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Problems

Graphs: basic concepts

* 1. Find the adjacency matrix and the incidence matrix of the Petersen graph
shown below.

** 2. The Petersen graph is a so called (3, 5)-cage. In general a (k, n)-cage is
the graph with the minimum number of vertices such that every vertex is
of degree k and that the length of the shortest cycle in the graph is n. (a
k-regular graph of girth n)

Show that a (k, 5)-cage must have at least k2 + 1 vertices.

Lexicographical order of k-subsets

* 3. (a) Find the 100th 3-subset, in lexicographical order, of {1, 2, . . . , 10}.
(b) Find the lexicographical rank of {3, 5, 7} among the 3-subsets of
{1, 2, . . . , 10}.

** 4. (a) Let S = {2, 3, 5, 7, 11, 13}. What is the rank of {3, 7, 13} among the
3-subsets of S?

(b) Show that unranklex(ranklex({3, 7, 13})) = {3, 7, 13}.

Minimum change order for subsets

* 5. (a) Find the rank of the codeword 00101011 in the binary reflected Gray
code G8.
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(b) Find the 50th codeword in the binary reflected Gray code G8.

* 6. Let d ≥ 2 be an integer and V := {0, 1}d, that is, V consists of 0 − 1
strings of length d. Define the set of undirected edges E so that there is
an edge between vertices x, y ∈ V if x and y differ at exactly one position.
Considering the graph (V , E), find

(a) the degree of the vertices,

(b) the length of the shortest cycle (the girth of the graph), and

(c) the length of the longest cycle (the circumference of the graph).

*** 7. Let 1 ≤ k ≤ n. Remove from the binary reflected Gray code Gn all code-
words whose Hamming weight is not k. Show that the remaining code-
words form a minimum change order of the k-subsets of an n-element set.

Finding a rank and unrank function

** 8. Find the lexicographical rank- and unrank-functions for car license plates
of the form

X1X2X3 - Y1Y2Y3

where X1, X2, X3 ∈ {A, B, C, D, . . . , Z} and Y1, Y2, Y3 ∈ {0, 1, 2, . . . , 9}.
What is the rank of the license plate IOI-010?

Cycle and list presentations of permutations

* 9. (a) Represent the permutation π1 = [2, 4, 6, 7, 5, 3, 1] as a product of dis-
joint cycles.

(b) Represent the permutation π2 = (1, 5, 6)(2, 4, 3)(7) as a list.

(c) Determine the inverse permutations π−1
1 ja π−1

2 .

(d) Find the products π1π2 and π2π1.

* 10. Suppose that p, q, r1, . . . , rk, s1, . . . , sl, where k, l ≥ 0, are distinct ele-
ments. Simplify the following permutations, given as products of cycles, to
products of disjoint cycles:

(a) (p, q)(p, r1, . . . , rk, q, s1, . . . , sl)

(b) (p, q)(p, r1, . . . , rk)(q, s1, . . . , sl)
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** 11. A permutation π is even, if it can be expressed as the product of an even
number of transpositions. Similarly π is odd if it can be expressed as the
product of an odd number of transpositions.

Show that every permutation is either even or odd.

* 12. (a) Let r ≥ 1. Present the r-sykli (1, 2, . . . , r) as a product of transposi-
tions.

(b) Based on the previous, represent the permutation [2, 4, 6, 7, 5, 3, 1] as
a product of transpositions. Is the permutation even or odd?

Rank and successor of permutations

* 13. Find the rank and successor of [2, 4, 6, 7, 5, 3, 1] both in lexicographical
and Trotter–Johnson order.

Integer partitions

* 14. Find the rsf-lex rank and successor of 1 + 3 + 4 + 6 + 6 + 8.

** 15. How many ways of partitioning 20 people into 5 groups are there, if no two
groups are allowed to be of the same size? A group may also be empty.

The Prüfer correspondence

* 16. (a) Find the Prüfer list presentation of the labeled tree below.

5

2

1

6

4

3

7

(b) Which labeled tree has the Prüfer list presentation [5, 5, 4, 3, 2]?
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Catalan families

*** 17. The four-term product abcd can be grouped into products of two terms in
five different ways:

((ab)c)d, (a(bc))d, a((bc)d), a(b(cd)), (ab)(cd).

In general there are n+1 terms. Find a bijection between the groupings of
terms and the Catalan family Cn. (Hint: every grouping can be presented
as a binary tree, whose leaves correspond to the terms in the product.)

Backtrack search

* 18. Describe backtracking algorithms for the following problems:

(a) Find all ways of placing n queens on an n× n chess board so that no
two queens threaten each other.

(b) Find the k-colorings of the graph G.

(c) A (self-avoiding walk) starts at the origin and takes steps of length 1.
Each step goes up, down, left, or right, and no point in the plane is
visited twice. Find all self-avoiding walks of length n.

(d) A Steiner triple system STS(n) is the pair (P ,B), where P is an n-
element set and B is a set of n(n − 1)/6 3-subsets of P , where each
pair of points occurs in exactly one triplet. A Steiner triple system can
only exist if n ≡ 1 mod 6 or n ≡ 3 mod 6. Find all Steiner triple
systems STS(n).

*** (e) Given an n×n position in a minesweeper game, find the squares that

i. cannot contain a mine, and
ii. those that must contain a mine.

(The number of mines is assumed to be unknown.)

** 19. A Latin square of order n is an n × n-array, whose every row and column
contains each of the numbers 1, . . . , n exactly once. A Latin square is said
to be in reduced form, if the elements in the first row and column appear
in the order 1, 2, . . . , n. Write a program that uses backtrack search to
compute the number of reduced Latin squares of order n.
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Improving performance of backtrack search

*** 20. Continuation of * 18. (e). Find methods of making the backtrack search to
find consistent sets in minesweeper more efficient.

Branch and Bound

* 21. There is a directed graph G with a named source vertex s. Each edge e has
a weight w(e). It can be positive or negative. Let a path be constructed as
follows.

(a) Let v0 ← s.

(b) For each vi, choose vi+1 ∈ N(vi)
{v0, .., vi}

Problem is to find a path constructed this way which maximises the sum of
its edge weights.

(a) How could you apply the Branch and Bound method in this game?

(b) If every 2nd choice was done by an opponent trying to make the sum
as negative as possible, can Branch and Bound be used?

Maximum Clique

* 22. Find all maximal cliques of the graph below.

6

5

0

1

24

3

** 23. How could you use maximum clique problem in solving the n queens prob-
lem defined in * 18. (a)?
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Exact Cover

*** 24. How could you use the exact cover problem to represent the problem of
k-coloring of the graph G, when k = 2? For k > 2 the problem is NP-
complete, but for k = 2 it reduces into a polynomial problem. Can this be
seen from the representation?

Graph coloring

** 25. The chromatic number of a graph G is defined by

χ(G) = min{k | G has a vertex k-coloring}

and the clique number by

ω(G) = max{k | G contains a k-vertex clique}.

According to Lemma 4.4 ω(G) ≤ χ(G). Show that the inequality can be
proper:find a graph for which ω(G) < χ(G).

** 26. Let G be a graph whose vertices are ordered. A greedy graph coloring al-
gorithm colors the vertices in order, one at a time, so that each vertex in
turn is colored with the least color (suppose that the colors are ordered)
that does not appear among its already colored neighbors.

(a) Find an infinite family of graphs whose vertices are ordered so that the
greedy algorithm does not produce the optimal coloring. (A coloring
is optimal if the number of colors equals χ(G).)

(b) Does every graph have such an ordering of the vertices that the greedy
algorithm produces an optimal coloring?

Cost function, neighborhood

* 27. Find a sensible cost function and neighborhood for the following hard
combinatorial optimisation problems.

(a) The symmetric traveling salesman problem.

(b) Coloring a graph with n colors so that neighboring vertices are of
different color.
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(c) Graph partitioning: Partition the vertices of a graph (of which there
are an even number) into two parts of equal size so that the number
of edges between the parts is as small as possible.

(d) Number partitioning: Partition the set A = {a1,a2, . . . , an} into two
parts A1 and A2 so that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and∑

a∈A1

a =
∑
a∈A2

a.

** 28. Find a graph and a valid partitioning for its vertices [X1, X2] (|X1| = |X2|),
which is a local optimum (when the neighborhood is swapping one vertex
from X1 to X2 and vice versa) but which is not a global optimum (there is
a better feasible solution obtainable by swapping two vertices between X1

and X2).

Simulated annealing

** 29. Give an algorithm based on simulated annealing for the maximum clique
problem.

Configuration graphs

Let us investigate the graphs defined by the neighborhoods in local search. The
vertices of the configuration graphs are all elements of the search space X , and
two vertices are connected by an edge if and only if they belong to the neighbor-
hood of each other. (Assume that the neighborhood N : X → 2X is symmetric,
that is, that for all x, y ∈ X it holds that x ∈ N(y) if and only if y ∈ N(x).)

** 30. Give a sensible configuration graph for the following problems:

(a) Exact cover: from a collection of subsets of a given base set, find such
a collection of subsets that every element of the base set appears in
exactly one of them.

(b) Graph coloring with at most k colors.

(c) Traveling salesman problem (with the transposition neighborhood).

(d) Graph partitioning: Given a graph, partition its vertices (of which
there are an even number) into two parts of equal size such that the
number of edges between the parts is as small/large as possible.
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(e) Find a k-clique in a given graph.

** 31. In the context of local search, some interesting properties of the configura-
tion graph include

(a) the number of vertices (order of the graph)

(b) number of neighbors of vertices (vertex degree)

(c) whether the graph is connected, that is, whether from every node
there is a path to every other node

(d) the length of the shortest cycle (girth)

(e) the length of the longest cycle (circumference)

(f) the maximum length of a shortest path between two vertices (the di-
ameter of the graph)

Determine these properties for the configuration graphs in Problem ** 30..

Tabu search

** 32. Give some suitable tabu conditions for use with the following optimisation
problems introduced in Problem * 27. (use the same neighborhood and
objective function as in Problem * 27.).

(a) The symmetric traveling salesman problem.

(b) Coloring a graph with k colors so that neighboring vertices are always
of different colors.

(c) Graph partitioning: Given a graph, partition the vertices (of which
there are an even number) into two parts of the same size so that the
number of edges between the two parts is as small as possible.

(d) Number partitioning: partition the set A = {a1,a2, . . . , an} into two
parts A1 ja A2 such that A1 ∪ A2 = A, A1 ∩ A2 = ∅ and∑

a∈A1

a =
∑
a∈A2

a.

Groups

* 33. Let G be a nonempty set (g1, g2) 7→ g1 · g2 a mapping from G × G to G
that satisfies (a)–(c).
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(a) for all g1, g2, g3 ∈ G it holds that (g1 · g2) · g3 = g1 · (g2 · g3).
(b) there exists an element 1 ∈ G, for which g · 1 = g for all g ∈ G.
(c) for all g ∈ G there is an element g−1 ∈ G, for which g−1 · g = 1.

Show that then the element 1 ∈ G may not be unique.

What if (b) is replaced with “there exists an element 1 ∈ G, for which
1 · g = g for all g ∈ G” ?

** 34. Let G be a finite group, H a subgroup of G, and K a subgroup of H .
Let {g1, . . . , gn} be a left transversal of H with respect to G, and let
{h1, . . . , hm} be a left transversal of K with respect to H . Show that any
g ∈ G can be represented in the form g = gi · hj · k, where k ∈ K ja
1 ≤ i ≤ n, 1 ≤ j ≤ m.

Schreier–Sims generators

** 35. Consider the permutation group G over {0, 1, . . . , 9} with the Schreier–
Sims representation

−→
G = (β : [U0,U1, . . . ,U9]) ,

where β = I and

U0 =


I, (0, 1, 3, 6) (2, 5, 9, 7) (4, 8) , (0, 2, 5, 9, 6) (1, 4, 8, 3, 7) ,
(0, 3) (1, 6) (2, 9) (5, 7) , (0, 4, 9, 6) (1, 2, 5, 8) (3, 7) ,
(0, 5, 6, 2, 9) (1, 8, 7, 4, 3) , (0, 6, 9, 5, 2) (1, 7, 3, 8, 4) ,
(0, 7, 6) (1, 2, 8) (3, 4, 9) , (0, 8, 4, 1, 9) (2, 5, 3, 6, 7) ,
(0, 9, 2, 6, 5) (1, 3, 4, 7, 8)

 ,

U1 =


I, (1, 2) (3, 4) (6, 7) , (1, 3, 6) (2, 4, 7) (5, 9, 8) ,
(1, 4) (2, 3) (6, 7) (8, 9) , (1, 6) (2, 7) (5, 9) ,
(1, 7, 3, 2, 6, 4) (5, 8, 9)

 ,

U2 = {I} , U3 = {I, (3, 6) (4, 7) (5, 8)} ,

U4 = U5 = U6 = U7 = U8 = U9 = {I} .

