocks
B ∈ B, for which

{
x,y

}
⊂ B.
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Problem types

ñ enumerate combinatorial structures of a given kind
ñ enumerate the possible poker hands

ñ determine the number of combinatorial structures of a given
kind

ñ find how many n bit binary words without two consecutive
ones are there

ñ find a combinatorial structure of a given kind
ñ color the vertices of a graph with 3 colors so that the endpoints

of each edge are colored with different colors
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Variants of a search problem

The knapsack problem: Given n items with weights w1, . . .wn and
profits p1, . . . , pn. A subset S ⊆ {1, . . . , n} fits into
the knapsack, if

∑
i∈Swi ≤ M, where M is the

capacity of the knapsack. Then the total profit is
P (S) =

∑
i∈S pi.

1. Is it possible to find some S, for which P (S) = P?
(An NP -complete decision problem!)

2. Determine some S for which
P (S) = P .

3. What is the maximum P (S) obtainable?

4. Which S yields the maximum P (S)?
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Solution strategies
A greedy algorithm: build the solution by making at each step the

choice that appears best at short sight. E.g. for the
knapsack problem put items into the bag in order of
decreasing profit/weight-ratio until the knapsack is
full.

Dynamic programming: When parts of the optimal solution are
optimal solutions of the corresponding
subproblems, we can start from solving the smallest
subproblems first and use solutions to small
subproblems to construct solutions of larger and
larger subproblems.

Divide and conquer: Split the problem into subproblems, solve
them and combine the solutions.

Backtrack search: Try out recursively all possible solutions.

Local search: Try to find a good solution by starting from an
arbitrary solution and making a large number of
small improvements.
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Data structures for subsets

Size of set? Necessary operations? Insertion/deletion, testing
membership, union, intersection, number of elements, listing
elements?

ñ an (ordered) linked list of elements
ñ when the base set is large and the subset is small

ñ binary trees
ñ when the base set is large and the subset is smallish

ñ bit map representation
ñ when the base set is small

e.g. S = {1,3,11,16} ⊂ {0, . . . ,16} can be expressed as the
bit string 01010000000100001, which can be split into e.g.
8-bit words into an array:
A[0] = 010100002, A[1] = 000100002,
A[2] = 100000002
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Data structures for graphs and set systems

1. Set of edges

2. Incidence matrix: a matrix whose rows and edges correspond
to the nodes and edges of the graph; a matrix entry is 1, if the
corresponding node is an endpoint of the corresponding
edge, or 0 otherwise

3. Adjacency matrix: a matrix whose rows and edges correspond
to vertices; an element is 1, if the two corresponding vertices
are connected by an edge

4. Adjacency list: For each vertex, list the neighboring vertices

1. and 2. can also be used for set systems
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rank and unrank functions
Order the

(
39
7

)
lottery tickets. At which position does 3, 8, 12, 14,

15, 32, 38 appear? Which ticket is in position 3937483?

Let S be a set of some combinatorial structures. Let us enumerate
them 0 . . . |S| − 1:

rank : S , {0, . . . , |S| − 1}

unrank : {0, . . . , |S| − 1}, S

rank (s) = ia unrank (i) = s

ñ a random s = unrank (random (0 . . . |S| − 1))
ñ an integer representation is compact

successor (s) = ta rank (t) = rank (s)+ 1

successor (s) = unrank (rank (s)+ 1),
when rank (s) < |S| − 1

The structures can be enumerated with the successor function
starting from unrank (0).

Harri Haanpää 11

T–79.5202 Combinatorial algorithms Spring 2008

Lexicographical order of lists

Let us order lists l = [s1, s2, . . . , sn] and l′ =
[
s′1, s

′
2, . . . , s

′
n′
]

as
follows: If one list is a prefix of the other one, the shorter list
precedes the longer one. Otherwise find the least i, for which
si ≠ s′i . If si ≺ s′i , then l ≺ l′, and vice versa.

E.g. List of 3 letters; for [’A’,’B’,’C’] we write here ’ABC’.

Let S = {’A’,’B’,’C’,. . .,’Z’}. Order the alphabet as usual: A ≺ B, etc.

rankS(’A’) = 0, rankS(’N’) = 13; unrankS (7) =’H’.

Now the order is ’AAA’≺’AAB’≺ . . . ≺’ZZY’≺’ZZZ’, and in this
special case we have
rank([s1s2s3])=|S|2 rank(s1)+ |S| rank(s2)+ rank(s3). (cf. 26-ary
numbers)
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Lexicographical order of subsets

T χ (T) rank (T)
∅ [0,0,0] 0
{3} [0,0,1] 1
{2} [0,1,0] 2
{2,3} [0,1,1] 3
{1} [1,0,0] 4
{1,3} [1,0,1] 5
{1,2} [1,1,0] 6
{1,2,3} [1,1,1] 7

Consider the subsets of
S = {1, . . . , n}.
When T ⊆ S, the characteristic
vector of T is
χ (T) = [xn−1, . . . , x0], where
xi = 1, if n− i ∈ T , and xi = 0, if
n− i 6∈ T . (cf. bit map
representation)
Order the subsets according to
the lexicographical order of their
characteristic vectors.

rank (T) =
n−1∑
i=0

xi2i
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Lexicographical rank of a subset

SubsetLexRank(n, T)
r ← 0
for i← 1 to n
if i ∈ T
r ← r + 2n−i

return r

Let V = {1, . . . ,8}.
E.g. rank ({1,3,4,6}):
i i ∈ T 2n−i r
1 true 128 128
2 false 64 128
3 true 32 160
4 true 16 176
5 false 8 176
6 true 4 180
7 false 2 180
8 false 1 180
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Lexicographical unrank of a subset

SubsetLexUnrank(n, r)
T ←∅
for i← n downto 1
if r mod 2 = 1
T ← T ∪ {i}
r ←

⌊
r
2

⌋
return T

Let V = {1, . . . ,8}.
E.g. unrank (180):

i r mod 2 T
8 180 0 ∅
7 90 0 ∅
6 45 1 {6}
5 22 0 {6}
4 11 1 {4,6}
3 5 1 {3,4,6}
2 2 0 {3,4,6}
1 1 1 {1,3,4,6}

If the base set is not {1, . . . , n} (e.g. {0, . . . , n− 1}), it may be
useful to map the base set (bijectively) onto {1, . . . , n}.
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Minimum change ordering

Occasionally desiderable: two consecutive structures differ as little
as possible. For subsets distance can be e.g.

dist (T1, T2) = |T1∆T2|, where
T1∆T2 = (T1 \ T2)∪ (T2 \ T1).

E.g. the distance of the sets subsetlexunrank (n,3) = {2,3} and
subsetlexunrank (n,4) = {1} is 3, when n = 3.

For subsets there exists orderings, where the dist of consecutive
sets is always 1. The characteristic vectors of such an ordering
form a Gray code.
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Gray codes

A Gray code is a list of 2n n-bit binary words, where each n-bit
binary word appears exactly once, and the Hamming distance of
consecutive words is 1. (Sometimes the Hamming distance
between the first and last codeword is also required be 1.)

A nice family of Gray codes (binary reflected Gray codes):
G1 = [0,1], Gi+1 is obtained from Gi by taking two copies of it,
prepending 0 to each codeword in the first copy and 1 to each
codeword in the second, reversing the order of the codewords in
the second copy and concatenating the result:

G2 =

0 0
0 1
1 1
1 0

G3 =

0 00
0 01
0 11
0 10
1 10
1 11
1 01
1 00
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GrayCodeSuccessor(n, T)
if |T | is even
return T∆ {n}

else if max (T) > 1
return T∆ {max (T)− 1}

else
return undefined

Let the binary representation of a codeword be an−1 . . . a0 and the
binary representation of its rank number be bn−1 . . . b0.

aj =
(
bj + bj+1

)
mod 2 and bj =

∑n−1
i=j ai mod 2.
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Lexicographical order of k-element subsets

S = {1, . . . , n}. Generate all
(
n
k

)
subsets

with k elements.
Represent T ⊆ S as a list:

-→
T = [t1, . . . tk],

ti < ti+1, and order the subsets by the
lexicographical order of these lists.

T
-→
T rank (T)

{1,2,3} [1,2,3] 0
{1,2,4} [1,2,4] 1
{1,2,5} [1,2,5] 2
{1,3,4} [1,3,4] 3
{1,3,5} [1,3,5] 4
{1,4,5} [1,4,5] 5
{2,3,4} [2,3,4] 6
{2,3,5} [2,3,5] 7
{2,4,5} [2,4,5] 8
{3,4,5} [3,4,5] 9

Successor: increment the largest element that can be incremented,
and set elements larger than it to be as small as possible.

rank (T) =
∑k
i=1

∑ti−1
j=ti−1+1

(
n−j
k−i

)
, where t0 = 0.
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Co-lex order of k-element subsets

T
←-
T rank (T)

{1,2,3} [3,2,1] 0
{1,2,4} [4,2,1] 1
{1,3,4} [4,3,1] 2
{2,3,4} [4,3,2] 3
{1,2,5} [5,2,1] 4
{1,3,5} [5,3,1] 5
{2,3,5} [5,3,2] 6
{1,4,5} [5,4,1] 7
{2,4,5} [5,4,2] 8
{3,4,5} [5,4,3] 9

S = {1, . . . , n}. Enumerate all
(
n
k

)
subsets with k elements.
Present T ⊆ S as a list:←-
T = [t1, . . . tk],
ti > ti+1, and order the subsets
by the lexicographical order of
these lists.
Successor: increment the least
element that can be
incremented, and set elements
less than that to their least
possible values.

rank (T) =
∑k
i=1

(
ti−1
k+1−i

)
rank is independent of n !
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Connection between lex and co-lex order
Map each set T ⊆ {1, . . . n} to T ′ = {n+ 1− t|t ∈ T}. The lex
order of the sets T is the reverse co-lex order of the sets T ′, and
vice versa!

T T ′ rankL (T) rankC (T ′)
{1,2,3} {5,4,3} 0 9
{1,2,4} {5,4,2} 1 8
{1,2,5} {5,4,1} 2 7
{1,3,4} {5,3,2} 3 6
{1,3,5} {5,3,1} 4 5
{1,4,5} {5,2,1} 5 4
{2,3,4} {4,3,2} 6 3
{2,3,5} {4,3,1} 7 2
{2,4,5} {4,2,1} 8 1
{3,4,5} {3,2,1} 9 0

Using this transformation makes it easier to compute the
lexicographical rank and unrank of k-subsets.
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Example: rank of a k-subset
Sort the

(
39
7

)
lottery tickets in lexicographical order. In what

position does 3, 8, 12, 14, 15, 32, 38 appear?

T = {3,8,12,14,15,32,38} ⊆ {1, . . .39}.
T ′ = {37,32,28,26,25,8,2}.

rankC
(
T ′
)
=

(
37− 1

7

)
+
(

32− 1
6

)
+
(

28− 1
5

)

+
(

26− 1
4

)
+
(

25− 1
3

)
+
(

8− 1
2

)
+
(

2− 1
1

)
= 9179387

rankL (T) =
(

39
7

)
− 1− rankC

(
T ′
)

= 6201549
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Example: unrank of a k-subset

Order the
(

39
7

)
lottery tickets lexicographically. Which ticket is in

position 3937483?

3937482 = rankL (T) =
(

39
7

)
− 1− rankC (T ′)

T ′ = unrankC
((

39
7

)
− 1− 3937482

)
i r ti s.t.

(
ti−1
i

)
≤ r <

(
ti
i

)
r −

(
ti−1
i

)
7 11443454 38 1147982
6 1147982 34 40414
5 40414 24 6765
4 6765 22 780
3 780 18 100
2 100 15 9
1 9 10 0

T ′ = {38,34,24,22,18,15,10},
T = {2,6,16,18,22,25,30}
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Permutations

A permutation is a way of ordering the elements {1, . . . , n}, that is,
a bijection from {1, . . . , n} onto itself.