Which of the following permutations are in G?

(a) α = (0, 1, 2, 3, 4, 5, 6)

(b) β=(0, 1, 2, 3, 4) (5, 6, 7, 8, 9)

(c) γ=(0, 3, 5, 8, 7) (1, 9, 2, 6, 4)

What is the order (number of elements) of G?
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Counting permutations, partitions and colorings

** 36. How many different ways are there to label the six sides of a die, which each
side labeled with a different number? (The die is assumed to be completely
symmetrical and the orientation of the numbers on the sides is considered
insignificant.) How about the 12 sides of a dodecahedron?

** 37. How many ways of partitioning a 19-set into one 4-set and three 5-sets are
there? One such partitioning is, for example,

{{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, {16, 17, 18, 19}}.

** 38. A square is split into 9 small squares, some of which are colored black. Two
colorings are considered the same, if one can be obtained from the other
by rotating and/or mirroring the whole square.

0 1 2

3 4 5

6 7 8

(a) How many different ways of coloring 5 small squares are there?
(b) Give all eight different ways of coloring 2 small squares.

Orbits, stabilizers

** 39. Let G be the graph given below.

0

1

4

7

3

6

5

2
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Find the orbits and stabilizers of the subsets {0, 7} and {0, 1, 2, 3} with
respect to the group Aut(G). Additionally, for both stabilizer subgroups,
find some left transversal with respect to Aut(G). (The elements of Aut(G)
are listed in Table 6.1 of the book, and the Schreier–Sims presentation is
given in Example 6.7.)

Invariants

* 40. Show, by using a suitable invariant, that the graphs given below are not
isomorphic.

(a)

(b)

Ramsey numbers and edge-coloring complete graphs

** 41. The Ramsey number R (k, l) is the least integer n, for which it holds that all
edge 2-colorings of Kn, the complete graph on n vertices, contain a Kk in
the first or a Kl in the second color as a subgraph. Show that R (3, 4) > 8
by constructing an edge 2-coloring of K8 that contains neither a K3 in the
first color nor a K4 in the second color and which has cyclic symmetry.

Certificates

* 42. Check whether the trees given below are isomorphic by computing certifi-
cates for each of them.
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* 43. Transform the certificate obtained as a result of Problem * 42. back into a
tree.

Coarsest equitable refinement of a partition

** 44. Partition the vertex set of the graph given below according to the degrees of
the vertices, and find the coarsest equitable refinement of the partition.

6

5

0

1

24

3

Graph isomorphism

*** 45. Find an isomorphism between the given graphs, and find the order of the
automorphism groups. (Hint: the automorphism groups are vertex transi-
tive.)1.)

1A permutation group G ⊆ Sym({0, 1, . . . , n− 1}) is transitive if for all x, y ∈ {0, 1, . . . , n−
1} there exists a g ∈ G for which y = g(x).
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Solutions to problems

Problem * 1.

First label the vertices of the Petersen graph as below.

1

5

9

2

7

4

3

8

6

0

Then the adjacency matrix is

0 1 2 3 4 5 6 7 8 9
0 0 1 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0
2 0 1 0 1 0 0 0 1 0 0
3 0 0 1 0 1 0 0 0 1 0
4 1 0 0 1 0 0 0 0 0 1
5 1 0 0 0 0 0 0 1 1 0
6 0 1 0 0 0 0 0 0 1 1
7 0 0 1 0 0 1 0 0 0 1
8 0 0 0 1 0 1 1 0 0 0
9 0 0 0 0 1 0 1 1 0 0

.

(In the adjacency matrix, the row corresponding to vertex i contains a 1 in the
column corresponding to vertex j if there is an edge between i and j in the graph;
otherwise the element in question is 0.)
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With the same labeling, the incidence matrix is

01 12 23 34 40 05 16 27 38 49 57 58 68 69 79
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
7 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
8 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

.

(In the incidence matrix, the row corresponding to vertex i has a 1 in the column
corresponding to the edge {j, k} if i ∈ {j, k}; otherwise the element in question
is 0.)

Note that both the adjacency and the incidence matrix depend on the labeling
of the vertices.

Extra problem. Below there is another presentation of the Petersen graph. Find
a way of labeling the vertices of this graph so that you obtain the same adjacency
and/or incidence matrix as above. (There are more than one solutions.)

Problem ** 2.

Choose one of the vertices of the graph, say v0. Since every vertex of the graph
is of degree k, there are k paths of length 1 with v0 as one endpoint. There are
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k(k − 1) paths of length 2 with v0 as an endpoint: after choosing the first edge,
the second edge can be chosen from the k − 1 edges that do not lead back to
v0. Thus there are a total of k2 distinct paths of length of length 1 or 2 with v0

as one endpoint. If two of these paths would have another common endpoint in
addition to v0, there would be a cycle of length at most 4. So each of the k2 paths
must lead to a different vertex. Additionally the vertex v0 is in the graph, so the
graph must have at least k2 + 1 vertices.

Problem * 3. (a)

We take advantage of the connection between the lexicographical and colex-
icographical ranks of k-subsets (Theorem 2.4 in the book): Let T =

{t1, t2, . . . , tk} ⊆ {1, 2, . . . , n} be the k-subset under consideration and T ′ def
=

{n + 1− i : i ∈ T}. Then

ranklex(T ) + rankcolex(T
′) =

(
n

k

)
− 1.

In the problem we are given n = 10, k = 3 ja rank(T ) = 99, so

rankcolex(T
′) =

(
10

3

)
− 1− 99 = 120− 1− 99 = 20.

We use Algorithm 2.10 in the book to compute T ′ = {t′1, t′2, t′3} =
unrankcolex(20) with n = 10 and k = 3. The result is

20 = 20 + 0 + 0 =

(
6

3

)
+

(
1

2

)
+

(
0

1

)
,

so
t′1 = 6 + 1 = 7, t′2 = 1 + 1 = 2, t′3 = 0 + 1 = 1.

Thus we have T ′ = {7, 2, 1}, and T = {4, 9, 10}.

Problem * 3. (b)

We solve the problem as above. Now T = {3, 5, 7}, so T ′ = {8, 6, 4}. By
definition of the colexicographical rank function

rankcolex(T
′)

def
=

k∑
i=1

(
ti − 1

k + 1− i

)
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in the case t′1 = 8, t′2 = 6, t′3 = 4 we obtain

rankcolex({8, 6, 4}) =

(
7

3

)
+

(
5

2

)
+

(
3

1

)
= 35 + 10 + 3 = 48,

so

ranklex({3, 5, 7}) =

(
10

3

)
− 1− rankcolex({8, 6, 4}) = 120− 1− 48 = 71.

Problem ** 4. (a)

Assume that the elements of S are ordered in the usual way. The problem can
be solved by transforming the problem to the corresponding problem where the
set is {1, 2, 3, 4, 5, 6} and using Algorithm 2.8 in the book, or Theorem 2.4 and
Algorithm 2.9. The transformation can be carried out by a mapping f : S →
{1, 2, 3, 4, 5, 6}, that preserves the order, that is, for all x, y ∈ S we have x <
y if and only if f(x) < f(y). The only such mapping is f(2) = 1, f(3) =
2, f(5) = 3, f(7) = 4, f(11) = 5, f(13) = 6. By applying the mapping
f the set {3, 7, 13} ⊂ S maps to the set f({3, 7, 13}) = {2, 4, 6}. (Since f
preserves the order, it can be shown that the lexicographical rank of {2, 4, 6}
among the 3-subsets of {1, 2, 3, 4, 5, 6} corresponds to the lexicographical rank
of {3, 7, 13} among the 3-subsets of S. We determine the lexicographical rank
of {2, 4, 6} by using Theorem 2.4 and Algorithm 2.9 (colex rank). By Theorem
2.4 the lexicographical rank of a k-subset T of {1, . . . , n} can be determined by
determining the colexicographical rank of the k-osajoukon T ′ = {n + 1− i : i ∈
T} as follows:

ranklex(T ) =

(
n

k

)
− 1− rankcolex(T

′).

Now n = 6 and k = 3, T = {2, 4, 6} and T ′ = {6+1−2, 6+1−4, 6+1−6} =
{5, 3, 1}. By Algorithm 2.9 we obtain

rankcolex({5, 3, 1}) =

(
5− 1

3 + 1− 1

)
+

(
3− 1

3 + 1− 2

)
+

(
1− 1

3 + 1− 3

)
= 4+1+0 = 5,

so by Theorem 2.4

ranklex({2, 4, 6}) =

(
6

3

)
− 1− 5 = 20− 1− 5 = 14.
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Problem ** 4. (b)

From part (a) we know that ranklex({2, 4, 6}) = 14. unranklex(14) can be com-
puted either by Algorithm 2.8 or by Theorem 2.4 and Algorithm 2.10. We choose
the latter; then r = 5, n = 6 and k = 3.

First we find the greatest x ≤ 6, such that
(

x
3+1−1

)
is less than or equal to r. This

must be x = 4, since
(

4
3+1−1

)
= 4 ≤ 5) and

(
5

3+1−1

)
= 10 > 5). Thus we obtain

t1 = x+1 = 5. We continue the algorithm with the updated r = 5−
(

x
3+1−i

)
= 1,

the values obtained are tabulated below:

i r x s.t.
(

x
k+1−i

)
≤ r ti

1 5 4 5
2 1 2 3
3 0 0 1

Thus we obtain T ′ = {5, 3, 1}, and using Theorem 2.4 we find T = {2, 4, 6}.
Finally we do the inverse transformation f−1({2, 4, 6}) = {3, 7, 13} (the in-
verse transformation exists, since the function f is a bijection). Thus we find
unranklex(ranklex({3, 7, 13})) = {3, 7, 13}.

Problem * 5. (a)

First we derive a recursive rank function for the binary reflected Gray code Gn.
(The nonrecursive version is Algorithm 2.4 in the book.) In the base case n = 1
it clearly holds that

rank(0) = 0, rank(1) = 1.

When n ≥ 2, by the recursive definition of Gn we have

rank(bnbn−1 · · · b1) =

{
rank(bn−1 · · · b1) if bn = 0;
2n − 1− rank(bn−1 · · · b1) if bn = 1.
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The rank of the codeword 00101011 can now be obtained by the recursion

rank(00101011) = rank(0101011)

= rank(101011)

= 63− rank(01011)

= 63− rank(1011)

= 63− (15− rank(011))

= 63− (15− rank(11))

= 63− (15− (3− rank(1)))

= 63− (15− (3− 1)))

= 50.

Problem * 5. (b)

Let the rank of the codeword bnbn−1 · · · b1 in Gn be rn. Now unranking can be
performed by recursively investigating which half of Gn (codewords starting with
0 / codewords starting with 1) the codeword belongs to:

bn =

{
0 if rn < 2n−1;
1 if rn ≥ 2n−1,

rn−1 =

{
rn if rn < 2n−1;
2n − 1− rn if rn ≥ 2n−1.

We were given r8 = 49. By applying the previous, we find

n rn 2n−1 bn

8 49 128 0
7 49 64 0
6 49 32 1
5 14 16 0
4 14 8 1
3 1 4 0
2 1 2 0
1 1 1 1

.

Therefore unrank(49) = 00101001. (Alternatively, the problem could be solved
by Algorithm 2.5.)

Problem * 6.

The graph (V, E) is the so called d-dimensional hypercube.Let x =
(x1, . . . , xd) ∈ {0, 1}d be a vertex in the graph. The vertex has d neighbors,
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since there are clearly d vertices whose coordinates differ from the coordinates of
x in exacly one coordinate.

The length of the shortest cycle is 4: the vertices (0, 0, y3, . . . , yd),
(0, 1, y3, . . . , yd), (1, 1, y3, . . . , yd), (1, 0, y3, . . . , yd) form a cycle of length 4, and
on the other hand the graph cannot contain a triangle, since in that case some
vertex y would have two neighbors whose coordinates differ from each other in
only one position. This impossible, for then y would have to be the same as one
of the neighbors.

The longest cycle is of length 2d, that is, it contains all vertices in the graph.
When d = 2 the cycle is obviously 00, 01, 11, 10. Suppose that for some d the
cycle is ν1, ν2, ν3, . . . , ν2d . The cycle can be extended to a cycle in the (d +
1)-dimensional cube: 0ν1, 0ν2, . . . , 0ν2d , 1ν2d , 1ν2d−1, 1ν2d−2, . . . , 1ν1. Thus for
example the cycle in the case d = 3 could be obtained by extending the cycle
00, 01, 11, 10 to 000, 001, 011, 010, 110, 111, 101, 100.

Problem *** 7.

Denote the sequence of codewords in the binary reflected Gray code on n bits
by Gn, and the same sequence in reverse order by Gn. Now the binary reflected
Gray code on (n + 1) bits can be denoted by Gn+1 = (0Gn, 1Gn).

Since Gn contains all 2n binary codewords of length n, it is clear that Gn also
contains all the

(
n
k

)
binary codewords of length n and exactly k ones, that is,

codewords of Hamming weight k. Denote the subsequence of Gn that consists of
the codewords of weight k by Gn

k .

The sequence Gn
k = (x1, . . . , x(n

k)
) is a minimum change order of k-subsets if the

Hamming distance of two consecutive codewords (number of positions where
they differ) always equals 2, that is, dH(xj, xj+1) = 2 for all j = 1, . . . ,

(
n
k

)
− 1.

Claim. Let n ≥ 1. Then for all 1 ≤ k ≤ n the sequence Gn
k is a minimum

change order of the k-subsets of an n-element set.

Proof. When k = n, the claim is trivially true, since Gn
n consists of only one

codeword. In the case k = 1 the sequence Gn
1 consists of the codewords

(10 · · · 0, 010 · · · 0, 0010 · · · 0, . . . , 0 · · · 01) (not in this order), of which there are
n. It is clear that any two codewords of this form are at Hamming distance 2 from
each other.

We will perform an induction over n. The cases n = 1, 2 are clear from the
above special cases and form the base of the induction. Suppose that the claim
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holds for n and for all 1 ≤ k ≤ n. Consider the sequence Gn+1 and choose
some k, (2 ≤ k ≤ n). (The cases k = 1 and k = n + 1 were dealt with
above.) By definition of the sequence Gn+1 = (0Gn, 1Gn), the subsequence
Gn+1

k = (x1, . . . , x(n+1
k )) of codewords of weight k can be split into consecutive

subsequences (x1, . . . , xm) and (xm+1, . . . , x(n+1
k )) such that (x1, . . . , xm) con-

tains the codewords where the first coordinate is 0 and the second one contains
the codewords where the first coordinate is 1.The sequence (x1, . . . , xm) is thus
the subsequence of words of weight k in 0Gn, and (xm+1, . . . , x(n+1

k )) the subse-

quence of 1Gn that consists of words where the weight of the last n coordinates is
koordinaatin paino on k−1. Thus (x1, . . . , xm) = 0Gn

k and (xm+1, . . . , x(n+1
k )) =

1Gn
k−1, where Gn

k−1 denotes the sequence Gn
k−1 in reverse order. By induction we

therefore have dH(xj, xj+1) = 2 for all j = 1, . . . ,m − 1 and on the other hand
dH(xj+1, xj) = dH(xj, xj+1) = 2 for all j = m + 1, . . . ,

(
n+1

k

)
− 1. The case

j = m remains. Since xm is the last codeword in 0Gn
k and on the other hand

xm+1 is the first codeword in 1Gn
k−1, in the case j = m we have dH(xj, xj+1) = 2

by the following lemma.

Lemma. Let n ≥ 1. Then for all 1 ≤ k ≤ n the sequence Gn satisfies:

1. the Hamming distance of the first codeword of weight k and the first code-
word of weight (k − 1) is 1, and

2. the Hamming distance of the last codeword of weight k and the last code-
word of weight (k − 1) is 1.

Proof. In the case k = 1, the sequence Gn only contains one codeword, which
has weight k − 1 = 0, that is, 00 · · · 0. All codewords of weight 1 are clearly at
Hamming distance 1 from this codeword. The case k = n is similar, and the cases
2 ≤ k ≤ n−1 remain. We proceed by induction onn as before; the cases n = 1, 2
are again true due to the above special cases. Suppose that the claim holds for
somen (and all 1 ≤ k ≤ n). Consider the sequence Gn+1 and choose some k,
(2 ≤ k ≤ n). By definition of the sequence Gn+1 = (0Gn, 1Gn) and the choice
of k we observe that the first codeword yk of weight k and the first codeword yk−1

of weight k−1 are in the subsequence 0Gn. Since the zero in the first position of
yk and yk−1 does not affect their weight, we have dH(yk, yk−1) = 1. Similarly the
last codeword zk of weight k and the last codeword zk−1 of weight k− 1are in the
subsequence 1Gn, that is, zk corresponds to the first codeword of weight k in 1Gn

and zk−1 to the first codeword of weight k − 1. Now we must have zk = 1z′k−1

and zk−1 = 1z′k−2, where z′k−1 is the first codeword of weight k−1 in Gn and z′k−2

the first codeword of weight (k−2). Again we may use the induction assumption
(with value k − 1 ≥ 1), and we obtain dH(z′k, z

′
k−1) = dH(zk, zk−1) = 1. 2
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Problem ** 8.

First identify the alphabet A, B, C, . . . , Z with the numbers 0, 1, . . . , 25:

A , 0, B , 1, C , 2, · · · Y , 24, Z , 25.

View the license plates as lists of the form [z1, z2, z3, z4, z5, z6], where z1, z2, z3 ∈
{0, 1, . . . , 25} and z4, z5, z6 ∈ {0, 1, . . . , 10}. Then the license plate IOI-010
corresponds to the list [8, 14, 8, 0, 1, 0].

The standard lexicographical order among license plates is now defined by
[z′1, z

′
2, z

′
3, z

′
4, z

′
5, z

′
6] < [z1, z2, z3, z4, z5, z6] if and only if there exists some j ∈

{1, 2, 3, 4, 5, 6} s.t. z′j < zj and z′i = zi for all i ∈ {1, . . . , j − 1}.

We first construct the rankfunction. The lexicographical rank of license plate
[z1, z2, z3, z4, z5, z6] is the number of such license plates [z′1, z

′
2, z

′
3, z

′
4, z

′
5, z

′
6] for

which [z′1, z
′
2, z

′
3, z

′
4, z

′
5, z

′
6] < [z1, z2, z3, z4, z5, z6]. Such license plates can be

grouped according to the value of j (see the definition of lexicographical order
above). In particular, z′j can be chosen in zj ways so that z′j < zj . After this the
values z′k, where k > j, may be chosen arbitrarily. We thus get

rank([z1, z2, z3, z4, z5, z6]) = z1 · 26 · 26 · 10 · 10 · 10+

+ z2 · 26 · 10 · 10 · 10+

+ z3 · 10 · 10 · 10+

+ z4 · 10 · 10+

+ z5 · 10+

+ z6.

Or shorter,

rank([z1, z2, z3, z4, z5, z6]) =
6∑

j=1

(
zj

6∏
k=j+1

Bk

)
if we let B1 = B2 = B3 = 26 and B4 = B5 = B6 = 10. (In the case j = 6 we
additionally define

∏6
k=j+1 Bk = 1.)
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For the license plate IOI-010 we now obtain

rank([8, 14, 8, 0, 1, 0]) = 8 · 26 · 26 · 10 · 10 · 10+

+ 14 · 26 · 10 · 10 · 10+

+ 8 · 10 · 10 · 10+

+ 0 · 10 · 10+

+ 1 · 10+

+ 0

= 5780010.

Unranking can be carried out by the following algorithm:

1. Let n6
def
= rank([z1, z2, z3, z4, z5, z6]).

2. Repeat for each i = 6, 5, . . . , 1.

(a) Compute the remainder zi = ni mod Bi.

(b) Let ni−1 = (ni − zi)/Bi.

3. Return the result unrank(n6) = [z1, z2, z3, z4, z5, z6].

For example
i ni Bi zi

6 5780010 10 0
5 578001 10 1
4 57800 10 0
3 5780 26 8
2 222 26 14
1 8 26 8

,

so unrank(5780010) = [8, 14, 8, 0, 1, 0] as it should.

Some definitions on permutations

Let us review some definitions on permutations. Let X be a finite nonempty set.

• The permutation σ on the set X is an r-cycle if there exist elements
a1, . . . , ar ∈ X such that

σ(a1) = a2, σ(a2) = a3, . . . , σ(ar−1) = ar, σ(ar) = a1,
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and σ(a) = a for all a ∈ X \{a1, . . . , ar}. Such an r-cycle can be denoted
by (a1, a2, . . . , ar). The same cycle can be represented in several ways, as
the starting point is arbitrary; e.g. (a2, a3, . . . , ar, a1) = (a1, a2, . . . , ar).

• A transposition is a 2-cycle on X .

• The permutations σ1, σ2 on X are disjoint if there is no x ∈ X for which
both σ1(x) 6= x and σ2(x) 6= x.

• The product π1π2 of two permutations π1, π2 over X is defined by
π1π2(x) = π1 ◦ π2(x) = π1(π2(x)).

• The inverse permutation π−1 of a permutation π over X is the permutation
over X for which ππ−1 = π−1π = ι, where ι is the identity, that is, ι(x) = x
for all x ∈ X .

• Every permutation on X can be represented as a unique (up to order of
cycles) product of disjoint permutations, where each x ∈ X appears on
exactly one cycle.

Problem * 9. (a)

From the list presentation [2, 4, 6, 7, 5, 3, 1] of π1 we see that

π1(1) = 2, π1(2) = 4, π1(4) = 7, π1(7) = 1,

so the cycle that contains the element 1 is (1, 2, 4, 7). The least element of
{1, 2, 3, 4, 5, 6, 7} that is not on this cycle is 3. The cycle that contains 3 is (3, 6),
as

π1(3) = 6, π1(6) = 3.

The least element that is not on the previous cycles is 5, for which π1(5) = 5.
Now we have examined all cycles of the elements in {1, 2, 3, 4, 5, 6, 7}, so we
obtain

π1 = (1, 2, 4, 7)(3, 6)(5).

Problem * 9. (b)

From the cycle presentation π2 = (1, 5, 6)(2, 4, 3)(7) we see that

π2(1) = 5, π2(2) = 4, π2(3) = 2, π2(4) = 3,

π2(5) = 6, π2(6) = 1, π2(7) = 7,

so π2 = [5, 4, 2, 3, 6, 1, 7].
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Problem * 9. (c)

The inverse of a permutation can be easily formed from the cycle representation
by reversing both the order of cycles and the elements in each cycle. For example

π−1
1 = (5)(6, 3)(7, 4, 2, 1), π−1

2 = (7)(3, 4, 2)(6, 5, 1).

Problem * 9. (d)

The product π1π2, expressed with cycle notations, is

π1π2 = (1, 2, 4, 7)(3, 6)(5)(1, 5, 6)(2, 4, 3)(7),

and can be simplified to

π1π2 = (1, 5, 3, 4, 6, 2, 7)

by computing the image of each element. When the image of each element
is computed, the cycles are read from right to left. For example in the previous
product the cycle (7) keeps the element 1 fixed, as does (2,4,3). The cycle (1, 5, 6)
maps 1 onto 5. The cycle (5) keeps 5 fixed, as do the cycles (3, 6) and (1, 2, 4, 7).
Thus π1π2(1) = 5.

Similarly, the product π2π1, using cycle notations, is

π2π1 = (1, 5, 6)(2, 4, 3)(7)(1, 2, 4, 7)(3, 6)(5),

which can be simplified to

π2π1 = (1, 4, 7, 5, 6, 2, 3)

by computing the image of each element. Note that combining permutations
(taking their product) is not a commutative operation, that is, π1π2 6= π2π1.

Problem * 10.