π : {1, . . . , n}, {1, . . . , n}

E.g.
x 1 2 3 4 5 6

π (x) 3 5 1 4 6 2

A permutation can be represented as a list:
[π (1) ,π (2) , . . . , π (n)]
E.g. [3,5,1,4,6,2].
A permutation can be presented in cycle notation, where within
each pair of parenthesis each element maps onto the next one and
the last one onto the first, e.g.

π = (1,3) (2,5,6) (4) = (1,3) (2,5,6)
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Combining permutations

Permutations are functions and they are combined like functions:
right to left.

(π1π2) (x) = (π1 ◦π2) (x) = π1 (π2 (x))

(1,2) (2,3) = (1,2,3)
(2,3) (1,2) = (1,3,2)
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Parity of permutations

The simplest permutation is the transposition of two elements(
i, j
)
, where i ≠ j. Permutations may be divided into two classes:

Even permutations can only be expressed as the product of an
even number of transpositions, e.g.

(1,2,3) = (1,2) (2,3)

Odd permutations can only be expressed as the product of an odd
number of transpositions, e.g.

(1,2,3,4) = (1,2) (2,3) (3,4)
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Auxiliary result

If the lists d = [d1, . . . , dn], where 0 ≤ di < ni are ordered
lexicographically, then

rank (d) =
n∑
i=1

di
n∏

j=i+1

nj

unrank(r):
for i = n downto 1:

di ← r mod ni
r ←

⌊
r
ni

⌋

successor(d):
i = n
while di = ni − 1

i← i− 1
di ← di + 1
for j = i+ 1 to n

dj = 0
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Lexicographical rank of permutations

We order permutations by the lexicographical order of their list
presentations. E.g.

[1,2,3] , [1,3,2] , [2,1,3] , [2,3,1] , [3,1,2] , [3,2,1]

When choosing the ith element of the list there are n+ 1− i
remaining elements. We use di to denote the number of
remaining elements that were smaller than the one we chose.
Now0 ≤ di < ni = n+ 1− i, and

rank (π) =
n−1∑
i=1

di (n− i)!

E.g. π = [2,4,1,3]⇒ d = [1,2,0,0] and

rank (π) = 1 · 3!+ 2 · 2!+ 0 · 1! = 10

Harri Haanpää 28



T–79.5202 Combinatorial algorithms Spring 2008

Lexicographical unrank and successor of
permutations

Conversely unrank (10) first yields d = [1,2,0,0], from which we
obtain π = [2,4,1,3].
Successor: We try not to disturb the elements at the beginning of
the list; we find the shortest suffix of the list that is not in inverted
lex. order. Within the suffix, we replace the first element of the
suffix by the next larger element, and sort the remaining elements
in ascending order. E.g.[
3,6,2,7,5,4,1

]
→ [3,6,4,7,5,2,1]→ [3,6,4,1,2,5,7]
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Minimal change ordering of permutations:
Trotter–Johnson

A minimal change for permutations is the transposition of two
adjacent elements:

[
. . . , i, j, . . .

]
→
[
. . . , j, i, . . .

]
.

Trotter (1962): starting with the minimal
change order Tn−1 of the elements
{1, . . . , n− 1}, we add element n as follows.
We make n copies of each permutation in
Tn−1, and add n to these permutations at
suitable places so that they form a zig-zag
pattern.
T 1 = [1], T 2 = [[1,2] , [2,1]]

T 3 =



1 2 3
1 3 2

3 1 2
3 2 1

2 3 1
2 1 3


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This method was known already
in 15th century England; in
campanology (ringing church
bells) this was known as plain
changes.

T 3 =



[1,2,3]
[1,3,2]
[3,1,2]
[3,2,1]
[2,3,1]
[2,1,3]



T 4 =



1 2 3 4
1 2 4 3
1 4 2 3

4 1 2 3
4 1 3 2

1 4 3 2
1 3 4 2
1 3 2 4
3 1 2 4
3 1 4 2
3 4 1 2

4 3 1 2
4 3 2 1

3 4 2 1
3 2 4 1
3 2 1 4
2 3 1 4
2 3 4 1
2 4 3 1

4 2 3 1
4 2 1 3

2 4 1 3
2 1 4 3
2 1 3 4


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Trotter–Johnson rank

TJRank(π,n):
π ′ ← π without element n
r ← TJRank (π ′, n− 1)
if r is even:

r ← nr + no. elems. right of n :
else:

r ← nr + no. elems. left of n :
return r
E.g. TJRank([3,4,2,1] ,4):

r =TJRank([3,2,1] ,3)
r =TJRank([2,1] ,2) = 1
r odd; r ← 3 · 1+ 0 = 3

r odd; r ← 4 · 3+ 1 = 13
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Trotter–Johnson unrank

TJUnrank(r ,n):
π ′ ← TJUnrank

(⌊
r
n

⌋
, n− 1

)
r ← r mod n
if π ′ even:

π ← π ′, to which we add n s.t. r elems. remain to its right
else:

π ← π ′, to which we add n s.t. r elems. remain to its left
return π
E.g. TJUnrank(13,4):

TJUnrank(3,3):
TJUnrank(1,2) = [2,1]

1 odd: insert 3 s.t. 3 mod 3 = 0
elems. remain to its left: [3,2,1]
3 odd: insert 4 s.t. 13 mod 4 = 1 elems. remain to its left:
[3,4,2,1]
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Trotter–Johnson successor

TJSuccessor(π,n):
π ′ ← π without element n
if π ′ is even and n can be moved left, do so
else if π ′ is odd and n can be moved right, do so
else compute TJSuccessor(π ′, n− 1) while keeping n in its place.

E.g. TJSuccessor([4,3,1,2]):
π ′ = [3,1,2] is even, but 4 cannot be moved left; compute
[4]+TJSuccessor([3,1,2]):
π ′ = [1,2] is even, but 3 cannot be moved left; compute
[3]+TJSuccessor([1,2]):
π ′ = [1] is even, and 2 can be moved left: [2,1]
we obtain [4]+ [3]+ [2,1] = [4,3,2,1]
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Myrvold & Ruskey: unrank

Instead of choosing an order and finding rank and unrank
functions for it, Myrvold and Ruskey chose a fast unrank function
and designed the corresponding rank function.

The traditional method of constructing a random permutation:

for i = n downto 1
swap(π (i) ,π (ri))

where ri = random (1, . . . , i). We obtain the permutation

π = (n, rn) (n− 1, rn−1) . . . (2, r2) (1, r1)

(For simplicity, (i, i) = (i) here.) Thus we can represent every
permutation as the list [rn, rn−1, . . . , r1] and sort the lists
lexicographically. Every permutation has a unique representation
of this form.

Unranking is simple: find the values of the ri from the rank and
use the above algorithm to construct the permutation.
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Myrvold & Ruskey: rank

To obtain the rank we must first obtain the ri and then compute

rank (π) =
n∑
i=1

(ri − 1) (i− 1)!

When π is presented in the form of the previous slide, only the
leftmost transposition moves the element n, so π (n) = rn. So
from π we easily obtain rn. Then we compute (n, rn)π , which
maps n onto itself, so we essentially have a permutation of
{1, . . . , n− 1}, and we iterate.
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The order is not particularly intuitive:

0 : 2341 6 : 4312 12 : 2413 18 : 2314
1 : 3241 7 : 3412 13 : 4213 19 : 3214
2 : 3421 8 : 3142 14 : 4123 20 : 3124
3 : 4321 9 : 1342 15 : 1423 21 : 1324
4 : 2431 10 : 4132 16 : 2143 22 : 2134
5 : 4231 11 : 1432 17 : 1243 23 : 1234
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Integer partitions

P (m): in how many ways can the positive integer m be expressed
as a sum of positive integers m = a1 + . . .+ an, when the order of
the summands is not considered significant? (or equivalently
a1 ≥ . . . ≥ an)

P (5) = 7 :

5, 4+ 1, 3+ 2, 3+ 1+ 1, 2+ 2+ 1,
2+ 1+ 1+ 1, 1+ 1+ 1+ 1+ 1

P (1) = 1, P (2) = 2, P (3) = 3, P (4) = 5, P (5) = 7, P (6) = 11,

P (m) ∼ Θ(eπ√2m/3

m

)
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Generating partitions

GenRecPartition(m,B, L)
if m = 0

output L
else

for i = 1 to min (B,m):
GenRecPartition(m− i, i, L+ [i])

GenRecPartition(m,m, [])
The parameter m is the integer to be partitioned, B is the largest
integer that can be chosen as the next ai without violating the
order, and L is a list of the sizes of the parts.
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Ferrers-Young diagrams

The Ferrers-Young diagram is obtained by writing dots in lines, ai
dots in line i.

7 = 4+ 2+ 1⇒ D =
• • • •
• •
•

By transposing rows to columns we obtain the conjugate diagram
and conjugate partition:

D∗ =

• • •
• •
•
•

⇒ 7 = 3+ 2+ 1+ 1

P (m,n):
there are as many partitions of m with n parts as there are
partitions of m where n is the largest part.
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Relation I

Clearly P (m,m) = P (m,1) = 1, when m > 1. We define
P (m,0) = 0, when m > 0, and P (0,0) = 1.

Theorem 3.2: When m ≥ n > 0,

P (m,n) = P (m− 1, n− 1)+ P (m−n,n) .

Proof. Let P (m,n) denote the set of n-partitions of m. We
partition P (m,n) into two sets and define the bijections:

if an = 1, Φ1 ([a1, . . . , an]) = [a1, . . . , an−1];
if an > 1, Φ2 ([a1, . . . , an]) = [a1 − 1, . . . , an − 1]Φ1 and Φ2 are bijections from parts of P (m,n) onto
P (m− 1, n− 1) and P (m−n,n), so the sets contain the same
number of elements.
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Relations II

Theorem 3.3: When m ≥ n > 0,

P (m,n) =
n∑
i=0

P (m−n, i)

Proof: Split P (m,n) into parts P (m,n)i, each of which contains
the partitions with exactly i parts greater than 1.

For each 0 ≤ i ≤ n define the bijection

Φi : P (m,n)i , P (m−n, i)

as follows: Φi ([a1, . . . , an]) = [a1 − 1, . . . ai − 1]
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Rank function for P(m,n)

Order the partitions [a1, . . . , an]
by the lexicographical order of
their inverse standard form
[an, . . . , a1]. E.g. P(10,4):

std. form inv. std. form
[7,1,1,1] [1,1,1,7]
[6,2,1,1] [1,1,2,6]
[5,3,1,1] [1,1,3,5]
[4,4,1,1] [1,1,4,4]
[5,2,2,1] [1,2,2,5]
[4,3,2,1] [1,2,3,4]
[3,3,3,1] [1,3,3,3]
[4,2,2,2] [2,2,2,4]
[3,3,2,2] [2,2,3,3]

Partitions with an = 1 precede those with an > 1. We obtain

rank ([a1, . . . , an])

=
{

rank([a1, . . ., an−1]) jos an = 1
rank([a1−1, . . ., an−1])+ P(m−1, n−1) jos an > 1
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Successor in P(m,n)
Here exceptionally the elements in the lists are in ascending
order, ai ≤ ai+1.

The partition [a1, . . . , an] is the last one, when a1 + 1 ≥ an. Then
m is divided by n as equally as possible.

In finding the successor in lexicographical order we try to keep the
beginning of the list unchanged.

Successor:

1. Find the shortest suffix of the list that is not equally
partitioned, i.e., the greatest i, for which ai + 1 < an.

2. Increment ai by one and set ai+1, . . . , an−1 to their minimum
value (= ai)

3. Justify the sum by setting an =m−
∑n−1
i=1 ai.

E.g.:
with [1,2,4,5,5] we find i = 2. Set a2 = a2 + 1 = 3, a3 = 3, a4 = 3
and a5 = 17− 3− 3− 3− 1 = 7 to obtain [1,3,3,3,7].
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Labeled trees

A graph G = (V ,E) is a tree if its connected and cycle-free. The
degree of a vertex v is the number of edges with v as one
endpoint. Let V = {1,2, . . . , n}. There are then nn−2 different
trees with the vertex set V .