The products given can be simplified to

(p, q)(p, r1, . . . , rk, q, s1, . . . , sl) = (p, r1, . . . , rk)(q, s1, . . . , sl)

and

(p, q)(p, r1, . . . , rk)(q, s1, . . . , sl) = (p, r1, . . . , rk, q, s1, . . . , sl).
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Thus multiplying a permutation from the left by a transposition either “cuts” a
cycle into two or “glues” two disjoint cycles.

We observe that if a permutation π is multiplied on the left by a transposition
(p, q), then the permutation (p, q)π either has one cycle more (part a) or one
cycle less (part b) than the permutation π.

Problem ** 11.

Every permutation π over the set {1, . . . , n} can be uniquely (up to order of
cycles) presented as a product of disjoint cycles:

π = (a1,1, a1,2, . . . , a1,m1) · · · (ak,1, ak,2, . . . , ak,mk
),

where k ≥ 1 and mj ≥ 1 for all j = 1, . . . k. The cycle (aj,1, . . . , aj,mj
) can be

presented as a product of mj − 1 transpositions, e.g.

(aj,1, aj,2)(aj,2, aj,3) · · · (aj,mj−2, aj,mj−1)(aj,mj−1, aj,mj
).

Let λ(π) be the number of transpositions when the permutation π is presented
as a product of transpositions. For an arbitrary permutation π over {1, . . . , n} it
then holds that

λ(π) =
k∑

j=1

(mj − 1),

where k is the number of disjoint cycles in the permutation and m1, . . . ,mk are
their lengths. The function λ is well defined, since the value of λ(π) does not
depend on the order of the cycles.

We examine how multiplying π by an arbitrary transposition (x, y) affects the
value of λ. We again have two cases:

(i) x and y are on the same cycle in π (aj,1, . . . , aj,mj
) or x = aj,p and y = aj,q

for some p < q. Then the cycle (aj,1, . . . , aj,mj
) is cut into two disjoint

cycles in the permutation (x, y)π
(aj,1, . . . , aj,p−1, aj,q, . . . , aj,mj

) and (aj,p, . . . , aj,q−1), while the remaining
cycles in π are unaffected. Thus λ((x, y)π) = λ(π) − (mj − 1) + (mj −
(q − p)− 1) + (q − p− 1) = λ(π)− 1, since the length of the new cycles
are mj − (q − p) and q − p.

(ii) x and y are on disjoint cycles (aj,1, . . . , aj,mj
) and (al,1, . . . , al,ml

) and we
assume that x = aj,1 and y = al,1. Then instead of the above permutations
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(x, y)π will contain the cycle (aj,1, . . . , aj,mj
, al,1, . . . , al,ml

) while other
cycles remain unchanged. Thus λ((x, y)π) = λ(π) − (mj − 1) − (ml −
1) + (mj + ml − 1) = λ(π) + 1.

Thus we have λ((x, y)π) ≡ (λ(π) + 1) mod 2.

Finally, suppose that an arbitrary permutation τ could be presented in two
different ways as a product of transpositions: τ = (x1, y1) · · · (xm, ym) and
τ = (x′1, y

′
1) · · · (x′m′ , y′m′). Since

λ(τ) = λ((x2, y2) · · · (xm, ym)) + 1 = . . .
= m− 1 + λ((xm, ym)) = m (mod 2)

and on the other hand

λ(τ) = λ((x′2, y
′
2) · · · (x′m′ , y′m′)) + 1 = . . . = m′ (mod 2),

either m and m′ are both even or both odd.

Problem * 12.

The r-cycle in part (a) can be represented in several ways as a product of transpo-
sitions. E.g.

(1, 2, . . . , r) = (1, 2)(2, 3)(3, 4) · · · (r − 2, r − 1)(r − 1, r)

or
(1, 2, . . . , r) = (1, r)(1, r − 1)(1, r − 2) · · · (1, 3)(1, 2)

are both valid representations with r − 1 transpositions.

In part (b) the permutation can be represented as a product of transpositions
e.g. by first representing the permutation [2, 4, 6, 7, 5, 3, 1] as a product of disjoint
cycles and then applying the solution to part (a) to each cycle. Then we obtain

[2, 4, 6, 7, 5, 3, 1] = (1, 2, 4, 7)(3, 6)(5)

= (1, 2)(2, 4)(4, 7)(3, 6).

Therefore the permutation [2, 4, 6, 7, 5, 3, 1] is even.

In general, if there are c cycles of lengths r1, . . . , rc in the representation of the
permutation π over X , the permutation can be expressed as a product of λ(π) =∑c

i=1(ri − 1) transpositions. Since
∑c

i=1 ri = |X|, this can be simplified to
λ(π) = |X| − c. A permutation π is thus even (odd) exactly when λ(π) is even
(odd).
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Problem * 13.

Consider first the lexicographical order. The lexicographical successor of

π = [π(1), π(2), . . . , π(n)]

is defined as follows:

1. Find the largest j ∈ {1, . . . , n− 1}, for which π(j) < π(j + 1). If no such
j exists, we have the lexicographically last permutation [n, n − 1, . . . , 1],
which has no successor.

For the permutation [2, 4, 6, 7, 5, 3, 1] we find j = 3.

2. Among the elements π(j + 1), . . . , π(n) we find the least element that is
greater than π(j).

For [2, 4, 6, 7, 5, 3, 1] this is 7.

3. We swap π(j) with the element chosen in the previous step to obtain π′.

For [2, 4, 6, 7, 5, 3, 1] we get π′ = [2, 4, 7, 6, 5, 3, 1].

4. We order the elements π′(j + 1), . . . , π′(n) in ascending order (since the
elements are in decreasing order, it suffices to reverse their order). The
result is the lexicographical successor of π.

The successor of [2, 4, 6, 7, 5, 3, 1] is thus [2, 4, 7, 1, 3, 5, 6].

The lexicographical rank of the permutation π = [π(1), π(2), . . . , π(n)] is de-
fined recursively:

1. Base case n = 1: rank(π) = 0.

2. General case n ≥ 2:

rank(π) = (π(1)− 1)(n− 1)! + rank(π′),

where

π′(j) =

{
π(j + 1) if π(j + 1) < π(1);
π(j + 1)− 1 if π(j + 1) > π(1).



T–79.5202 Combinatorial algorithms
Haanpää / Hänninen

Solutions to problems
Spring 2007

Based on this, the rank of [2, 4, 6, 7, 5, 3, 1] is

rank([2, 4, 6, 7, 5, 3, 1]) =

= (2− 1)6! + rank([3, 5, 6, 4, 2, 1])

= (2− 1)6! + (3− 1)5! + rank([4, 5, 3, 2, 1])

= (2− 1)6! + (3− 1)5! + (4− 1)4! + rank([4, 3, 2, 1])

= (2− 1)6! + (3− 1)5! + (4− 1)4! + (4− 1)3! + rank([3, 2, 1])

= (2− 1)6! + (3− 1)5! + (4− 1)4! + (4− 1)3! + (3− 1)2! + rank([2, 1])

= (2− 1)6! + (3− 1)5! + (4− 1)4! + (4− 1)3! + (3− 1)2! + (2− 1)1!

= 1 · 6! + 2 · 5! + 3 · 4! + 3 · 3! + 2 · 2! + 1 · 1!

= 1055.

Consider now the Trotter–Johnson order. In the Trotter–Johnson order the suc-
cessor of

π = [π(1), π(2), . . . , π(n)]

is defined by

1. Find j ∈ {1, . . . , n} such that π(j) = n.

For [2, 4, 6, 7, 5, 3, 1] we find π(4) = 7.

2. Determine whether the permutation π′ = [π(1), . . . , π(j − 1), π(j +
1), . . . , π(n)] is even or odd.

In the case of permutation [2, 4, 6, 7, 5, 3, 1]

π′ = [2, 4, 6, 5, 3, 1] = (1, 2, 4, 5, 3, 6) = (1, 2)(2, 4)(4, 5)(5, 3)(3, 6)

is odd.

3. If π′ is even and j > 1: the successor of π is obtained by swapping π(j− 1)
and π(j).

4. If π′ is even and j = 1: the successor of π is

[n, π′′(1), π′′(2), . . . , π′′(n− 1)],

where π′′ is the Trotter–Johnson successor of π′.

5. If π′ is odd and j < n: the successor of π is obtained by swapping the
elements π(j) and π(j + 1).

The Trotter–Johnson successor of [2, 4, 6, 7, 5, 3, 1] is therefore
[2, 4, 6, 5, 7, 3, 1].
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6. If π′ is odd and j = n: the successor of π is

[π′′(1), π′′(2), . . . , π′′(n− 1), n],

where π′′ is the Trotter–Johnson successor of π′.

The Trotter–Johnson rank of π is computed recursively:

1. Base case n = 1: rank(π) = 0.

2. For n ≥ 2: Find j ∈ {1, . . . , n} such that π(j) = n.

3. Determine recursively the rank of permutation

π′ = [π(1), . . . , π(j − 1), π(j + 1), . . . , π(n)].

4. If rank(π′) is even,

rank(π) = nrank(π′) + n− j.

5. If rank(π′) is odd, let

rank(π) = nrank(π′) + j − 1.

For [2, 4, 6, 7, 5, 3, 1] we get:

n π j rank(π)
1 [1] 1 0
2 [2, 1] 1 2 · 0 + (2− 1) = 1
3 [2, 3, 1] 2 3 · 1 + (2− 1) = 4
4 [2, 4, 3, 1] 2 4 · 4 + (4− 2) = 18
5 [2, 4, 5, 3, 1] 3 5 · 18 + (5− 3) = 92
6 [2, 4, 6, 5, 3, 1] 3 6 · 92 + (6− 3) = 555
7 [2, 4, 6, 7, 5, 3, 1] 4 7 · 555 + (4− 1) = 3888

Problem * 14.

The partition 1 + 3 + 4 + 6 + 6 + 8 is in reverse standard form; the standard form
is 8 + 6 + 6 + 4 + 3 + 1. The rsf-lex rank is the lexicographical rank of the list
presentations of the partitions in reverse standard form. The rsf-rank of a partition
can be computed by the following recursion (p. 76 in the book): Suppose that the
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partition to be ranked is in the standard form [a1, . . . , an], where a1 ≥ · · · ≥ an.
In the base case of the recursion n = 1 always rank([a1]) = 0. When n > 1 the
recursion step is

rank([a1, . . . , an]) =

{
rank([a1, . . . , an−1]) jos an = 1
rank([a′1, . . . , a

′
n]) + P (m− 1, n− 1) if an > 1,

where a′j = aj−1 for all 1 ≤ j ≤ n and m =
∑n

i=1 ai. By applying the recursion
equation we find

rank([8, 6, 6, 4, 3, 1]) = rank([8, 6, 6, 4, 3]) = rank([7, 5, 5, 3, 2])+P (27−1, 5−1),

and further

rank([7, 5, 5, 3, 2]) = rank([6, 4, 4, 2, 1]) + P (22− 1, 5− 1)

= rank([6, 4, 4, 2]) + P (21, 4),

rank([6, 4, 4, 2]) = rank([5, 3, 3, 1]) + P (16− 1, 4− 1)

= rank([5, 3, 3]) + P (15, 3),

rank([5, 3, 3]) = rank([4, 2, 2]) + P (11− 1, 3− 1),

rank([4, 2, 2]) = rank([3, 1, 1]) + P (8− 1, 3− 1)

= rank([3]) + P (7, 2) = P (7, 2).

By combining we obtain:

rank([8, 6, 6, 4, 3, 1]) = P (26, 4) + P (21, 4) + P (15, 3) + P (10, 2) + P (7, 2)

= 136 + 72 + 19 + 5 + 3 = 235.

The successor of a partition in standard form:

1. Find the first sublist that is not equally split, that is, the least i, for which
a1 > ai + 1,

2. increment ai by one and set a2, . . . , ai−1 to their minimum values (= ai),

3. justify the sum by setting a1 = m−
∑n

i=2 ai.

For [8, 6, 6, 4, 3, 1] we find i = 2. Set a2 = a2 + 1 = 7. Finally a1 = 28− 7− 6−
4− 3− 1 = 7, and we obtain [7, 7, 6, 4, 3, 1].
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Problem ** 15.