Let Tn be the set of trees with vertex set V . Prüfer
correspondence:

Prüfer : Tn , Vn−2

Prüfer−1 : Vn−2 , Tn
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Prüfer

Prüfer(n,E):
for i = 1 to n− 2:

let v be the highest-numbered vertex of degree 1
find the edge {v,v′} ∈ E and set Li ← v′
remove the edge {v,v′}

Each vertex v appears deg (v)− 1 times in L. At the end only the
edge {1, v} remains; the degree of v is 1 when the algorithm
terminates.

InvPrüfer(n, L):
compute the degrees of the vertices from L
append 1 to the list: Ln−1 ← 1
for i = 1 to n− 1:

let v be the highest-numbered vertex of degree 1
add the edge {v,Li} to the graph
decrement by one the degrees of v and Li
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Prüfer – example

1 2 3 4

5 6 7 8

Vertex degrees Li Edge
[1,2,1,2,1,3,1,3] 8 {7,8}
[1,2,1,2,1,3,0,2] 6 {5,6}
[1,2,1,2,0,2,0,2] 8 {3,8}
[1,2,0,2,0,2,0,1] 4 {4,8}
[1,2,0,1,0,2,0,0] 6 {4,6}
[1,2,0,0,0,1,0,0] 2 {2,6}
[1,1,0,0,0,0,0,0]

From the list representation we easily obtain rank and unrank
functions by interpreting the list as a number in base n.
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Catalan numbers

Cn =
1

n+ 1

(
2n
n

)
Catalan numbers appear in many contexts:

ñ how many ways are there to compute a matrix
product expression so that two matrices are
multiplied at a time: ((M1 (M2M3)) (M4M5))

ñ how many ways are there to triangulate an
n+ 2-gon

ñ how many strings of 2n bits with n ones exist,
where to the left of any position there are at
least as many zeroes as ones: 000111, 001011,
001101, 010011, 010101
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About Catalan numbers

Such binary strings can be
represented as a mountain range
that never goes below the 0
level. E.g. a = 00101101
corresponds to

We mirror those mountain
ranges that go below 0 over the
axis y = −1 from the beginning
until they first go below 0. We
obtain a bijection between
mountain ranges that go below 0
and mountain ranges that go
from (−2,0) to (2n,0).

Cn =
(

2n
n

)
−
(

2n
n+1

)
=
(
1− n

n+1

)(
2n
n

)
= 1

n+1

(
2n
n

)
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Catalan rank and unrank

We compute how many ways of finishing the mountain range there
are starting from each position, e.g. for C5:

5 1
4 5 1
3 14 4 1
2 28 9 3 1
1 42 14 5 2 1
0 42 14 5 2 1 1

0 1 2 3 4 5 6 7 8 9 10

rank: follow the mountain range; when it goes down and right, we
add to rank the number that was up and right.

unrank: if rank ≥ the number up and right of the current position,
go down and right and subtract the number that was up and right
from rank, otherwise go up and right.

E.g. rank (0010110101) = 22
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Backtrack search

ñ a common method for solving a combinatorial search,
optimization or enumeration problem

ñ recursive: typically implemented by subroutines that call
themselves while building solutions step by step

ñ complete search: the entire search space is examined

ñ pruning may spare us from having to look at inessential parts
of the search space
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Example of backtrack search

Knapsack problem: Given n with weights w1, . . .wn and profits
p1, . . . , pn. The capacity of the knapsack is M.
Maximize P(x) =

∑
pixi subject to xi ∈ {0,1} and∑

wixi ≤ M.

We construct the list
[x0, . . . , xn−1] recursively.
Here len(x) is the length
of list x, that is, the
number of already fixed
xi; the recursion is
started with
Knapsack1([]).

Knapsack1(x):
if len(x) = n:

if
∑
iwixi ≤ M:
CurP ←

∑
i pixi

if CurP > OptP :
OptP ← CurP
OptX ← x

else:
Knapsack1(x + [1])
Knapsack1(x + [0])
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Backtrack search in general

In many combinatorial problems, solutions can be presented as a
list X = [x0, . . . , xn−1], where xi ∈ Pi, where Pi is a finite set of
possible values for xi. A naive backtrack search constructs all
elements in P0 × P1 × . . .× Pn−1. During the search the length of
the list corresponds to the depth of the node in the search tree.

A partial solution [x0, . . . , xl−1] may limit the search; sometimes
we can deduce that some xl ∈ Pl cannot lead to feasible solutions.
Then we can prune the search and only consider the choice set
Cl ⊆ Pl.
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Backtrack(x):
if x = [x0, . . . , xl−1] is a feasible
solution:

process it
compute Cl
for each c ∈ Cl:

Backtrack(x + [c])

Knapsack2(x):
if len(x) = n:

if CurP > OptP :
OptP ← CurP
OptX ← x

if len(x) = n:
Cl ←∅

else if
∑l−1
i=0wixi +wl ≤ M:

Cl ← {0,1}
else:

Cl ← {0}
for c ∈ Cl:

Knapsack2(x + [c])
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Generating cliques

A clique in a graph G = (V ,E) is such a subset S ⊆ V of the
vertex set V that between all pairs of nodes x,y ∈ S, x ≠ y there
is an edge:

{
x,y

}
∈ E.

A maximal clique is a clique that is not a subset of a larger clique.

Define the backtrack search:
[x0, . . . , xl−1] corresponds to the clique Sl = {x0, . . . , xl−1}

Cl = {v ∈ V \ Sl−1 : {v,x} ∈ E for all x ∈ Sl−1}
= {v ∈ Cl−1 \ {xl−1} : {v,xl−1} ∈ E}

Problem: the algorithm generates each k-vertex clique k! times,
once in each possible order! Solution: order the vertices
v0 < . . . < vn−1 and choose

Cl = {v ∈ Cl−1 : {v,xl−1} ∈ E ∧ v > xl−1}
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Generating cliques II

First precompute for each vertex v the auxiliary sets
Nv = {u ∈ V : {u,v} ∈ E} and Gv = {u ∈ V : u > v}. Nv is the
set of neighbors of v and Gv is the set of vertices that come after
v in the chosen order.

During the search X is a list of vertices that form a clique; N is the
set of common neighbors of X; and C is the set of common
neighbors that come after the last vertex added to X.

AllCliques(X,N,C):
output X
if N = ∅:

X is maximal
for v ∈ C:

AllCliques(X + [v] ,N ∩Nv , C ∩Nv ∩Gv)

AllCliques([] ,V ,V )
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Estimating the size of the search tree
If the number of choices only depends on the depth in the search
|Ci| = ci, the size of the tree is
|T | = 1+ c0 + c0c1 + c0c1c2 + . . .+ c0c1 . . . cn−1. Usually this is not
so. We label the vertices of the search tree by [x0, . . . xl−1]
according to the choices made to reach them. The size of the tree
can be estimated by picking at each step a choice uniformly at
random, so that the probability of passing through vertex X is

p (X) =

 1 when l = 0
p(f(X))
|Cl−1(f (X))| when l > 0,

where f([x0, . . . xl−1])=[x0, . . . , xl−2] (parent of the node). We
write m(X) = 1, if X is on the path, and m(X) = 0, if not. We
estimate the size of the tree by computing

N =
∑
X∈P

1
p(X)

=
∑
X∈T

m(X)
p(X)

.
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Claim: E (N) = |T |. Proof:

E (N) = E
∑
X∈T

m(X)
p(X)

=
∑
X∈T

E(m(X))
p(X)

=
∑
X∈T

p (X)
p (X)

=
∑
X∈T

1 = |T | .
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Example: Sudoku

8 4 3
6 2 8 5 4

7 2

2 1 4
7 1 9 5 6 3

4 8 3

8 5
1 9 4 2 6

7 2 8

In sudoku a partially filled n×n array
is given. The array is divided into p × q
subarrays. The task is to complete the
array into a Latin square: each of the
numbers 1 . . . n must appear once in
each row and column. Additionally each
number must appear once in each
subarray. (Usually p = q = 3 and
n = 9.)

The most straightforward way of applying backtrack search would
be to investigate the array square by square and always fill a
square with a number that does not conflict with the numbers
already in the array.
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Example: Sudoku

A backtrack search can often be made more efficient by choosing
the next value to be fixed to be one with the least number of
alternatives. For example in sudoku we can choose to fill the
square with the fewest admissible numbers.

If there are 0 choices, there is no solution; if there is 1 solution,
we can deduce more about the solution without branching, which
will limit alternatives later on.

By the way, sudoku could be expressed as a maximum clique
problem: the vertex set would be formed by the n3

row-column-value combinations, and two vertices would be
connected by an edge if they are compatible (that is, they don’t
contain the same value in the same column for example). If there
is a n2 vertex clique in this graph, it corresponds to a solution.
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Exact Cover

Given a set R and a set S of its subsets, can we express R as a
disjoint union of sets in S?

R = {0, . . . , n− 1}. S = {S0, . . . , Sm−1}, where Si ⊆ R for all i. Does
there exist S′ ⊆ S, for which

⋃
X∈S′ X = S and Si ∩ Sj = ∅, when

Si, Sj ∈ S′?
The cliques of G = (V ,E), where V = {0, . . . ,m− 1} and

E =
{{
i, j
}

: Si ∩ Sj = ∅
}
, correspond to partial solutions of the

problem. We could use the AllCliques algorithm and test whether
one of the maximal cliques is a solution.
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Exact cover II

In the AllCliques algorithm the nodes are ordered. For subsets we
take the decreasing lexicographical order. We denote by Hi the
set of those subsets whose least element is i. The sets in Hi
precede the elements of Hi+1.

In the AllCliques algorith Cl consists of vertices that come after all
nodes already in the list and are neighbors of all vertices in the list
– in this case, the subsets have no elements in common with any
subset already on the list.

In the exact cover problem, since we must cover each element of
the base set, we can decide to cover always the least element that
has not been covered yet: if r is the least element not covered
already, the choice set C′l = Cl ∩Hr suffices.

(Here too it could be more efficient to always consider the element
next that has the least number of sets with which it could be
covered.)
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Sudoku as an exact cover problem

Sudoku can be mapped to exact cover in a straightforward
manner. Each row-value, column-value, subarray-value and
row-column combination must appear once. If the sets of rows,
columns, subarrays and values are, respectively, R = {r1, . . . , rn},
C = {c1, . . . , cn}, B = {b1, . . . , bn}, and V = {v1, . . . , vn}, then the
set to be covered is

(R × V)∪ (C × V)∪ (B × V)∪ (R × C).

If we write the value vl into the square in row ri, column cj and
subarray bk, we cover the elements in

{(ri, vl), (cj , vl), (bk, vl), (ri, cj)}.

There are a total of n3 such sets, and the cover will contain n2 of
them.
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Bounding functions

In an optimisation problem the search tree may sometimes be
pruned by estimating how good solutions can be found in a given
branch.

Let profit (X) be the profit from solution X. Let P (X) be the
largest profit that can be obtained in the descendants of the
partial solution X. Let B (X) be an easily computable function for
estimating P (X) s.t. B (X) ≥ P (X).
If the best solution found so
far is X′, we are considering
the partial solution X, and
profit (X′) > B (X), we can
prune this branch, since
profit(X′)>B(X)≥P(X), and
among the descendants of X
there can be no solution
better than X′.

Bounding(X):
if X is a feasible solution:

P ← profit (X)
if P > OptP :

OptP ← P
OptX ← X

compute Cl
B ← B (X)
for each x ∈ Cl:

if B ≤ OptP : # if we also prune on
return # equality, the test must

# be here, since
# OptP may change

Bounding(X + [x])
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Rational knapsack

One method of forming bounding functions is relaxing some of
the constraints of the original problem so that solving the
optimization problem becomes easier.

Knapsack problem: Given n items with weights w1, . . .wn and
profits p1, . . . , pn. The capacity of the backpack is M.
Maximize P(x) =

∑
pixi subject to the constraints

xi ∈ {0,1} and
∑
wixi ≤ M.

Rational knapsack problem: as above, but instead of requiring
that xi ∈ {0,1} require only that 0 ≤ xi ≤ 1.
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Rational knapsack

Given n items with weights w1, . . .wn and profits p1, . . . , pn. The
capacity of the knapsack is M. Maximise P(x) =

∑
pixi subject to

0 ≤ xi ≤ 1 and
∑
wixi ≤ M.

For integer pi, wi, M the variables xi will be rational. A greedy
algorithm gives the optimum:

RKnap
(
p1, . . . , pn,w1, . . . ,wn,M

)
order the items s.t. p1/w1 ≥ p2/w2 ≥ . . . ≥ pn/wn
for i = 1 to n:

xi ←min
(

1,
M−

∑i−1
j=1wixi
wi

)
return

∑
pixi
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Knapsack

Knapsack3(x,CurW):
if len(x) = n:

if
∑
i pixi > OptP :
OptP ←

∑
i pixi

OptX ← X
if l = n:

Cl ←∅
else if CurW +wl+1 ≤ M:

Cl ← {0,1}
else:

Cl ← {0}

This algorithm assumes that
p1
w1
≥ . . . ≥ pn

wn .
In the book this pruning saved
considerable effort for certain
random problems (at best but
not atypically (18953093→180).

B ←
∑l
i=1 pixi+ RKnap

(
pl+1, . . . , pn,wl+1, . . .wn,M − CurW

)
for c ∈ Cl:

if B ≤ OptP
return

Knapsack3(x + [c], CurW +wl+1xl+1)
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Traveling salesman problem

Given Kn = (V ,E), a complete
(directed) graph on n vertices, and a
cost function cost : E , Z+. Find a
Hamiltonian cycle X, for which
cost (X) =

∑
e∈E(X) cost (e) is minimum.

(A Hamiltonian cycle is a walk that visits
every vertex once and returns to its
starting point.)
A Hamiltonian cycle can be presented
as a permutation of the vertices, and
the cycle can be chosen to start at
vertex 1. The tour 3 6 2 1 4 5 7 3 can
thus be expressed as the list
[1,4,5,7,3,6,2].

TSP1(x):
if len(x) = n:

C ← cost (X)
if C < OptC:

OptC ← C
OptX ← X

if len(x) = 0:
Cl ← {1}

else if len(x) = 1:
Cl ← {2, . . . n}

else
Cl ← Cl−1 \ {xl−1}

for each c ∈ Cl:
TSP1(x + [c])
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Bounding functions for the traveling salesman

The cost function can be
represented as a matrix M,
where mij is the cost of the
(directed!) edge

(
i, j
)
.

M =


∞ 3 5 8
3 ∞ 2 7
5 2 ∞ 6
8 7 6 ∞


MinEdgeBound: Sum together the minimum value of each column
(row); we must enter each vertex from some other node (go to
some other node from each vertex).

ReduceBound: If k is subtracted from all elements in a row
(column), the length of the tour goes down by k. Thus let c be the
sum of the minimum elements in each column, and subtract from
each element the minimum element in that column. From the
resulting matrix compute r similarly by rows. After this each row
and column contains at least one 0, and we obtain the lower
bound c + r .
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Bounding functions for the traveling salesman II

The lower bound corresponding to the partial solution
X = [x0, . . . , xl−1] is obtained as follows: treat X as if it were one
vertex, from which moving into vertex y costs cost

((
xl−1, y

))
and moving into which from vertex y costs cost

((
y,x0

))
.

Remove from the matrix rows x0, . . . , xl−2 and columns
x1, . . . , xl−1 and set ml−1,0 = ∞.

For example with the partial solution [1,2] we obtain

M =


∞ 3 5 8
3 ∞ 2 7
5 2 ∞ 6
8 7 6 ∞

⇒
 ∞ 2 7

5 ∞ 6
8 6 ∞


Thus we have reduced the problem to a directed traveling
salesman problem with n+ l− 1 vertices, to which the previously
given bounds may be applied.
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Bounds for the maximum clique problem

In the AllCliques procedure Cl is the set of common neighbors of
the vertices in the partial solution that come after the vertices in
the partial solutions in the chosen order.

Bound: B (X) = |X| + |Cl|
Bounds from the graph coloring problem: If the vertices can be
colored with k colors so that no edge has two endpoints of the
color, the largest clique can have at most k vertices (all vertices in
a clique are neighbors and thus of different color).

Bound: color the graph induced by the vertices in Cl. If this can be
done with k colors, B (X) = |X| + k.

The graph coloring problem is computationally difficult. A bound
can be obtained by a greedy algorithm: label each vertex in turn
with a positive integer as small as possible. Or we can start by
coloring the vertices and during the search count the number of
distinct colors in Cl.
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Branch and bound

Up to now x ∈ Cl have been
visited in an arbitrary order.
It could be better to compute
for each x the bound
B (X + [x]) and examine the
most promising alternatives
first. In this manner we may
find good solutions for
pruning the search.

BranchAndBound(X):
if X a feasible solution:

P ← profit (X)
if P > OptP :

OptP ← P
OptX ← X

compute Cl

v ← [ ]
for each x ∈ Cl:

compute Bx ← B (X + [x])
v ← v + [(x, Bx)]

order v in decreasing order of Bx

for each (x, Bx) ∈ v:
if Bx ≤ OptP :

return

BranchAndBound(X + [x])
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Dynamic programming in the maximum clique
problem

Given G = (V ,E), where
V = {1, . . . , n}. Precompute
Nv = {u ∈ V : {u,v} ∈ E} and
Gv = {u ∈ V : u ≥ v}. We
denote by cv the size of the
maximum clique in Gv . Now
ci−1 ∈ {ci, ci + 1} and
ci−1 = ci + 1 if and only if Gi−1

contains a clique of ci + 1
vertices (which must include
vertex i− 1).

for i = n downto 1:
found← false
MaxClique([i] ,Gi ∩Ni)
ci ← OptP

MaxClique(X,N):
if |X| > OptP :

OptP ← |X|
OptX ← X
found←true
return

if |X| + |N| ≤ OptP :
return

for x ∈ N:
if |X| + cx ≤ OptP :

return
MaxClique(X + [x] ,N ∩Nx)
if found:

return
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Heuristic methods

heuristic: involving or serving as an aid to — problem-solving
by experimental and especially trial-and-error
methods; also : of or relating to exploratory
problem-solving techniques that utilize
self-educating techniques (as the evaluation of
feedback) to improve performance

ñ when the search space is too large for backtrack search

ñ obtain good solutions by trial and error and repeatedly
making small changes to earlier solutions

ñ suitable for optimisation problems (if a good solution
suffices) and search problems, but usually not for generation
or enumeration problems
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Optimisation problem

maxP (x)
gj (x) ≤ 0, j = 1 . . .m

x ∈ X
X finite

P (x) is the objective function, and gj (x) ≤ 0 are constraints. Any
x ∈ X is a solution. If additionally gj (x) ≤ 0, then x is feasible. If
P (x) ≥ P (x′) for all x′ ∈ X, gj (x′) ≤ 0, the solution x is optimal.

The penalty function method makes infeasible solutions feasible,
which may make designing the search easier. It can also be used
to convert a search problem into an optimisation problem.

maxP (x)− µ
∑
j Φ(gj (x))

x ∈ X
X finite,

where Φ (y) = 0, when y ≤ 0, and Φ (y) > 0, when y > 0. We may
choose a sufficiently large value for µ at the start or increase µ
little by little.
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Heuristic methods in general

The neighborhood of a solution is a central concept in many
heuristic methods. The neighborhood of a solution x is
N (x) ⊆ X. The neighborhood heuristic hN (x) returns a feasible
solution in the neighborhood of k or Fail.
GenericHeuristicSearch:
x ← some feasible x ∈ X
BestX ← x
while not termination condition:

y ← hN (x)
if y ≠ Fail

x ← y
if P (x) > P (BestX)

BestX ← X
return BestX
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Some simple heuristics

1. find the feasible y ∈ N (x) \ {x}, that maximises P
(
y
)
;

return y or Fail, if there is no feasible neighbor

2. find the feasible y ∈ N (x), that maximises P
(
y
)
; if

P
(
y
)
> P (x), return y, else Fail

3. find some feasible y ∈ N (x)
4. find some feasible y ∈ N (x); if P

(
y
)
> P (x), return y, else

Fail
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Equitable graph partition

Given a 2n-vertex complete graph G = (V ,E) and a cost function
cost : E , Z+ ∪ {0}.

minC {V0,V1} =
∑

v0∈V0,v1∈V1

cost ({v0, v1})

V = V0 ∪V1, |V0| = |V1| = n
Example algorithm: Let the solution space X be the set of those
partitions [V0,V1] of V for which |V0| = |V1| = n. The
neighborhood N (x) of a partition x is the set of those partitions
that can be obtained from x by moving one element from each set
to the other. The heuristic hN (x) could be steepest ascent: find
the best neighbor y; if the value of the objective function
improves, return y, else Fail.
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Neighborhood heuristics

When maximising, in each iteration:

Steepest ascent: choose the feasible neighbor of x that
maximises the objective function, until there is no
neighbor with a better objective function value

Hill-climbing: choose some feasible neighbor of x that improves
the value of the objective function until there is none

Both of these stop in the first local optimum. A local optimum is a
solution x such that P (x) > P

(
y
)

for all feasible y ∈ N (x).
To a certain extent local optima can be eliminated by considering
a larger neighborhood, but that alone rarely solves the problem;
also a larger neighborhood can cause other problems, like making
computation of hN (x) more expensive.
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Neighborhood heuristics II

Great deluge: In each iteration choose a feasible neighbor
y ∈ N (x), for which P

(
y
)
≥ W , where W is the

water level. Increase W every now and then until
there are no feasible neighbors left.

Record-to-record travel: In each iteration choose a feasible
neighbor y ∈ N (x), for which
P
(
y
)
≥ P (BestX)−D, where D is a constant.
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Simulated annealing

Simulated annealing is based on an physical model of cooling
metal.

hN (x): Choose a random y ∈ N (x). Let ∆P = P (y)− P (x). If∆P ≥ 0, return y. If ∆P < 0, return y with probability e∆P/T ,
where T is the current temperature of the system; else Fail.
At first T is relatively large, so moves that worsen the solution are
accepted relatively often. As the search proceeds the temperature
is decreased so that worsening moves are accepted more and
more rarely.

A simple cooling schedule is obtained by setting in each iteration
T ← αT , where α is slightly less than 1.
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Tabu search

A heuristic, where the feasible neighbor of x with the largest
objective function value is chosen, may move out of the local
optimum but often moves back in the next iteration. Therefore
tabu search:

hN (x): Choose the feasible neighbor of x with the largest
objective function value; however, do not undo any change caused
by a move in the last l iterations.

change
(
x,y

)
describes the change made when moving from x to

its neighbor y.
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TabuSearch

TabuList ← []
choose a feasible x ∈ X
while not termination condition:

T =
{
y : y ∈ N (x) , change

(
x,y

)
∈ TabuList

}
N ← N (x) \ T
find the feasible y ∈ N with the largest P

(
y
)

x ← y
append change

(
y,x

)
to TabuList

remove from TabuList all except the l most recent elements
if P (X) > BestP

BestP ← P (X)
BestX ← X
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Choosing the neighborhood

The combination of the neighborhood and solution space can be
interpreted as a directed graph, whose vertices are the solutions.
There is an edge from vertex x to vertex y, if y ∈ N(x).
Properties of a good neighborhood:

1. Every solution – or at least the optimum solution – is
reachable from every other solution.

2. The neighborhood is relatively small, and the objective
function values of a solution and its neighbors exhibit at least
some correlation.

3. The neighborhood is sufficiently large that every solution – or
at least the optimum solution – is reachable from every other
solution with a relatively small number of moves.
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Smoothness of the objective function

It is advantageous if the objective function values are high for
solutions that are near the maximum. Let xi ∈ {0,1} and
N (x) =

{
y ∈ {0,1}n : dist

(
x,y

)
= 1

}
.