Suppose first that people can be split into groups arbitrarily. If we leave 0 ≤ k ≤ 4
groups empty out of the five, the remaining persons are split into 5 − k groups.
We number the nonempty groups 1, . . . , 5− k and use aj to denote the number
of people in group j. Now clearly aj ≥ 1 for j = 1, . . . , 5− k, and on the other
hand

∑5−k
j=1 aj = 20. Therefore {(a1, . . . , a5−k) : aj ≥ 1 and

∑5−k
j=1 aj = 20}

contains all possibilities of dividing 20 people into labeled groups. However,
since the groups are not labeled, many of the partitions are counted more than
once; for example (1, 1, 1, 1, 16) and (16, 1, 1, 1, 1) in the case k = 0 are alike.
This duplication can be avoided by requiring additionally that a1 ≤ · · · ≤ a5−k.
Then we observe that the elements of the set

P(20, 5− k) := {(a1, . . . , a5−k) : 1 ≤ a1 ≤ · · · ≤ a5−k and
5−k∑
j=1

aj = 20}

actually correspond to the partitions of 20 into 5−k parts, so there are P (20, 5−k)
distinct partitions. Thus there are a total of

4∑
k=0

P (20, 5− k) = P (20, 5) + P (20, 4) + · · ·+ P (20, 1) = 192

distinct partitions.

Now we forbid partitions with two equal-sized parts. Now clearly at most one
group can be left empty. Let 0 ≤ k ≤ 1 be the number of empty groups. The
remaining 5 − k groups should be filled so that no two groups have the same
number of members. This can be achieved by requiring that 1 ≤ a1 < a2 <

· · · < a5−k and
∑5−k

j=1 aj = 20. Therefore the number of such partitions equals
the number of elements in

P ′(20, 5− k) = {(a1, . . . , a5−k) : 1 ≤ a1 < · · · < a5−k ja
5−k∑
j=1

aj = 20}.

Now we observe that the mapping

(a1, . . . , a5−k) 7→ (a1, a2 − 1, a3 − 2, . . . , a5−k − (5− k − 1))

from P ′(20, 5− k) onto P(20− 1− 2−· · ·− (5− k− 1), 5− k) is a bijection, so

|P ′(20, 5− k)| = P (20− (5− k − 1)(5− k)

2
, 5− k),

and the number of partitions of the required kind is

P (20− 10, 5) + P (20− 6, 4) = P (10, 5) + P (14, 4) = 7 + 23 = 30.
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Problem * 16. (a)

Given the edge set E of a labeled tree the Prüfer list representation can be com-
puted as follows:

1. i = 1

2. Let v be the highest-numbered vertex of degree 1. Find the edge {v, v′} ∈
E and set L[i] = v′. Remove the edge {v, v′} from the graph.

3. Let i = i + 1 and if i < n− 1 go to 2.

4. The Prüfer list representation is [L[1], . . . , L[n− 2]].

The execution of the algorithm is given in the array:

Degrees of vertices i v L[i] Edge removed
3, 1, 2, 2, 2, 1, 1 1 7 3 {7, 3}
3, 1, 1, 2, 2, 1, 0 2 6 1 {6, 1}
2, 1, 1, 2, 2, 0, 0 3 3 4 {3, 4}
2, 1, 0, 1, 2, 0, 0 4 4 1 {4, 1}
1, 1, 0, 0, 2, 0, 0 5 2 5 {2, 5}

The Prüfer list representation is thus [3, 1, 4, 1, 5].

Problem * 16. (b)

Follow algorithm 3.11 of the book. The input is the list [L[1], L[2], . . . , L[n− 2]].

1. The number of vertices n = length of list + 2.

2. Degree of vertex = number of occurrences in list + 1.

3. Append L[n− 1] = 1.

4. For i = 1, . . . , n− 1 do:

(a) Find the greatest vertex x of degree 1.

(b) Add the edge {x, L[i]} to the tree.

(c) Decrement the degree of the vertices x and L[i] by one.
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The length of the given list [5, 5, 4, 3, 2] is 5, so there are n = 7 vertices in the
tree. Proceed according to the algorithm.

asteluvut
i L[i] 1 2 3 4 5 6 7 x, L[i]
1 5 1 2 2 2 3 1 1 7, 5
2 5 1 2 2 2 2 1 0 6, 5
3 4 1 2 2 2 1 0 0 5, 4
4 3 1 2 2 1 0 0 0 4, 3
5 2 1 2 1 0 2 0 0 3, 2
6 1 1 1 0 0 0 0 0 2, 1

As the result we obtain the graph below.

6

4

1

7

5

3

2

Figure 1: The tree that corresponds to Prüfer list representation [5, 5, 4, 3, 2].

Problem *** 17.

Every way of grouping an n+1 term product to two term products corresponds to
a rooted ordered binary tree, whose branches corresponds to multiplications and
whose leaves correspond to the terms.

All ways of grouping a four term product, and the corresponding parse trees, are
presented in Figure 2.

A full binary tree is a rooted tree, where each vertex is either a leaf or has two
children. Suppose additionally that the children of each node are ordered so that
we can speak of a “left” and “right” child node. Now clearly every parse tree of
the product of n + 1 terms is a full binary tree with n + 1 leaves and conversely.
By induction we can show the following lemma:
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((ab)c)d (ab)(cd)
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dcba

d

cb

ac

d

ba

Figure 2: Ways of grouping a four term product and the corresponding parse
trees.

Lemma. In a full binary tree with n + 1 leaves there are exactly n vertices with
two children.

Proof. The base case n = 0 is obvious. Suppose that the lemma holds for 0 ≤ k ≤
n and consider the full binary tree with (n + 1) + 1 ≥ 2 leaves. Now clearly the
root must have two children. Let l1 be the number of leaves in the subtree rooted
at the left child of the root, and l2 similarly the number of leaves in the right
subtree. Since the root is not a leaf node, we must have n+2 = l1+l2 and l1, l2 ≥
1, so l1 ≤ n+1 and l2 ≤ n+1. Thus the induction assumption is applicable to the
subtrees rooted at the left and right child of the root, which clearly must be full
binary trees. The whole tree thus contains 1+(l1−1)+(l2−1) = l1+l2−1 = n+1
vertices, including the root, that have two children. 2

An immediate corollary of the lemma is that a full binary tree with n + 1 leaves
has exactly 2n edges.

The Catalan family Cn consists of all 2n-bit binary strings a1a2 · · · a2n, for which

(a) the string contains exactly n zeroes and n ones, and

(b) for all 1 ≤ i ≤ 2n, the substring a1a2 · · · ai contains at least as many zeroes
as ones.

It is now easy to find the correspondenge between full binary trees with n + 1
leaves and the Catalan family:

Given a full binary tree with n + 1 leaves, label each edge that leads to the left
child of a vertex by 0 and each edge to the right child by 1. Now traverse the tree
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in preorder (first the vertex, then recursively the left child, then recursively the
right child) so than upon arriving at a vertex we output the label on the edge that
leads to the parent of the vertex we arrived at.

Clearly each of the labels on the 2n edges is output once. The output sequence
satisfies (a), since each vertex with a left child also has a right child; condition (b)
is satisfied, since for each vertex, the label of the edge leading to its left child is
output before the label on the edge to the right child.

Conversely, given a binary string a1a2 · · · a2n in a Catalan family, the correspond-
ing full binary tree can be constructed as follows:

1. First the tree consists of only the root, which is a leaf. Set the root as the
current vertex.

2. For i = 1, 2, . . . , 2n do:

(i) If ai = 0, create a left child for the current vertex, and set the child as
the current vertex.

(ii) If ai = 1, backtrack from the current node towards the root until we
find a node with no right child. Create a right child for this node and
set it as the current vertex.

This construction is well defined, since according to the balance condition (b) in
step (ii) a vertex to which a right child can be added always exists. On the other
hand, the balance condition (a) gives us that each node for which a left child has
been added according to (i) will also receive a right child according to (ii). The
result of the construction is a full binary tree with 2n + 1 vertices 2n edges. Now
we can again show by induction that such a tree must have n + 1 leaves. Thus
the construction always results in a full binary tree with (n + 1) leaves.

The mappings constructed from trees to binary strings and vice versa can be ver-
ified to be inverse mappings of each other.

Problem * 18. (a)

Assume the rules of chess are know. Examine each row 1, . . . , n of the board
in turn. The choice set would be the set of squares on that line that are not yet
threatened by a queen on the board. Try each of them in turn, recursively, and
go to the next line.
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It may not be best to consider the lines in order. It may be more efficient to
organize the search so that at each step we consider the line with the fewest
unthreatened squares at the time. Then the branching factor of the search can
be smaller near the root, so the number of search nodes is likely smaller, even
though all alternatives are examined here too.

Problem * 18. (b)

Consider the vertices in order. For each vertex the choice set is the set of colors
{1, 2, . . . , k}, from which we however must remove those colors that have been
used to color a neighbor of the current vertex.

Problem * 18. (c)

The choice set can be the set of those neighbors of the current vertex that have
not yet been visited. Try each of them in turn and continue recursively until n
steps have been taken.

Problem * 18. (d)

If n 6≡ 1 mod 6 and n 6≡ 3 mod 6, there is no Steiner triple system STS(n).
Otherwise, generate all 3-subsets of an n-element set and order them. Construct
the collection of 3-subsets by adding one 3-subset at a time. The choice set is the
set of compatible 3-subsets (the set of all 3-subsets except those that contain some
pair that occurs in one of the 3-subsets already in the set). A Steiner triple system
is found when we have n(n− 1)/6 subsets.

Alternatively this could be treated as an exact cover problem: For the choice
set, choose some pair that is not covered by the 3-subsets already chosen. Let
the choice set be the set of those subsets that cover that particular pair and are
compatible with the previously chosen 3-subsets.

Problem * 18. (e)

In Minesweeper, the player tries to find all mines in an n×n array. The player has
a detector that shows the number of mines in the squares surrounding the square
in question. A position in the game consists of a set of known squares, where
the reading of the mine detector is known. The game proceeds from position to
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position so that the player chooses an unknown square; if that square contains a
mine, the player loses the game, while if there is no mine, the player finds out the
reading of the mine detector in that square, and the game continues. The player
wins if all unknown squares contain a mine. (In this version the number of the
mines is assumed to be unknown.)

Let the set of squares in the array be Dn = {1, 2, . . . , n} × {1, 2, . . . , n}. The
surroundings of the square (x, y) is the set

N(x, y) = {(x, y) + (δ1, δ2) : −1 ≤ δ1, δ2 ≤ 1, (δ1, δ2) 6= (0, 0)} ∩Dn.

Note that (x, y) /∈ N(x, y).

Let mines ⊆ Dn be the set of squares that contain a mine. (This set is of course
unknown to the player.) The reading of the mine detector in square (x, y) is then

d(x, y) = |mines ∩N(x, y)|.

Let known ⊆ Dn be the set of squares selected by the player. Supposing that the
game is not over, we may assume that known ∩mines = ∅.

Since the total number of mines is unknown, the player can only obtain informa-
tion about the number and placement of mines via readings of the mine detector
in chosen squares. By definition the reading of the mine detector in square (x, y)
only gives information about the mines in N(x, y), so the player can make de-
ductions about the location of the mines at the edge

boundary =
( ⋃
(x,y)∈known

N(x, y)
)
\ known

of the known area. The player cannot deduce anything about mines outside the
edge. (This may not hold if the total number of mines is known in advance!)

We limit the consideration to the set boundary. We call a set

E ⊆ boundary

consistent, if for all (x, y) ∈ known it holds that d(x, y) = |E ∩N(x, y)|. Thus a
set E is consistent if and only if it is possible that the mines would actually be in
the squares of E. In particular, the set mines ∩ boundary is consistent.

Let E be the set of consistent sets. Define the sets

safe = boundary \
⋃
E∈E

E, and flag =
⋂
E∈E

E.
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First consider the set safe. Now safe ∩ mines = ∅, since mines ∩ boundary ∈ E .
The set safe is thus a set of safe squares, that definitely do not contain a
mine. On the other hand there are no such squares outside safe, since all
squares x ∈ boundary \ safe are members of some consistent set E, and the
mine detector readings cannot be used to decisively dismiss the possibility that
mines ∩ boundary = E.