Compare.
1. max

∑
i xi

2. max
∏
i xi

3. max
∑
i xi − 3

(∑
i xi mod 4

)
4. max 2n

∏
i xi −

∑
i xi

Large “valleys” or “plateaus” in the objective function can cause
problems. The chosen solution space and neighborhood are
crucial.
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Genetic algorithms

Instead of maintaining one current solution, we may maintain a
whole population. New solutions are obtained from the old ones
by crossover and mutation.

In crossover two solutions are combined to obtain two new ones.
In mutation the solution x is replaced by one of its neighbors;
x ← hN (x).
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GeneticAlgorithm

GeneticAlgorithm:
choose the original population P
while not termination condition:

Q ← P
compute the list of pairs for crossover R
for (w,x) ∈ R(

y,z
)
= crossover (w,x)

y ← hN
(
y
)

z ← hN (z)
Q ← Q∪

{
y,z

}
P ← popsize best individuals from Q
b ← best individual in Q
if P (b) > P (BestX)

BestX ← b
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Crossover and natural selection

Crossover for lists A = [a1, . . . , an] and B = [b1, . . . , bn] can be
carried out for example as follows:

single-point crossover Choose 1 ≤ j < n. The descendants are

C =
[
a1, . . . aj , bj+1, . . . bn

]
and

D =
[
b1, . . . bj , aj+1, . . . an

]
.

two-point crossover Choose 1 ≤ j < k ≤ n. The descendants are

C =
[
a1, . . . , aj , bj+1, . . . , bk, ak+1, . . . , an

]
and

D =
[
b1, . . . , bj , aj+1, . . . , ak, bk+1, . . . , bn

]
.

uniform crossover Choose S ⊆ {1, . . . , n}. In the descendants
ci = ai and di = bi, if i ∈ S; otherwise ci = bi and
di = ai.
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To combine permutations α and β we may choose 1 ≤ j < k ≤ n,
and

PartiallyMatchedCrossover
(
n,α,β, j, k

)
γ ← a
δ← β
for i = j to k:

γ ← (ai βi) γ
δ← (ai βi)δ

The results of crossover may not always be feasible solutions. We
may
1) use the penalty function method
2) design a special crossover function, with which the descendants
are always feasible.

Pairing: the solutions in the population may be paired using
various criteria, such as by first ordering them by objective
function value. One may also generate more offspring from fitter
individuals.
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Steiner triple systems

A Steiner triple system is a set system (V ,B), where B consists of
3-subsets of V , and each 2-subset of V occurs as a subset in
exactly one b ∈ B. An STS is a partition of the complete graph into
triangles. E.g.

V = {1, . . .7}

B =


{1,2,4} , {2,3,5} , {3,4,6} ,
{4,5,7} , {1,5,6} , {2,6,7} ,
{1,3,7}


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Hill-climbing and Steiner triple systems

The point v ∈ V is live, if it is incident to edges that are not
contained in any triangle b ∈ B. The edge {u,v} is live, if it
appears in no b ∈ B.

Stinson’sAlgorithm(v):
V ← {1, . . . , n}
B ← ∅
while |B| < v (v − 1) /6:

choose a live point x
choose live edges

{
x,y

}
and {x, z}

if
{
y,z

}
is live:

B ← B ∪
{{
x,y, z

}}
else

find the block
{
w,y, z

}
in B

B ← B ∪
{{
x,y, z

}}
\
{{
w,y, z

}}
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Knapsack and simulated annealing

Knapsack problem: Given n items with weights w1, . . .wn and
profits p1, . . . , pn. The capacity of the knapsack is M.
Maximise P(x) =

∑
pixi subject to xi ∈ {0,1} and∑

wixi ≤ M.

Choose the neighborhood:
N (x) =

{
y ∈ {0,1}n : dist

(
x,y

)
= 1

}
.

A random neighbor y can be obtained by flipping a random xj.
If xj = 0, the change of the objective function is ∆P = +pj, and
the new neighbor is accepted, if it is feasible. If xj = 1, then∆P = −pj, and the new neighbor is accepted with probability
e−pj/T .

At first set T so that a considerable part of the worsening moves
are also accepted; e.g. 4 maxi pi, and after each iteration set
T ← αT . In the book best results were obtained with α = 0.9999.
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Knapsack and tabu search

Choose the neighborhood:
N (x) =

{
y ∈ {0,1}n : dist

(
x,y

)
= 1

}
.

We won’t maximise the objective function(?!!), but rather

1. add to the knapsack item i, that has the largest pi/wi ratio of
the items that are not tabu, not in the backpack and fit into the
backpack

2. if no such item exists, remove from the knapsack item i that
has the smallest pi/wi ratio of the items that are not tabu but are
in the backpack.

3. Add i to the tabu list.
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Graph coloring

What is the least number of colors sufficient for coloring the
vertices of graph G = (V ,E) so that no edge has two endpoints of
the same color?

Partition the vertices into color classes V1 . . .Vk e.g. by a greedy
algorithm. After having obtained a k-coloring, search for a
k− 1-coloring as follows.

Take as the objective function max
∑
i |Vi|2. This guides the

search so that some colors are used to color many vertices and
others only a few. If the number of vertices in some part goes to
zero, a k− 1-coloring has been found, and we can start looking for
a k− 2-coloring etc.
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Schur numbers
The Schur number s (m) is the largest integer s, such that the
integers X = {1, . . . , s} can be partitioned into m parts so that no
part contains two (not necessarily distinct) elements and their
sum.

E.g. s (3) = 13:


{1,4,7,10,13}
{2,3,11,12}
{5,6,8,9}


In searching for a sum-free partition of 1 . . . s, the most obvious
choice for an objective function would be the number of sums
appearing in the parts, but it is better to maximise
max c1f1 + c2f2, where c1 � c2 and
f1 =max t, such that no part contains the sum t
f2 =

∑m
i=1

∑
t,u∈Xi g (t,u)

where g (t,u) =
{

0 if t +u ≤ s
2s − t −u if t +u > s

Here the purpose of f2 is only to guide the search to a promising
direction.
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Traveling salesman problem

Solve the traveling salesman with genetic algorithms.

The n-opt neighborhood: remove n edges from the cycle and add
n edges to again obtain a cycle.

The crossover function could be defined as follows: cross the two
permutations by some crossover method for permutations, and
then apply the steepest descent method with, say, the 2-opt
neighborhood.

We could also simply crossover the permutations and embed
steepest descent into the objective function. Then the fitness of a
permutation would be evaluated by first applying steepest descent
to it and only then computing the length of the cycle.
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Isomorphisms

Labeled structures are usually not considered significantly
different, if the only difference is the labeling.

An isomorphism is a bijection that maps the parts of one structure
onto the parts of another structure so that the structure is
preserved. Two structures are isomorphic, if there is an
isomorphism from one to the other.

Example

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, if
there exists a bijection f : V1 , V2 s.t. {u,v} ∈ E1 if and only if
{f(u), f (v)} ∈ E2.
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Automorphisms

An automorphism is an isomorphism from a structure onto itself.
In a sense, automorphisms represent the symmetries of the
structure.

Example

An automorphism of the graph G = (V , E) is a bijection
(permutation) π : V , V , for which {u,v} ∈ E if and only if
{π(u),π(v)} ∈ E.

The permutations of the vertex set form a group, and the
automorphisms of a graph form a subgroup of this group.
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Group
A set-operation pair (G,∗) is a group, if

1. the binary operation ∗ is closed: g1 ∗ g2 ∈ G for all
g1, g2 ∈ G, i.e., ∗ : G ×G , G

2. G contains a unit element I, s.t. g ∗ I = g = I∗ g for all g ∈ G
3. every g ∈ G has the inverse element g−1 ∈ G, such that
g−1 ∗ g = I = g ∗ g−1

4. the binary operation ∗ on associative:(
g1∗g2

)
∗g3=g1∗

(
g2∗g3

)
for all g1,g2,g3 ∈ G

Examples

ñ integers modulo n under addition

ñ m×m-matrices with nonzero determinant under matrix
multiplication

ñ rotations of a three-dimensional object

When the operation is obvious from the context, we speak of the
group G.
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Multiplication table
A finite group may be presented as a multiplication table:

∗ I a b c d e f g
I I a b c d e f g
a a b c I e f g d
b b c I a f g d e
c c I a b g d e f
d d g f e I c b a
e e d g f a I c b
f f e d g b a I c
g g f e d c b a I

When we place the unit element I in the first row and column, the
multiplication table is a reduced Latin square with associativity

M
[
M
[
gi, gj

]
, gk

]
= M

[
gi,M

[
gj , gk

]]
.

Subgroup:
H is a subgroup of G, if H is a group and H ⊆ G.
For example, {I, a, b, c} in the group given above.
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Of subgroups

The order |G| of a finite group G is the number of its elements.

If H is a nonempty subset of a finite group G and H is closed
under the operation of G, then H is a subgroup of G.

Proof. If H = {I}, then H is clearly a subgroup. Suppose that
h1h2 ∈ H for all h1, h2 ∈ H. Let us choose some h ∈ H. For all
n ∈ Z+ it holds that hn = hh . . . h ∈ H. Since H is finite, there
must exist some m < n s.t. hm = hn. Now
hnhn−m = hmhn−m = hn, so hn−m = I ∈ H and
h−1 = hn−m−1 ∈ H.
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Permutation groups
Let us consider the permutations of a finite set X.

The permutations (bijections π : X , X) form a group under
function composition
(π1π2) (x) = (π1 ◦π2) (x) = π1 (π2 (x)), since

1. the composition of two permutations is a permutation

2. there is an identity element (I (x) = x)

3. every permutation has an inverse permutation

4. function composition is associative

Let X be a nonempty set with n elements and Sym (X) the set of
its permutations. Sym (X) under function composition is the
symmetric group Sym (X). over the elements of X. It has n!
elements.

Every permutation group is a subgroup of some symmetric group.
For example when X = {0,1,2,3,4}, the permutations
{I, (0,1,2) (3,4) , (0,2,1) , (3,4) , (0,1,2) , (0,2,1) (3,4)} form a
permutation group over X.
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Automorphisms of a graph

Let us denote α({u,v}) = {α(u) ,α (v)}
An automorphism α of a graph G = (V ,E) is such a permutation
of V that α({u,v}) ∈ E for all edges {u,v} ∈ E of the graph.

The automorphisms form the group Aut (G):
Aut (G) is nonempty, since clearly I ∈ Aut (G)
If α,β ∈ Aut (G), then αβ ∈ Aut (G): suppose that {u,v} ∈ E.
β({u,v}) ∈ E, and (αβ) ({u,v}) = α(β ({u,v})) ∈ E, so Aut (G)
is closed under composition.

Aut (G) is a nonempty subset of Sym (V ) that is closed under the
same operation, so Aut (G) is a subgroup of Sym (V ) and
therefore a group.
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Generators

The elements α1, . . . , αr generate the group G, if every element
g ∈ G can be expressed as a finite product

g = αi1αi2 . . . αim ,

where 1 ≤ ij ≤ r for all j. The elements α1, . . . , αr are generators
for G, denoted with G = 〈α1, . . . , αr 〉.
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Example: Rubik’s cube
Ideal Toy Company stated on the package of the original Rubik cube that there
were more than three billion possible states the cube could attain. It’s analogous
to MacDonald’s proudly announcing that they’ve sold more than 120
hamburgers. (J. A. Paulos, Innumeracy)

+--------------+
| 1 2 3 |
| 4 top 5 |
| 6 7 8 |

+--------------+--------------+--------------+--------------+
| 9 10 11 | 17 18 19 | 25 26 27 | 33 34 35 |
| 12 left 13 | 20 front 21 | 28 right 29 | 36 rear 37 |
| 14 15 16 | 22 23 24 | 30 31 32 | 38 39 40 |
+--------------+--------------+--------------+--------------+

| 41 42 43 |
| 44 bottom 45 |
| 46 47 48 |
+--------------+

gap> cube := Group(
( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19),
( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35),
(17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11),
(25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24),
(33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27),
(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40));;
gap> Size( cube );
43252003274489856000
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Cosets
When g ∈ G and H ⊆ G, we denote gH =

{
gh : h ∈ H

}
. When

A,B ⊆ G, we denote AB = {ab : a ∈ A,b ∈ B}.
Let H be a subgroup of a finite group G. Now gH is the left coset
of G that contains g ∈ G.