Consider next the set flag. Since flag ⊆ E for all E ∈ E , this also holds for the set
E = mines ∩ boundary. Therefore flag ⊆ mines. The set flag thus only contains
squares with a mine. On the other hand for all squares x ∈ boundary \ flag there
exists a consistent set E for which x /∈ E. Therefore flag is the maximum set of
squares that definitely contain a mine.

The sets safe and flag are thus the sets asked for in subproblems (i) and (ii).

Backtrack search could be used for determining the sets safe and flag for example
as follows:

• Design a backtrack algorithm that outputs all consistent sets.

• First initialize safe← boundary and flag← boundary.

• Use backtrack search to find all consistent sets E. For each consistent set
found, set

safe← safe \ E and flag← flag ∩ E.

• When all consistent sets have been examined, safe and flag are the desired
sets. (Note that both of them can be empty. This happens for example at
the beginning of the game, when known = ∅.)

The consistent sets can be produced by backtrack search for example as follows.

• Let there be N elements P1, . . . , PN in boundary, where N ≥ 1. (We
ignore the special case N = 0.)

• We model the subsets E ⊆ boundary as binary lists ~E = [x1, . . . , xN ], for
which xi = 1⇔ Pi ∈ E and xi = 0⇔ Pi /∈ E.

• A partial solution is a list [x1, . . . , xk−1]; we start with the empty list.

• At depth k in the search tree we append to the list, in turn, the elements
xk = 0 and xk = 1, and proceed recursively.
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• When there are N elements in the list, we test if the corresponding set is
consistent. (If it is, we update the sets safe and flag as above.) After this we
return to the previous level in the search tree.

• This search can be made significantly more effective by eliminating partial
solutions that clearly cannot be completed to consistent sets (see problem
*** 20.).

Problem ** 19.

The program below solves the problem in a simple manner. Since the first
row and column of a reduced Latin square are defined, to construct an n × n
Latin square it suffices to place (n − 1)2 numbers; this is the maximum depth
of the search. The problem does not actually maintain the Latin square be-
ing constructed in memory; rather it uses the Boolean variables n_in_row_i

ja n_in_col_j, to indicate whether the number n already appears on row i or
column j.

/* Find reduced Latin squares of order N */

#define N 4

int n_in_row_i[N+1][N+1]; /* has number n been placed in row i */

int n_in_col_j[N+1][N+1]; /* has number n been placed in column j */

int place(int depth) {

int i,j,n,sum;

if (depth==(N-1)*(N-1)) /* found a square, as we have */

return 1; /* placed (N-1)**2 numbers */

i=2+depth%(N-1); /* compute from depth, where to place */

j=2+depth/(N-1); /* next number */

sum=0;

for (n=1; n<=N; n++) {

if(!n_in_row_i[n][i] && !n_in_col_j[n][j]) {

n_in_row_i[n][i]=1; /* for each n in turn: */

n_in_col_j[n][j]=1; /* if n has not been placed in row i */

sum+=place(depth+1); /* or column j, place it at their */

n_in_row_i[n][i]=0; /* intersection and continue search; */

n_in_col_j[n][j]=0; /* finally remove the number */
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}

}

return sum;

}

int main(int argc, char **argv) {

int i,j;

for(i=1;i<=N;i++) { /* zero arrays */

for(j=1;j<=N;j++) {

n_in_row_i[i][j]=n_in_col_j[i][j]=0;

}

}

for(i=1;i<=N;i++) { /* place 1...n */

n_in_row_i[i][i]=1; /* in first column */

n_in_col_j[i][i]=1; /* and row */

}

printf("%d\n", place(0));

return 0;

}

Problem *** 20.

We use the concepts defined for problem * 18. (e).

The problem is to determine the consistent subsets of boundary, that is, all ways
of placing mines in the squares of boundary so that the allocation of mines agrees
with the readings of the mine detector.

The naive solution works by a generate and test principle: it produces all subsets
of boundary and then tests if each subset is consistent. This is of course not very
efficient, since the readings of the mine detector around boundary often limit the
number of consistent subsets to a very small fraction of all subsets.

In particular, the mine detector readings d(x, y) in the squares of

constraints = {(x, y) ∈ known : N(x, y) ∩ boundary 6= ∅}

limit the structure of consistent sets.

We now define a backtrack algorithm so that the restrictions posed by constraints
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are verified already for partial solutions, so that the search space will be signifi-
cantly smaller than with the naive solution. The pseudocode is given below.

CONSISTENT_SETS(E, R)
if R = ∅

check consistency of E, output solution if consistent.
return

for (x, y) ∈ constraints
if d(x, y) = |E ∩N(x, y)| and R ∩N(x, y) 6= ∅ (i)

CONSISTENT_SETS(E, R \N(x, y))
return

if d(x, y) = |E ∩N(x, y)|+ |R ∩N(x, y)| and R ∩N(x, y) 6= ∅ (ii)
CONSISTENT_SETS(E ∪ (R ∩N(x, y))), R \N(x, y))
return

if d(x, y) > |E ∩N(x, y)| and R ∩N(x, y) = ∅ (iii)
return

if d(x, y) < |E ∩N(x, y)| (iv)
return

P ← any point from R
CONSISTENT_SETS(E, R \ {P})
CONSISTENT_SETS(E ∪ {P}, R \ {P})
return

The algorithm CONSISTENT_SETS takes two arguments E, R, where

• E ⊆ boundary is a set that contains the squares (x, y), where the algorithm
has placed a mine.

• R ⊆ boundary is a set that contains the squares (x, y), of which the algo-
rithm has not yet decided whether to place a mine there or not.

To determine all consistent sets the algorithm is called with the arguments

E = ∅ and R = boundary.

For each recursive step of the algorithm, the R becomes smaller, until finally
R = ∅, when the consistency of E is checked. After this the algorithm backtracks
to the previous level in the search tree. The aim of the “for” loop is to prevent
branching in the search (conditions (i) and (ii) and on the other hand to prune
the search, if the partial solution E cannot possibly be completed to a consistent
set (conditions (iii) and (iv)). The algorithm would work (like the abovemen-
tioned naive algorithm) even if the “for” loop were completely omitted.
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Consider the conditions (i)–(iv) one at a time. The conditions (i) and (ii) de-
tect “forced situations”, in which the partial solution E must be extended in a
particular way so that the end result could be consistent. In particular,

• condition (i) detects a situation, when the minesweeper reading d(x, y) in
square (x, y) ∈ constraints corresponds exactly to the number of mines
|E ∩ N(x, y)| already placed in the neighborhood N(x, y). Then if there
are squares in N(x, y) that have not been decided yet, it is clear that these
squares cannot contain mines, or the known mine detector reading would
be d(x, y) exceeded; on the other hand

• condition (ii) detects a situation, where the mine detector reading d(x, y)
in square (x, y) ∈ constraints matches exactly the number of mines |E ∩
N(x, y)| already placed in N(x, y) plus the number of squares in N(x, y)
that have not yet been fixed. Then clearly all squares in R ∩N(x, y) must
contain a mine in order to satisfy the reading d(x, y) in the final solution.

Conditions (iii) and (iv) eliminate partial solutions that cannot possibly be com-
pleted to a consistent set.

• Condition (iii) detects a situation when too few mines have been placed
in the neighborhood of (x, y), and the situation cannot be fixed, since all
squares in N(x, y) have already been fixed.

• Condition (iv) detects a situation when there are too many mines in the
neighborhood of (x, y).

Problem * 21. (a)

The function can be chosen for example to be the sum of positive values of the
weigths of the graph. This version returns of course poor estimation value, as it is,
so next version of the estimation function of f(vi) would be one which calculates
the sum of positive egdes in a subgraph induced by Depth First Search (i.e. all
vertices which can be reached from vi when vertices vj, j < i are not used). This
function is poor for highly connected graph, but good for graphs which have low
connectivity.

Problem * 21. (b)

Yes. The function can be chosen as previously.
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Now by doing ordinary backtracking search one always chooses next vertex to be
the one which minimizes the advantage of the opponent, and vice versa.

However, this topic is more related with the courses involving AI. One possible
algorithm which is based on backtracking search is “min-max search”, of which
an interested student can look info about.

Problem * 22.

We use backtracking search to find all cliques. Solution (a set of vertices) x is
feasible (i.e. maximal clique), if its vertices do not have common neighbours.

Let us first set C0 = V . Then going through all elements of Cl in alphabetical
order, the algorithm first successively chooses vertices 0, 1 and 2, which is a
maximal clique. After that it backtracks to 0 and chooses 2. 0 and 2 is not maximal
clique, so it backtracks in the beginning and starts with 1. The log of whole
calculation is presented below:

0, 1, 2 (maximal!) (2 backtracks)
0, 2 (2 backtracks)
1, 2, 3, 4 (maximal!) (2 backtracks)
1, 2, 4 (2 backtracks)
1, 3, 4 (2 backtracks)
1, 4, 6 (maximal!) (3 backtracks)
2, 3, 4 (3 backtrack)
3, 4 (1 backtrack)
3, 5 (maximal!) (2 backtrack)
4, 6 (2 backtracks)
5 (backtrack)
6 (backtrack)

Problem ** 23.

Form a graph of n2 vertices vij , each corresponding a one square. Add edges
between each square, where 2 queens can be without threatening each other.
A clique of size n of vertices {vij} corresponds to n places in coordinates (i, j)
where you can put queens safely.
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Problem *** 24.

Clearly, every vertex must be colored with exactly one color, and every edge
must have exactly one endpoint of each color. Therefore we cover the set S =
V ∪ (E × {b, w}). Coloring a vertex v with color c is represented by including
the set {v} ∪ {(e, c) | v ∈ e} in the cover: a color is been chosen for v, and v is
an endpoint of color c for the edges that have v as an endpoint.

Because of the symmetry of coloring, you can always choose that the color of
first vertex to be colored is white. In a backtracking search let us go through all
vertices in a fixed order, such that the next vertex is adjacent to at least one which
have already been colored. Because it has colored neighbours, it has only one
coloring option left. If there is even one backtrack, algorithm will backtrack all
the way to the beginning, and the result will be that no 2-coloring exists. The
time is then linear: at most O(n) for choosing colors for at most n vertices, and
then O(n) for backtracking to the beginning.

Similarly in exact cover, as S includes v for each vertex, each of them has to be
colored, and as vertex v1 is colored with, say, w, then each (e, b) = ({v1, v2}, b)
elements can be covered by only one possible subset, namely that representing
the coloring of v2 with color b.

Problem ** 25.

The 5-vertex cycle C5 (the pentagon) has chromatic number 3, but its largest
clique has 2 vertices.

Problem ** 26. (a)

Given a graph G = (V , E) andW ⊆ V . The vertex setW is independent, if no
two vertices in it are connected by an edge. A graph G is bipartite) if its vertex set
V can be partitioned into two nonempty independent setsW and V −W .

A bipartite graph can always be colored by two colors, since one color for each
independent set is enough.

A complete bipartite graph (V , E) contains all possible edges between its two
independent sets, that is, E = {{u, v} | u ∈ W , v ∈ V −W}.

Construct a family of graphs as follows: Take the complete bipartite graph with n
vertices in each independent set, and label the vertices such that the first indepen-



T–79.5202 Combinatorial algorithms
Haanpää / Hänninen

Solutions to problems
Spring 2007

dent set contains the odd-numbered vertices {1, 3, . . . , 2n − 1}, and the second
one of the even-numbered vertices {2, 4, . . . , 2n}. Remove from the complete
bipartite graph the edges {1, 2}, {3, 4}, {5, 6}, . . . , {2n− 1, 2n}.

The greedy algorithm will color the graph as follows: Vertex 1 is colored with
color 1. Vertex 2 is colored with color 1, since there is no edge {1, 2} in the
graph. Vertex 3 is colored with color 2, since there is the edge {2, 3}, so color 1
cannot be used. Vertex 4 is colored with color 2, since because of the edge {1, 4}
color 1 cannot be used. Vertex 5 is colored with color 3, since colors 1 and 2
cannot be used because of edges {2, 5} and {4, 5}. Vertex 6 is colored with 3,
since colors 1 and 2 cannot be used because of edges {1, 6} and {3, 6}, etc.