Lagrange: if H is a subgroup of G, then the elements of G may be
partitioned into disjoint cosets:

G = g1H ∪ g2H ∪ . . .∪ gnH,

where gi ∈ G, and giH ∩ gjH = ∅ for i ≠ j.
Proof.

∣∣gH∣∣=|H| for all g∈G, since f(x)=gx is a bijection
H , gH. If g1H ∩ g2H ≠∅, where g1, g2 ∈ G, there must exist
some h1, h2 ∈ H, for which g1h1 = g2h2 and g1 = g2h2h−1

1 . Now

for any h ∈ H we have g1h = g2

(
h2h−1

1 h
)
∈ g2H, and

g1H ⊆ g2H. Since
∣∣g1H

∣∣ = ∣∣g2H
∣∣ = |H|, g1H = g2H.

Additionally each g ∈ G belongs to the coset gH; the cosets
therefore partition G and |G| is divisible with |H|.
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Transversals

When G is presented as a union of disjoint left cosets

G = g1H ∪ g2H ∪ . . .∪ gnH,

the set T =
{
g1, . . . , gn

}
forms a left transversal of H. It can be

formed by selecting n = |G|
|H| coset representatives gi ∈ G such

that no chosen gi belongs to any coset other than giH.
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Transversals: example

∗ I a b c d e f g
I I a b c d e f g
a a b c I e f g d
b b c I a f g d e
c c I a b g d e f
d d g f e I c b a
e e d g f a I c b
f f e d g b a I c
g g f e d c b a I

The subgroup H = {I, a, b, c} has the cosets {I, a, b, c} and{
d, e, f , g

}
. A transversal can be formed by choosing an element

from each coset; e.g., T = {I, d} or T =
{
b, f

}
.

TH = I {I, a, b, c} ∪ d {I, a, b, c} = {I, a, b, c} ∪
{
d, e, f , g

}
= G.
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Computing a transversal

By computing a transversal T of GB ⊆ G and then T (B) we obtain
the orbit G(B) of B.

Below a naive method for computing a transversal is given. For
each element of the group we test whether our transversal already
contains an element from the same coset. If not, we add the
element to the transversal.

Transversal(H,G):
r ← |G| / |H|
T ←∅
for g ∈ G:

for t ∈ T :
if t−1g ∈ H:

goto skip
T ← T ∪

{
g
}

if |T | ≥ r :
return T

skip:
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Group action

The action of a group G on the set X is a function α : G ×X , X,
denoted with α :

(
g,x

)
, gx, that satisfies

1. Ix = x for all x ∈ X
2. g (hx) =

(
gh
)
x for all g,h ∈ G and x ∈ X.

Note that if gx1 = gx2, then
g−1

(
gx1

)
=
(
g−1g

)
x1 = Ix1 = x1

= g−1
(
gx2

)
=
(
g−1g

)
x2 = Ix2 = x2.

In fact each g defines a permutation of X.

Harri Haanpää 110

T–79.5202 Combinatorial algorithms Spring 2008

Group action. Example: graph

When discussing the symmetric group, we usually speak of the
group Sn, whose structure is the same as that of the group formed
by the permutations of the set {1, . . . , n}. When Sn acts on a set V
with n elements just like the permutations of V , we say that Sn
acts on V in the natural way.

Now, say that a group acts on the vertices of a graph G = (V , E) in
some way, then the group acts in the induced manner on the
edges of the graph. In fact, this also induces an action on the set
of graphs.
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Group action. Example: binary code

Two binary codes (sets of binary codewords of the same length)
can be considered equivalent, if one can be obtained from the
other by complementing all bits in certain positions in the
codewords and permutating the positions.

This corresponds to the action of a group that is the wreath
product S2 o Sn, where the action of Sn corresponds to permuting
the positions in the codewords and the action of each S2 (of which
there are n) corresponds to complementing the bits in a given
position.

(We will not examine the characteristics of the wreath product.)
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Group action. Example: dihedral group

The elements of the dihedral group Dn correspond to the
symmetries of a regular n-gon. It may be defined as follows:
Dn = 〈r , s〉, where rn = s2 = (rs)2 = I; the group has two
generators, and the given constraints uniquely determine the
structure of the group (when we assume that the given exponents
are the least ones with which the identity element is obtained).
Here r corresponds to a 1/n rotations clockwise and s to
mirroring across some axis.

Dn can act on a set V = {0, . . . , n− 1} for example as follows:
rv = (v + 1) mod n, sv = (n− v) mod n.

Dn can act on R2 as follows: rx =
(

cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

)
x,

sx =
(
−1 0
0 1

)
x
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The orbit of an element

The orbit of an element x is G(x) =
{
gx : g ∈ G

}
⊂ X and the

stabilizer of x is Gx =
{
g ∈ G : gx = x

}
⊆ G. Since Gx is

nonempty (I ∈ Gx) and closed, it is a subgroup, and we can find a
transversal. If for two elements gi and gj in the transversal it
holds that gix = gjx, then g−1

i gix = g−1
i gjx = x, and

g−1
i gj ∈ Gx. Now g−1

i gjGx = Gx and giGx = gig−1
i gjGx = gjGx –

but the transversal only contains one element from each coset, so
gi = gj. Therefore |G(x)| = |G| / |Gx|.
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Searching for orbit representatives

When we know Nk+1, the number of orbits of k+ 1-element
subsets, we can find one set from each orbit as follows. If R is a
set of orbit representatives of k-subsets,

S = {A∪ {x} : A ∈ R, x ∈ X \A}

will contain at least one (maybe more) representative from each
k+ 1-subset orbit. Representatives from the same orbit must be
removed until we only have one representative from each orbit.

A simple1 idea:

for all g ∈ G:
for all A ∈ S in decreasing lex. order:

if rank
(
g (A)

)
< rank (A):

S ← S ∪
{
g (A)

}
\ {A}

if |S| = Nk+1:
return

1and wrong: consider G = {I, (1,2)(3,4), (1,4)(2,3), (1,3)(2,4)} and
S = {{1}, . . . , {4}}. Perhaps union-find or something?
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Orderly algorithm

When a group G acts on a totally ordered set X, and on the
subsets of X in the induced way, we can order the k-subsets as
follows: S ≺ T , if there is an s ∈ S, for which s ∉ T , and for all
x ≺ s either x ∈ S and x ∈ T or x ∉ S and x ∉ T .

Starting from the empty set, we can obtain the minimum
representatives of the subset orbits by the following algorithm:

orderly(S):
process S
C = {x : x ∈ X ∧ x > s∀s ∈ S}
for x in C:

if canonical(S ∪ {x}):
orderly(S ∪ {x})
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Proof: We denote F (S) = S \ {maxS}. F is weakly monotonic:
S1 < S2 ⇒ F (S1) ≤ F (S2).
Base case of induction: When n = 0, all canonical n-elements
subsets are processed.

Induction step: If all canonical n-subsets are processed, then also
all canonical n+ 1-subsets are processed. Let S be a canonical
n+ 1-subset. Since S is canonical, S ≤ g (S) for all g ∈ G, and
F (S) ≤ F

(
g (S)

)
for all g ∈ G. We find that F

(
g (S)

)
≤ g (F (S))

for all g ∈ G — both are obtained by removing one element from
g (S), in case of F

(
g (S)

)
the element maxg (S). Since

F (S) ≤ g (F (S)) for all g ∈ G, F (S) is canonical. Thus by
induction S is processed, since F (S) is canonical.
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Orderly algorithm. Example I

Sum packing modn: For a given n we find a maximum set S ⊆ Zn,
for which no x ∈ Zn can be presented as two different sums of
two elements of S. It is easy to define an order on the elements of
Zn, and this defines the lexicographical order of the k-subsets.

Functions of the form f (x) = ax + b (mod n) preserve equal
sums as equal and distinct sums as distinct, as long as
gcd (a,n) = 1. These functions form a group. The canonicity test
for a subset S can be performed by testing for all elements f in
the group, whether f (S) < S.
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Orderly algorithm. Example II

A binary code is a set of n-bit binary words. In a minimum
distance code each pair of codewords must differ in at least d
positions for some d. Equivalence: the bit positions can be
permutated freely, and the bits in some position may be flipped.
These distance-preserving operations define a group that acts on
the set of codewords; when an order has been defined on the set
of codewords, a lexicographical order can be defined on the
codes.

It can be shown that the canonicity test can be performed as
follows: consider the code as a 0/1-matrix, whose rows are
codewords and columns represent bit positions. We use
backtracking search to examine all possible permutations of the
rows. For each permutation, we flip the bits in those positions
where the first codeword has a 1, and then we sort the columns
into ascending order. The lexicographically first code obtained is
the canonical representative.
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The canonical parent method

Isomorph representatives of structures can be constructed as
follows: partition the structures to levels. When isomorph
representatives of structures at level n (the parents) have been
constructed, isomorph representatives of the structures at level
n+ 1 (the children) can be constructed as follows:

From each parent, construct some set of children. The problem is
that some children can end up being created several times 1) from
different parents 2) from the same parent.

1. For each child, we define the canonical parent, i.e., the
structure of level n from which it must be constructed, and
during the search we check that the child has been
constructed from the canonical parent. We must make sure
that each child can be created from its canonical parent.

2. Carry out isomorph elimination for children from the same
parent.
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For each level n structure p in turn we construct a set Q of level
n+ 1 structures. For each q ∈ Q we compute F

(
q
)
= p′, a level n

structure. F must preserve isomorphism: if q1 � q2, then
F
(
q1
)
� F

(
q2
)
. We reject those q ∈ Q for which p and p′ are not

isomorphic (p 6� p′). From the remaining elements in Q we
eliminate duplicates so that exactly one element from each
isomorph class remains.
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Canonical parent method for graphs
Nonisomorphic graphs can be constructed with the canonical
parent method as follows. Level n structures are the graphs with
n vertices. Let f be a function that removes the vertex with the
highest number from a labeled graph. Let c be a function that
computes the canonical form of a graph. We can define the
canonical parent function as F (G) = f (c (G)).
The only level 1 graph has 1 vertex and no edges. From level n
graphs we can construct the level n+ 1 graphs as follows:
Examine each level n graph G in turn. From G form the graphs
which can be obtained by adding a vertex v and zero or more
edges with v as an endpoint. For each graph H thus obtained
compute the canonical parent: G′ = F (H). If G 6� G′ — we may
e.g. test if c(G) ≠ c(G′) — reject H. Carry out isomorph rejection
for the children and move on to the next level n graph.

If every isomorph class of n-vertex graphs is represented, then
each n+ 1-vertex isomorph class will be represented, since for
every n+ 1-vertex graph H there is a graph H′ isomorphic to H
that can be generated from a graph isomorphic to f (c (H)).
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The canonical augmentation method
The canonical augmentation method is a stronger version of the
canonical parent method. In the canonical parent method, when
structure q is constructed from parent p, we test whether
F(q) � p. In the canonical augmentation method, we instead
consider whether the augmentation (q,p) is isomorphic to the
canonical augmentation (q, F(q)).
Now we require of F that q1 � q2 =⇒ (q1, F(q1)) � (q2, F(q2)).
That is, if q1 and q2 are isomorphic, then some group element
must map q1 to q2 and F(q1) to F(q2).
Suppose that q1 � q2, and both pass the augmentation test. Since
F must map isomorphic children to isomorphic parents, F(q1) and
F(q2) are isomorphic, and if isomorph testing has been properly
carried out on the previous levels, q1 and q2 been generated from
the same parent p. Then

(q1, p) � (q1, F(q1)) � (q2, F(q2)) � (q2, p),

so some automorphism of p must map q1 to q2. It thus suffices to
consider automorphisms of the parent to prune isomorphs from
among its children.
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Canonical augmentation method for graphs

The canonical augmentation method for graphs proceeds almost
like the canonical parent method.

Let F be a function that chooses a vertex from a graph in a
permutation-invariant manner.

When we have constructed a graph G from its parent G \ {v} by
adding a vertex v and edges with v an endpoint, we test whether
(G,G \ {v}) � (G,G \ F(G)).
In practise we may take two copies of G, color v in one and F(G)
in the other with a distinct color, and test if they are isomorphic
(the isomorphism must preserve the coloring).

To filter duplicates from the children of a parent, we need not
necessarily store them in a list. We accept the child only if it is the
lexicographical minimum representative of its orbit; it suffices to
test the automorphism group of the parent. In particular, if the
automorphism group of the parent is trivial, no pruning is
necessary.
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Computer representations of a permutation group
Computer representations of a permutation group should have the
following properties:

1. We can check whether some permutation g is in the group G
2. We can list the elements of the group

3. The space requirements are reasonable

Example

Automorphisms of the cube graph
0

1 3

2

4 6

75

Aut (G) = 〈α,β〉, where
α = (0,1,3,7,6,4) (2,5) and
β = (0,1,3,2) (4,5,7,6).
|G| = 48.
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Computer representations of permutation groups

We could store the permutations in the group, for example in
lexicographical order.

1. We can determine by binary search whether g ∈ G.

2. We can easily list the elements

3. We need a lot of space; Sym (n) has n! permutations
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Computer representations of a permutation group

We could store only some set of generators for the group.

3. We need little space, but

1.–2. We must carry out a (say) breadth-first search to generate all
elements, and we will get duplicates; in our example
αααααβββ = αβαα.

Simplegen(Γ):
G ←∅
N ← {I}
while N ≠∅:

G ← G ∪N
N ← NΓ \G

where Γ is the set of generators and NΓ is
{
ng : n ∈ N,g ∈ Γ}.
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Schreier-Sims

Let G be a permutation group over X = {0, . . . , n− 1}.
We write

G0 =
{
g ∈ G : g (0) = 0

}
.

G0 is the subgroup of G that stabilizes the point 0.

The orbit of the element 0 under the action of G is

G(0) = {g(0) : g ∈ G} = {x0,1, x0,2, . . . , x0,n0}.

We form U0 by choosing for each element x0,i in the orbit of 0an
element h0,i in G, such that h0, i(0) = x0,i.

Now U0 is a left transversal of G0 (G = U0G0): Every g ∈ G maps 0

onto some x0,i, g = h0,i

(
h−1

0,ig
)
, and h−1

0,ig ∈ G0. Thus g ∈ h0,iG0.
U only contains one representative from each coset of G0: the
elements in each coset h0,iG0 map 0 onto a different x0,i.
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Schreier-Sims

Let us apply the idea recursively:

G0 =
{
g ∈ G : g (0) = 0

}
G1 =

{
g ∈ G0 : g (1) = 1

}
G2 =

{
g ∈ G1 : g (2) = 2

}
...

Gn−1 =
{
g ∈ Gn−2 : g (n− 1) = n− 1

}
= {I}

Now G ⊇ G0 ⊇ . . . ⊇ Gn−1 = {I}.
The Schreier-Sims representation of the group Gis
G = U0U1 . . .Un−1.
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Schreier-Sims: Example

0

1 3

2

4 6

75

For the cube graph we may choose e.g.

U0 =



(0) (1) (2) (3) (4) (5) (6) (7) ,
(0,1,3,7,6,4) (2,5) ,
(0,2,6,4) (1,3,7,5) ,
(0,3,6) (1,7,4) (2) (5) ,
(0,4,6,7,3,1) (2,5) ,
(0,5,3,6) (1,7,2,4) ,
(0,6,3) (1,4,7) (2) (5) ,
(0,7) (1,6) (2,5) (3,4)


U1 =


(0) (1) (2) (3) (4) (5) (6) (7) ,
(0) (1,2) (3) (4) (5,6) (7) ,
(0) (1,4,2) (3,5,6) (7)


U2 =

{
(0) (1) (2) (3) (4) (5) (6) (7) ,
(0) (1) (2,4) (3,5) (6) (7)

}
and U3, . . . ,U7 = {(0) (1) (2) (3) (4) (5) (6) (7)}.
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Schreier-Sims

For a group G, when we know the Schreier-Sims representation
U0U1 . . .Un−1, it is easy to go through all elements in a recursive
fashion: just compute all g = u0u1 . . . un−1, where ui ∈ Ui.

Testing whether a given g is in G goes as follows. Every g ∈ G can
be written in the form u0u1 . . . un−1. First we examine g (0) to
deduce, which u0 ∈ U0 must be chosen (the one for which
u0 (0) = g (0)). After this the problem is reduced to testing
whether u−1

0 g ∈ G0, that is, we will try to write u−1
0 g in the form

u1 . . . un, etc.

Test
(
n,g,G = [U0, . . . ,Un−1]

)
:

for i← 0 to n− 1:
if there is a h ∈ Ui, for which h(i) = g (i):

g ← h−1g
else:

return i
return n
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Computing a Schreier-Sims representation

enter
(
n,g,G = [U0,U1, . . . ,Un−1]

)
:

i←test
(
n,g,G = [U0,U1, . . . ,Un−1]

)
if i = n

return
Ui ←Ui ∪

{
g
}

for j = 0 to i:
for h ∈ Uj:

enter
(
n,gh,G

)
main:
for i← 0 to n− 1:

Ui ← {I}
for α ∈ Γ :

enter(n,α,G = [U0, . . . ,Un−1])
return G

The Enter function tests
whether g belongs to the
group G, given in
Schreier-Sims form, and if
not, it adds g to the
generators.
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Schreier-Sims basis change

Previously the points were fixed in the order 0, . . . , n− 1. Of
course the points may be fixed in an arbitrary order. We choose a
permutation β of the elements {0, . . . , n− 1}, and

G0 =
{
g ∈ G : g (β (0)) = β(0)

}
,

and
Gi =

{
g ∈ Gi−1 : g (β (i)) = β(i)

}
.

All operations are performed exactly analogously.

As a new operation, we have changing the basis: change the
group given in β to the basis β′. This can be done by using the
Enter procedure to add each of the permutations in basis β to the
Schreier-Sims representation in basis β′.

Harri Haanpää 133

T–79.5202 Combinatorial algorithms Spring 2008

Minimum representative of the orbit of a
k-permutation

Suppose that we have a k-permutation t = (t1, . . . , tk), whose
elements ti ∈ X. When G acts on the ordered set X, it induces an
action on the set of k-permutations. We will find the
lexicographical minimum representative minG(t) of the orbit.

First, t1 must be mapped to an element that is as early in the
ordering of T as possible.We will compute t′1 =minG(t1) e.g. by
applying the generators of G and breadth-first search, and we also
find a g for which t′1 = g (t1). We then compute t′ = g (t) and
next we find minGt′1 (t

′), etc. The necessary stabilizer-subgroups
can be computed for example by Schreier-Sims basis changes.
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Minimum representative of the orbit of a k-subset

Suppose that we have a k-subset T = {t1, . . . , tk} of an ordered set
X. When G acts on X, it induces an action on the k-subsets. We
will determine the lexicographical minimum representative
minG(T) of the orbit.

For each ti we find the minimum element of its orbit minG(ti)
and the corresponding group element gi. Suppose that
t′ =mingi (ti) with g′ the corresponding element. We compute
T ′ = g′ (T) and apply the method recursively to determine
minGt′1 (T

′).
If at some stage there are several ti, for which t′ = gi (ti), we
must use backtracking search to consider each alternative in turn.

Again, the necessary stabilizer subgroups can be computed by
Schreier-Sims basis changes.
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Invariants

A function φ is a graph invariant, if its value does not depend on
the labelling of the vertices:

φ(G) = φ(π (G)) for all π ∈ Sym (V) .

For example when V = {v1, . . . , vn},

φ(G) =
[
deg (v1) , . . . ,deg (vn)

]
is not an invariant, but the multiset

φ(G) =
{
deg (v1) , . . . ,deg (vn)

}
is; thus a graph invariant can be obtained by sorting the list of
vertex degrees in ascending order. If φ(G1) ≠ φ(G2), then G1

and G2 cannot be isomorphic.
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Vertex invariants

Let F be a family of graphs over the vertex set V . The function
D : F × V , R is a vertex invariant, if its value does not depend on
the labeling of the vertices:

D (G,v) = D (π (G) ,π (v)) for all π ∈ Sym (V) .

For example deg (v) or the number of triangles that contain v.
For later use we assume that R is totally ordered.
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Of invariants

We may use vertex invariants to construct graph invariants. For
example the vertex invariant D : F × V , R gives us the graph
invariant φD,r (G) = |BD [r]|, where
BD [r] = {v ∈ V : D (G,v) = r} .
Vertex and graph invariants can be combined to form new
invariants:

φ(G) = [φ1 (G) , . . . ,φn (G)]

and
D (G,v) = [D1 (G,v) , . . . ,Dn (G,v)] .

The order of the values of D (G,v) can be chosen to be e.g. the
lexicographical order of lists.

Vertex invariants yield new vertex invariants, e.g., how many
edges connect v to vertices in BD [r]:

D′r (G,v) =
∣∣{v,v′} ∈ E : v′ ∈ BD [r]

∣∣ .
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Certificates

Two nonisomorphic graphs may have the same invariant. For a
family of graphs F , a certificate c is a function for which
c (G1) = c (G2) if and only if G1,G2 ∈ F are isomorphic.

A certificate is also an invariant.
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Eccentricity of a vertex and center of a tree
In a graph, let d(v1, v2) be the length of the shortest path
between v1 and v2. Let e (v) =maxv′∈V d(v,v′) be the
eccentricity of v.

The center of a connected graph consists of the vertices with
minimum eccentricity. The center of a tree contains at most 2
vertices, which are neighbors of each other.

Proof: Let e (v1) = e (v2) ≤ e (v′) for all v′ ∈ V , let {v1, v2} ∉ E
and let v3 some vertex on the path from v1 to v2. Let v4 be a
vertex for which d(v3, v4) = e(v3). Either the path from v1 to v4

or the path from v2 to v4 travels via v3; thus either e(v1) > e(v3)
or e(v2) > e(v3) — a contradiction. Since the vertices in the center
are neighbors, they form a clique, but in a tree the maximum
possible clique has two vertices.

If a tree contains internal nodes, a leaf node cannot be in the
center, since its neighbor will have lower eccentricity. If we
remove the leaf nodes from such a tree, the eccentricity of the
remaining vertices is reduced by one.
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A certificate for rooted trees

A rooted tree is a tree where one vertex has been designated as
root. We compute a certificate: we remove the root v, after which
we have one or more subtrees. We compute the certificate for
each of the subtrees, with the neighbor of v as the root. The
certificate is then obtained by concatenating 0, the certificates of
the subtrees in lexicographical order, and 1.

A certificate for trees
If there is only one vertex in the center of the tree, use it as root
and compute the certificate as for a rooted tree.

If there are two vertices in the center, remove the edge between
them, and consider each of them as root for computing the
certificate for the subtrees. Finally, concatenate the certificates in
lexicographical order.
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A certificate for trees

The certificate on the previous slide can be computed as follows.
This method searches for the center while computing the
certificate, and parts of the certificate may end in a slightly
different order.
Label each vertex with 01.
As long as there are at least 2 vertices:

set T ← internal nodes (deg > 1)

for each x ∈ T :

ñ from the label of x, remove the 0 at start and 1 at end
ñ form the multiset Y from the labels of x and its neighbors
ñ concatenate the elements of Y in lexicographical order, prepend a 0 and

append a 1, and label x with the result

remove the neighboring leaf nodes from x

If only one vertex remains, its label is the certificate; if two vertices remain, the

certificate is obtained by concatenating their labels in lexicographical order
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A certificate for graphs

When permuting the vertices of a graph G = (V ,E) with the
permutation π ∈ Sym (V ) we obtain the incidence matrix

Aπ (G) [u,v] =
{

1, if {π (u) ,π (v)} ∈ E
0 otherwise

Numπ (G) is obtained by reading the elements below the diagonal
in Aπ (G) as a binary number:
a21 a31a32 a41 . . . a43 a51 . . . a54 . . . an1 . . . ann−1

In computing the simple certificate:

min {Numπ (G) : π ∈ Sym (V)}

we simultaneously determine the maximum independent set,
which is an NP-hard problem. However, graph isomorphism is not
believed to be that difficult.
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Idea: order the vertices in an order determined by some vertex
invariants. Partition the vertices accordingly into an ordered
partition B. Let ΠG be the set of permutations that preserve the
ordered partition: if u ∈ Bi and v ∈ Bj, then π (u) < π (v), if
i < j. Now

cert (G) =min
{
Numπ (G) : π ∈ ΠG} .
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Certificate for graphs / refining a partition

Let B =
[
Br0 , . . . , Brk−1

]
be an ordered partition (based on vertex

invariants) of the vertices of G. If B is discrete (each nonempty
B [i] contains exactly one element), we are done; otherwise we will
try to form even better vertex invariants, so that ΠG would be
reduced in size..