In the general case the odd-numbered vertex 2k−1 (k ≥ 2) is colored with color
k, as the edges {2j, 2k − 1}, 1 ≤ j ≤ k − 1 prevent using colors less than k, as
vertex 2j has already been colored with color j for all 1 ≤ j ≤ k − 1. On the
other hand the even-numbered vertex 2k (k ≥ 2) is colored with color k, as the
edges {2j − 1, 2k}, 1 ≤ j ≤ k − 1 prevent the use of colors less that k, as vertex
2j − 1 has been colored with color j for all 1 ≤ j ≤ k − 1.

The greedy coloring of this graph thus requires n colors in the end, even though
the graph is 2-colorable.

Problem ** 26. (b)

It is clear that irrespective of the coloring, the vertices of a given color form an
independent set. Suppose that we have an optimal coloring available. If we then
list the vertices of the graph one color class at a time (say, first all red vertices,
then blue ones, etc.), we get an ordering with which the greedy algorithm will
produce an optimal coloring. The greedy coloring may not be identical to the
coloring we started with, but the number of colors is the same.

Problem * 27. (a)

The most natural choice for the objective function is the length of the route.
One possible neighborhood would be defined by using 2-OPT moves: replace
two edges from the cycle that represents the current route by two other ones.
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Problem * 27. (b)

Here we describe a so called fixed k method. A solution is any partitioning of the
vertices into k parts (with empty parts allowed). Two colorings are neighbors of
each other, if one can be obtained from the other by moving one vertex from one
part to another. As the cost function we could take for example the number of
edges with both endpoints in the same part of the partition. The neighborhood
could be limited by only allowing moving vertices that appear in at least one
edge with both endpoints of the same color; however, then the neighborhood is
no longer symmetric.

Problem * 27. (c)

A simple approach: the solution space consists of all partitionings of the vertices
into two equal-sized sets. A move is swapping two vertices between parts. The
cost function is the number of edges between the parts.

Better results have been obtained with simulated annealing by allowing arbitrary
partitions into two parts V1 and V2. Now the neighborhood would consist of mov-
ing one vertex from one part to the other, and the cost function would include
the penalty term

α(|V1| − |V2|)2,

which increases the cost whenever the parts are not of the same size. Despite the
penalty term the optimization algorithm might end up at an unbalanced solution,
at which point we can either increase α or use some simple heuristic to balance
the solution by moving a few vertices.

Problem * 27. (d)

Take as the solution space all partitionings of the vertices into two parts. Define
the k-neighborhood so that in one move at most k elements can be moved from
one part to the other. As the cost function we may choose∣∣∣∣∣∑

a∈A1

a−
∑
a∈A2

a

∣∣∣∣∣ .

This problem is quite difficult in that it may have an extremely large number
of local optima. Simulated annealing with the proposed neighborhood cannot
cope with the Karmarkar–Karp heuristic devised for this problem, but better local
search methods have been developed.



T–79.5202 Combinatorial algorithms
Haanpää / Hänninen

Solutions to problems
Spring 2007

Problem ** 28.

On the left a graph partitioning that is a local optimum which we cannot improve
by moving one vertex; on the right the global optimum, which is reachable by
moving two vertices from one part to the other.

Problem ** 29.

The following is pseudocode for a simulated annealing algorithm for finding the
maximum clique:

Find_Max_Clique(G, cmax, T0, α)
c = 0
T = T0

Choose feasible X ∈ X
Xbest = X
while c ≤ cmax

Y = hN(X)
if Y 6= Fail

if |Y | > |X|
X = Y
if |X| > |Xbest|
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Xbest = X
else

r = random(0, 1)
if r < e(|Y |−|X|)/T

X = Y
c = c + 1
T = αT

return Xbest

Cooling down is linear, and α, cmax and T0 must be suitably chosen. As the set X
we have the set of subgraphs of G, and X ∈ X is feasible, if it is a clique (for all
x, y ∈ X, x 6= y there is an edge between x and y in X). As the objective function
we have the size of the clique (the subgraph). As the neighborhood N(X) of X
we may choose (for example) those subgraphs of G that can be obtained by adding
to or removing from X one vertex and its incident edges. As the heuristic hN we
could use for example “some feasible Y ∈ N(X)”.

Problem ** 30. (a,b)

For part (a) we suppose that the given subset collection contains exactly n subsets
E1, E2, . . . , En ⊆ F , where F is the base set. The local search should now find
{j1, . . . , jw} ⊆ {1, . . . , n} so that Ej1 ∪ · · · ∪ Ejw = F and Ejs ∩ Ejt = ∅
always when s 6= t. In other words the collection Ej1 , . . . , Ejw partitions F .
Choose as the solution space X all subsets of the set {1, . . . , n}, and define the
neighborhood N by the minimum change principle: a subset x ∈ X is a neighbor
of y ∈ X if and only if y can be obtained from x by adding or removing one
element. The elements of the search space can be identified with n-bit binary
words in the obvious way.

For part (b), suppose that the graph to be colored has exactly n vertices, labeled
v1, . . . , vn. Take as the solution space all ways of choosing for each vertex one of
the q colors. Note that in the general case such a choice of colors is not a feasible
q-coloring. Then the color choices can be considered to be words of length n
over a q-element alphabet: the ith character in the word indicates the color of vi

for all i = 1, 2, . . . , n. The neighborhood can again be defined by the minimum
change principle: colorings x and y are neighbors of each other if and only if
they differ from each other in exactly one position.

The configuration graph corresponding to the neighborhoods in (a) and (b) is the
following: The vertex set of the Hamming graph H(n, q) consists of all words of
length n over a q-element alphabet Σq = {0, 1, 2, . . . , q − 1}, that is, V = Σn

q .
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Between the vertices x, y ∈ V there is an edge if and onlyif the words x and y
differ at exactly one position.

The Hamming graphs H(n, 2) for n = 1, 2, 3, 4 are given in Figure 3.

Problem ** 30. (c)

Suppose that there are n cities. We model the possible tours as permutations
of the set {0, 1, 2, . . . , n − 1}. Thus the list representation of the permutation
π ∈ Sn = X , that is, [π(0), π(1), . . . , π(n − 1)] , tells the order in which the
cities are visited: we start at city π(0), then go to city π(1), ..., until we return
from city π(n − 1) back to city π(0). We define the neighborhood so that two
permutations π1, π2 ∈ X are neighbors of each other if and only if one is obtained
from the other by one transposition (swapping the positions of two cities in the
list representation of the permutation).

The configuration graph thus formed is the Cayley graph of the symmetric group
generated by transpositions. The vertices of the Cayley graph Γ(Sn, Tn) are all
permutations π ∈ Sn of the set {0, 1, 2, . . . , n − 1}. There is an edge between
permutations π1, π2 ∈ Sn if and only if π−1

1 π2 ∈ Tn, where Tn is the set of all
transpositions over the set {0, 1, 2, . . . , n − 1}. The Cayley graphs Γ(Sn, Tn) for
n = 2, 3, 4 are given in Figure 4.

Problem ** 30. (d,e)

Suppose for part (d) that the graph contains 2n vertices. We could take as the
solution spaceX all n-subsets of the vertex set. Then the current partition is given
by the n-subset and its complement. Similarly, for (e) we can choose as the search
space X the k-subsets of the vertex set. The neighborhood can again be defined
by the minimum change principle: two subsets are neighbors of each other if
and only if one can be obtained from the other by adding one and removing one
element.

The configuration graph formed is the Johnson graph J(v, k): the vertices are
all k-subsets of {1, 2, . . . , v}; two subsets E1, E2 are connected by an edge if and
only if |E1 ∩E2| = k− 1. Johnson graphs J(4, 2) and J(5, 3) are given in Figure
5.
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Figure 3: Hamming graphs H(n, 2) for n = 1, 2, 3, 4.

Problem ** 31.

We examine the properties one graph class at a time.

1. The Hamming graph H(n, q)

(a) The number of vertices is qn.

(b) Each vertex has n(q − 1) neighbors, as the coordinate to be changed
can be chosen in n ways and the value for the coordinate in q − 1
ways.

(c) The Hamming graph is connected. From an arbitrary vertex we can
reach any other vertex via the edges by changing the coordinate values
of the first vertex one by one to the coordinate values of the second
vertex.

(d) The length of the shortest cycle is 4 when q = 2, and 3 when q > 2.
For q = 2 there exists a 4-cycle since two coordinates can be varied as
00, 01, 11, 10, 00; no 3-cycle can exist since graph is bipartite — the
number of ones changes between even and odd on each move, so all
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Figure 4: Cayley graphs Γ(Sn, Tn) for n = 2, 3, 4.

cycles are of even length. For q > 2 a single coordinate can be varied
as 0, 1, 2, 0.

(e) The length of the longest cycle is qn, that is, there is a cycle that
includes all vertices. For q = 2 the binary reflected Gray code Gn is
an example of such a cycle. The construction of the binary reflected
Gray code is easily generalized to other cases with even q. For odd
q we need to slightly modify the construction: let x1, . . . , xN be the
code of length n. Form the code of length n + 1 as follows:
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Figure 5: Johnson graphs J(4, 2) and J(5, 3).

• Repeat for all 0 ≤ p ≤ q − 3:
If p is even, output the partial code px1, px2, . . . , pxN .
If p is odd, output the partial code pxN , pxN−1, . . . , px1.
• Output the partial code (q − 2)xN , (q − 2)xN−1, . . . , (q − 2)x2.
• Output the partial code (q − 1)x2, (q − 1)x3, . . . , (q − 1)xN .
• Output the partial code (q − 1)x1, (q − 2)x1.

(f) The diameter of the graph is clearly n, since from any vertex we can
reach any other vertex by changing at most n coordinates. On the
other hand n changes are necessary to get from 00 · · · 0 to 11 · · · 1.

2. The Cayley graph Γ(Sn, Tn)

(a) Since there are n! permutations of {0, 1, 2, . . . , n − 1}, there are n!
vertices.

(b) There are
(

n
2

)
transpositions of {0, 1, 2, . . . , n−1}, so every vertex has

that number of neighbors.

(c) The graph is connected, since the transpositions generate the sym-
metric group.

(d) For n = 2 there are no cycles. Otherwise the length of the shortest
cycle is at most 4: the permutations

π, π(0, 1), π(0, 1)(1, 2), π(0, 1)(1, 2)(0, 1)
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form a 4-cycle, since π(0, 1)(1, 2)(0, 1)(0, 2) = π. On the other hand
no 3-cycle can exist, or the three transpositions corresponding to the
edges would combine to the identity permutation, which is impossi-
ble, as the identity is an even permutation.

(e) The length of the longest cycle is n!, which can be obtained for ex-
ample by the Trotter–Johnson minimum change ordering.

(f) The diameter of the graph is n − 1, since every permutation can be
presented as the product of at most n−1 transpositions. On the other
to get from the identity to the n cycle (0, 1, 2, . . . , n− 1) takes at least
n− 1 transpositions.

3. The Johnson graph J(v, k)

(a) The number of vertices equals the number of k-subsets of a v-set, that
is,

(
v
k

)
.

(b) There are k ways of removing an element from a given k-subset of a
v-set, and there are v − k ways of adding one. Thus every vertex has
k(v − k) neighbors.

(c) The graph is connected, as it is obvious that by adding and removing
one element at a time any k-subset can be changed to any other k-
subset.

(d) When v = k or v = 2 there are no cycles. The length of the shortest
cycle is clearly 3, as {x, y}, {x, z}, {y, z} are neighbors of each other
when k ≥ 2. The case k = 1 is straightforward.

(e) The length of the longest cycle is
(

v
k

)
, which can be obtained e.g. by

the revolving door minimum change order (pp. 48–52 in the book).

(f) The diameter of the graph is at most k, which is achieved when we
can find two vertices with no elements in common. This is true when
v ≥ 2k. When v < 2k, any two k-subsets intersect in at least 2k − v
points. Thus the diameter of the graph is k − max(2k − v, 0) =
min(k, v − k) in the general case.

Problem ** 32.

As in problem * 27., here too the solutions presented may not be the best ones
possible in all cases. One should experiment with different approaches and take
the one that works best with the problem instances being considered.
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(a) For example: an added edge must not be removed during the next n iter-
ations. A removed edge may not be replaced during the next m iterations.
The parameters n and m need to be tuned depending on the problem in-
stances.

(b) For example: if the color of a vertex has been changed from color vi to
color vj , it must not be changed back to color vi within the next n itera-
tions. Alternatively: if the color of vertex v has been changed, it may not be
changed again within the next n iterations. This limits the neighborhood
selection more than the first condition.