We write DT (G, v) = |v′ : {v,v′} ∈ E, v′ ∈ T |. This invariant tells
us the number of neighbors v has in T .

We will refine the partition: if there are vertices u,v ∈ Bri and
some T = Brj such that DT (G, u) ≠ DT (G, v), we partition Bri into
smaller parts according to DT and order the new smaller
partitions in ascending order of values of DT . When
DBri (G, u) = DBri (G, v) for all i and u,v ∈ Bi, the partition B is
equitable. It is important that the order in which the refining
operations are carried out is invariant!
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For example:

Refine(A):
B ← A
let S be a list of elements of B
while S ≠∅:

remove the first element T from S
for each B [i] ∈ B (in order):

for each h: L [h]←
{
v ∈ B [i] : DT (G, v) = h

}
if there are more than one nonempty L [h]:

replace B [i] with the sets L [h1] . . . L [hn] (in order)
append the sets L [h] to S (in order)
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A certificate for graphs

We will compute a certificate for the graph G = (V ,E). We start
from the partition B = {B0}, where B0 = V . We refine the partition
until it is discrete, and then we will permute the vertices according
to the discrete ordered partition, and find the value of the
certificate.

If the partition is equitable but not discrete, we will find the first
set with more than one element. For each element in that set in
turn, we will split that element into a part of its own and apply
recursively; the certificate is then the minimum value obtained in
any search branch.
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cert(B,G):
refine(B)
if B is discrete:

compute π from B; return Numπ (G)
else:

find the least i, for which |Bi| > 1
best ←∞
for each x ∈ Bi:

B′ = [B0, . . . , Bi−1, {x} , Bi \ {x} , Bi+1, . . .]
t ← cert (B′,G)
if t < best: best ← t

return best
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Using symmetries

If we obtain the same certificate value in two search branches,
Numπ (G) = Numµ (G), then π (G) = µ (G), and π−1µ (G) = G, so
π−1µ is an automorphism of G.

We may consider the automorphisms found as generators of a
group and present them in the Schreier-Sims form.

When we have reached the point in the search where Bi is the first
set with |Bi| > 1, we first choose some x ∈ Bi and examine that
branch as before. After this we can perform a basis change with
the known automorphisms such that for k < i βk is the element in
Bk, and βi = x. Now Ui (x) is the orbit of x under the known
automorphisms that stabilize B1 to Bk; from that orbit it suffices
to consider x only.

Naturally, if (at least a part of) the automorphism group is known
in advance, we may enter that into the Schreier-Sims
representation in advance.
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Isomorphism of set systems

The isomorphism of set systems (X,B) can be treated as graph
isomorphism as follows:

Represent the set system as a bipartite graph G = (V ,E), where
V = X ∪B, and E = {{x,B} : x ∈ X, B ∈ B, x ∈ B}. After this we
only need to take care that we will not confuse the X vertices and
B vertices; we can initialize the certificate computation with the
vertex partition [X,B].
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Subset orbits

Let G be a permutation group on X and S ⊆ X. The induced
action of a group element g ∈ G on S is such that
g (S) =

{
g (s) : s ∈ S

}
. Thus G also permutes the subsets of X.

The orbit of S is G(S) =
{
g (S) : g ∈ G

}
. If a set system has a

nontrivial automorphism group, the set of its blocks must be a
union of the subset orbits: if S ∈ B, we must also have g (S) ∈ B
for all g ∈ G.

The stabilizer of S in G is GS =
{
g ∈ G : g (S) = S

}
. Again, GS is a

subgroup of G, as it is nonempty and closed.

Lemma: |G| = |G(S)| · |GS|.
Proof: As on the slide “The orbit of an element”; the group is
thought to act on the subsets of X.

There are |G| / |GS| left cosets, and each of them maps S onto
different sets, so |G(S)| = |G| / |GS|.
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Subset orbits. Example: Ramsey number

The Ramsey number R (k, l) is the least integer n, for which all
n-vertex graphs contain a k-vertex clique or an l-vertex
independent set. We show that R (3,4) > 8 by finding an 8-vertex
graph with no 3-vertex clique and no 4-vertex independent set.

We shall limit the search space by guessing that we may find a
graph G = (V = {0,1, . . . ,7} ,E) whose automorphism group
contains the cyclic group: 〈(0,1,2,3,4,5,6,7)〉. That is, we
require E to be a union of orbits of 2-subsets of V under
〈(0,1,2,3,4,5,6,7)〉.
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Subset orbits. Example: Ramsey number

The orbits of 2-subsets of V are

O1 = {{0,1} , {1,2} , {2,3} , {3,4} , {4,5} , {5,6} , {6,7} , {0,7}}
O2 = {{0,2} , {1,3} , {2,4} , {3,5} , {4,6} , {5,7} , {0,6} , {1,7}}
O3 = {{0,3} , {1,4} , {2,5} , {3,6} , {4,7} , {0,5} , {1,6} , {2,7}}
O4 = {{0,4} , {1,5} , {2,6} , {3,7}} .

3
4

5

0
7 1

26

3
4

5

0
7 1

26

3
4

5

0
7 1

26

3
4

5

0
7 1

26

By trial and error we may find that the edge sets E = O3 ∪O4 and
E = O1 ∪O4 satisfy our criteria.
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Subset orbits. Example: Ramsey number
R(5,9) > 120

There is a 120-vertex graph with no 5-vertex clique and no
9-vertex independent set. It can be found by a tabu search:

ñ Partition the edges into orbits under G = 〈(1, . . . ,120)〉.
ñ Choose a random subset of the orbits

ñ Repeatedly add or remove the edges in such an orbit that the
change moves us to a graph with as few 5-vertex cliques and
9-vertex independent sets as possible.

ñ However, never add or remove edges in an orbit that has been
added or removed within the previous 12 moves.

(V ,E), where E = {{v,v + d (mod 120)} : d ∈ S,v ∈ V},
V = {0, . . . ,119} and S = {2,3,6,7,13,15,17,18,19,20,22, 23,
28, 29, 31, 33, 41, 42,43,45,48,52,53,54,60}, satisfies the
conditions.
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Generating symmetrical objects

If the search space for a combinatorial object is too large, we may
limit the search space by limiting the search to objects with (at
least) a given automorphism group.

Example

X = {0, . . . ,24} and G = 〈(0,1, . . . ,24)〉.
When B is the union of the orbits of the sets {0,8,13}, {0,2,3},
{0,4,11} and {0,6,15}, then (X,B) is STS (25). (A Steiner triple
system with |X| = 25; each pair in X appears in exactly one triple
in B.

We could of course list all hundred triples.
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Orbit incidence matrices

When G is a permutation group on X and 0 ≤ t ≤ k ≤ |X|, the
orbit incidence matrix Atk is an Nt ×Nk-matrix, where row i
corresponds to the t-subset orbit ∆i, column j corresponds to the

k-subset orbit Γk, and aij =
∣∣∣{K ∈ Γj} : K ⊃ T0

∣∣∣, where T0 ∈ ∆i.
It turns out that aij =

∣∣∣{K ∈ Γj} : K ⊃ T0

∣∣∣ does not depend on the
chosen T0 ∈ ∆:

If T0, T ′0 ∈ ∆, there is some g ∈ G for which g (T0) = T ′0. If
T0 ⊆ K ∈ Γ , then T ′0 ⊆ g (K).
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Orbit incidence matrix. Example.

Let X = {0, . . . ,4} and G = 〈(0,1,2,3,4)〉.
The 2-subset orbits are

∆1 = {{0,1} , {1,2} , {2,3} , {3,4} , {4,0}} and∆2 = {{0,2} , {1,3} , {2,4} , {3,0} , {4,1}} .

The 3-subset orbits are

Γ1 = {{0,1,2} , {1,2,3} , {2,3,4} , {3,4,0} , {4,0,1}} andΓ2 = {{0,1,3} , {1,2,4} , {2,3,0} , {3,4,1} , {4,0,2}} .

The orbit incidence matrix A23 =
(

2 1
1 2

)
. For example a22 can

be computed by choosing T0 = {0,2} ∈ ∆2 and observing that T0

is contained in two of the sets in Γ2, that is, in ({2,3,0} and
{4,0,2}).
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Computing the orbit incidence matrix

The following algorithm computes the orbit incidence matrix in a
naive manner. R and S are the sets of orbit representatives of t-
and k-subsets (t ≤ k) respectively.

for g ∈ G:
for T ∈ R:

for K ∈ S:
if T ⊆ g (K):

A [T ,K]← A [T ,K]+ 1
for K ∈ R:

stab ← 0
for g ∈ G:

if g (K) = K:
stab ← stab + 1

for T ∈ R:
A [T ,K]← A [T ,K] /stab
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Burnside’s lemma

(Frobenius, 1887) If a finite group G acts on a finite set X, and N
is the number of orbits, then

N = 1
|G|

∑
g∈G

F
(
g
)
,

where F
(
g
)

is the number of x ∈ X for which gx = x.

Proof: in the above sum each x ∈ X is counted |Gx| times (by
definition of Gx). If x and y are in the same orbit, then

|Gx| =
∣∣∣Gy∣∣∣, so every one of the |G|/|Gx| elements is counted

|Gx| times; in total, |G| times. Each orbit contributes |G| to the
sum, so dividing the sum by |G| gives us the number of orbits.
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Burnside’s lemma on k-subsets

Let us consider k-subsets of some set, upon which a permutation
group acts in the natural way.

We denote with F(g) the number of k-subsets fixed by g:

F
(
g
)
=
∣∣{S ⊆ X} : |S| = k and g (S) = S

∣∣ .
To compute F(g) we first find the lengths of the cycles in g and
write

type
(
g
)
= [t1, . . . , tn] ,

where ti is the number of cycles of length i. If g (S) = S, then S is
the union of the elements in some cycles of g.

If S contains ci cycles of i vertices, then we must have ci ≤ ti, and

k =
∑
i ici. For given values of ci there are

∏
i

(
ti
ci

)
such sets.
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Burnside’s lemma on k-subsets

For given k and [t1, . . . , tn] we compute all possible combinations
of ci for which ci ≤ ti and k =

∑
i ici:

chiG(n, k, i, t):
if i = 1: χ ← 0
if i = n+ 1:

if k = 0:
χ ← χ +

∏
i

(
ti
ci

)
return

Ci ← {0, . . . ,min (ti, bk/ic)}
for x ∈ Ci:

ci ← x
chiG(n, k− ici, i+ 1, t)

return χ
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Burnside’s lemma. Example

How many essentially different flags with five stripes are there,
when each stripe is either blue, white, or red? Flags are not
considered essentially different, if one is obtained from the other
by mirroring.

Flags may be viewed as lists [c1, c2, . . . , cn], where each ci ∈ C.
There are a total of |C|n color combinations. The group consists
of two permutations, identity and the mirroring τ, which acts on
the flag such that τ [c1, . . . , cn] = [cn, . . . , c1]. For each of these
permutations π we compute number of flags fixed by the
permutation. F (I) = |C|n and F (τ) = |C|dn/2e so the number of
flags is

N = 1
2

(
|C|n + |C|dn/2e

)
or in this example

1
2 (243+ 27) = 135.
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