(c) If vertices v1 and v2 have been swapped, then this pair must not be changed
again within the next n iterations. Alternatively: if v has been moved from
one part to another, then it may not be moved again within the next n
iterations.

(d) When k = 1, we can use the tabu conditions of the previous point.

If k > 1, the situation is more complicated: we could use the same tabulist
as above, but it might restrict the search too much. One possibility would
be to consider the sum S1 =

∑
a∈A1

a. If S1 = x after some move, we
could consider such moves tabu for the next n iterations that would lead to
S1 = x. This will not work if S1 can only take a few different values.

Problem * 33.

Let G be an arbitrary nonempty set, and let us define the binary operation
(g1, g2) 7→ g1. The operation is clearly associative (condition (a)), as

(g1 · g2) · g3 = g1 · g2 = g1 = g1 · g2 = g1 · (g2 · g3).

Now take any arbitrary element of G as 1. Condition (b) holds, since clearly
g · 1 = g for all g ∈ G. On the other hand condition (c) holds, as we may choose
g−1 := 1 for all g ∈ G. Thus if there are at least 2 elements in G, the unity
element would not be unique.

If condition (b) is changed to “there exists an element 1 ∈ G, for which 1 · g = g
for all g ∈ G“ the unity element can be shown to be unique: Choose an arbitrary
g ∈ G and use the notational short cuts g1g2 := g1 · g2, g′ := g−1 and g′′ :=
(g−1)−1. Now based on (a)–(c) we obtain

g1 = 1(g1) = (1g)1 = ((g′′g′)g)1 = (g′′(g′g))1 = (g′′1)1 =
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= g′′(11) = g′′1 = g′′(g′g) = (g′′g′)g = 1g = g,

so 1g = g1 = g for all g ∈ G. Thus, if there were some elements 1 ∈ G and 1′ ∈
G, both of which would satisfy (b) and (c), we could deduce that 1′ = 11′ = 1.
After the unity element has been shown to be unique, we can show that the left
inverse of an element is also its right inverse by using the axioms (a)–(c):

gg′ = g(1g′) = (g1)g′ = (g(g′g))g′ = ((gg′)g)g′ = (gg′)(gg′),

so we must have gg′ = 1. Now the uniqueness of the inverse element can be
shown as follows:

g′ = g′1 = g′(gĝ′) = (g′g)ĝ′ = 1ĝ′ = ĝ′.

Problem ** 34.

If H is a subgroup of the finite group G and {g1, . . . , gn} a left transversal of H
in G, then by definition the set {g1H, . . . , gnH}, where giH := {gih | h ∈ H}
for all i = 1, . . . , n, is a partitioning of G into nonempty parts. Now choose some
g ∈ G. Since the sets giH partition G, there exists a unique i, for which g ∈ giH .
Further there exists a unique h ∈ H for which g = gih, since if gih = g = gih

′,
we can obtain

h = 1h = (g−1
i gi)h = g−1

i (gih) = g−1
i (gih

′) = (g−1
i gi)h

′ = 1h′ = h′.

Therefore every g ∈ G can be uniquely represented in the form gih, with h ∈ H .
Similarly we can obtain that the h ∈ H in the previous representation can be
uniquely representedin the form h = hjk, where k ∈ K and hj ∈ {h1, . . . , hm}.
Clearly we could continue in this manner if K would have a subgroup, etc.

The previous idea is useful for example when we want to manipulate finite groups
on a computer. Then a group may be considered as a sequence of transversals
with respect to a certain subgroup chain. For example the subgroup chain in the
Schreier–Sims representation (Section 6.2.3 of the book) consists of nested point
stabilizer subgroups.

Problem ** 35. (a)

Since α maps 0 onto 1, we look for an h0 ∈ U0, that maps 0 onto 1. One is
found: h0 = (0, 1, 3, 6)(2, 5, 9, 7)(4, 8). By multiplying α with its inverse we
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obtain h−1
0 α = (0)(1, 7, 9, 5, 3, 8, 4, 2)(6). Since here 1 maps onto 7, we look for

an h1 ∈ U1, that maps 1 onto 7. One is found: h1 = (1, 7, 3, 2, 6, 4)(5, 8, 9). Now
h−1

1 h−1
0 α = (0)(1)(2, 4, 3, 5, 7, 8, 6)(9). Since here 2 maps onto 4, we look for an

h2 ∈ U2, that maps 2 onto 4. Such a h2 does not exist, so α /∈ G.

Problem ** 35. (b)

Since β maps 0 onto 1, we look for an h0 ∈ U0, that maps 0 onto 1. One is
found: h0 = (0, 1, 3, 6)(2, 5, 9, 7)(4, 8). By multiplying β with its inverse we
obtain h−1

0 β = (0)(1, 7, 4, 6, 9, 2)(3, 8, 5). Since here 1 maps onto 7, we look for
an h1 ∈ U1 that maps 1 onto 7. One is found: h1 = (1, 7, 3, 2, 6, 4)(5, 8, 9). Now
h−1

1 h−1
0 β = (0)(1)(2, 4)(3, 5, 7, 6, 8, 9). Since here 2 maps onto 4, we look for an

h2 ∈ U2 that maps 2 onto 4. No such h2 is found, so β /∈ G.

Problem ** 35. (c)

Since γ maps 0 onto 3, we look for an h0 ∈ U0 that maps 0 onto 3. One
is found: h0 = (0, 3)(1, 6)(2, 9)(5, 7). By multiplying γ with its inverse we
obtain h−1

0 γ = (0)(1, 2)(3, 7)(4, 6)(5, 8)(9). As here 1 maps onto 2, we look
for an h1 ∈ U1, that maps 1 onto 2. One is found: h1 = (1, 2)(3, 4)(6, 7).
Now h−1

1 h−1
0 γ = (0)(1)(2)(3, 6)(4, 7)(5, 8)(9). Here 2 maps onto 2; we

look for an h2 ∈ U2, that maps 2 onto 2. One is found: h2 = I. Now
h−1

2 h−1
1 h−1

0 γ = (0)(1)(2)(3, 6)(4, 7)(5, 8)(9). Since here 3 maps onto 6, we look
for an h3 ∈ U3 that maps 3 onto 6. One is found: h3 = (3, 6)(4, 7)(5, 8). Now
h−1

3 h−1
2 h−1

1 h−1
0 γ = I. This maps all elements onto themselves, and kuvaa kaikki

alkiot itselleen, ja I ∈ Un for all n ≥ 4, so γ ∈ G.

The order |G| of the group G is |U0| · |U1| · |U2| · |U3| · . . . · |U9| = 10 · 6 · 2 = 120.

Problem ** 36.

First label the six sides of the die in some way (for example, top, bottom, left,
right, front, back); here we choose to use the integers 1, 2, 3, 4, 5, 6 as below:
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1

3

2

3

6215

4

.

Now any way of labeling the sides of the die with the integers 1, 2, 3, 4, 5, 6 can
be expressed as a permutation π of {1, 2, 3, 4, 5, 6}: the number of side i is π(i)
for all i = 1, 2, 3, 4, 5, 6.

Due to the symmetry of the die essentially the same labeling appears more than
once. For example

π(1) = 1, π(2) = 2, π(3) = 3, π(4) = 4, π(5) = 5, π(6) = 6

is the same die as

π′(1) = 2, π′(2) = 6, π′(3) = 3, π′(4) = 4, π′(5) = 1, π′(6) = 5,

as π′ is obtained from π by rotating the cube 90 degrees around the axis passing
through the midpoints of sides 3 and 4. This corresponds to permuting the names
of the sides by γ = (1, 5, 6, 2). (Side i rotates to become side γ(i) for all i =
1, 2, 3, 4, 5, 6.)

The permutations (1, 5, 6, 2) and (1, 4, 6, 3) generate all the 6 · 4 = 24 rotational
symmetries of the cube:

G =



I, (2, 3, 5, 4), (2, 4, 5, 3),
(2, 5)(3, 4), (1, 2)(3, 4)(5, 6), (1, 2, 3)(4, 6, 5),
(1, 2, 4)(3, 6, 5), (1, 2, 6, 5), (1, 3, 2)(4, 5, 6),
(1, 3, 6, 4), (1, 3)(2, 5)(4, 6), (1, 3, 5)(2, 6, 4),
(1, 4, 2)(3, 5, 6), (1, 4, 6, 3), (1, 4)(2, 5)(3, 6),
(1, 4, 5)(2, 6, 3), (1, 5, 6, 2), (1, 5, 4)(2, 3, 6),
(1, 5, 3)(2, 4, 6), (1, 5)(2, 6)(3, 4), (1, 6)(3, 4),
(1, 6)(2, 3)(4, 5), (1, 6)(2, 4)(3, 5), (1, 6)(2, 5)


.
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Two labelings π and π′ are the same up to symmetry if and only if there exists a
γ ∈ G such that π′ = πγ−1. This equivalent with the condition π−1π′ ∈ G, so
labelings π and π′ are the same if and only if they belong to the same left coset of
G in the symmetric group Sym({1, 2, 3, 4, 5, 6}).

The number of cosets of G in Sym({1, 2, 3, 4, 5, 6}) can be determined by La-
grange’s Theorem (pp. 193, Theorem 6.2 in the book) to be

|Sym({1, 2, 3, 4, 5, 6})|
|G|

=
6!

24
=

720

24
= 30.

A left transversal of the cosets can be determined by for example Algorithm 6.17
on p. 224 of the book; it computes exactly the left transversal, although this is not
explicitly mentioned in the book.

[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 6, 5], [1, 2, 3, 5, 4, 6], [1, 2, 3, 6, 4, 5],

[1, 2, 3, 5, 6, 4], [1, 2, 3, 6, 5, 4], [1, 2, 4, 3, 5, 6], [1, 2, 4, 3, 6, 5],

[1, 2, 5, 3, 4, 6], [1, 2, 6, 3, 4, 5], [1, 2, 5, 3, 6, 4], [1, 2, 6, 3, 5, 4],

[1, 2, 4, 5, 3, 6], [1, 2, 4, 6, 3, 5], [1, 2, 5, 4, 3, 6], [1, 2, 6, 4, 3, 5],

[1, 2, 5, 6, 3, 4], [1, 2, 6, 5, 3, 4], [1, 2, 4, 5, 6, 3], [1, 2, 4, 6, 5, 3],

[1, 2, 5, 4, 6, 3], [1, 2, 6, 4, 5, 3], [1, 2, 5, 6, 4, 3], [1, 2, 6, 5, 4, 3],

[1, 6, 2, 3, 4, 5], [1, 6, 2, 3, 5, 4], [1, 6, 2, 4, 3, 5], [1, 6, 2, 5, 3, 4]

[1, 6, 2, 4, 5, 3], [1, 6, 2, 5, 4, 3].

The dodecahedron consists of 12 pentagons (figure below) and the order of its
rotational automorphism group is 12 · 5 = 60. (Choose a side and one of its
neighbors. Any of the 12 sides can be rotated to the place of the first side cho-
sen, and after fixing that, a neighboring side can be chosen from among the 5
neighbors. Two adjacent fixed sides uniquely determine the rotation.)
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For the dodecahedron, the number of distinct labelings is thus

12!

60
=

479001600

60
= 7983360.

Problem ** 37.

Let P be the partition of X = {1, 2, . . . , 19} given by

{{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, {16, 17, 18, 19}}.

Clearly, all partitionings of X that satisfy the requirements can be formed from
P by relabeling the elements. That is, the set of all partitionings that satisfy the
requirements is the orbit of P under the group G = Sym(X), where permutation
π acts on P by relabeling its points. For example

P ′ = {{1, 3, 4, 5, 7}, {2, 6, 8, 10, 12}, {9, 11, 13, 14, 15}, {16, 17, 18, 19}}

is obtained from P by swapping the points 2 and 7 and the points 9 and 12 with
each other, that is, P ′ = π(P ), where π = (2, 7)(9, 12).

By the orbit stabilizer theorem (p. 213, Lemma 6.9 in the book) we find the
length of the orbit G(P ) to be

|G(P )| = |G|
|GP |

,
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where GP is the subgroup of G that consists of all permutations that stabilize P ,
that is,

GP = {π ∈ G | π(P ) = P}.

Now |GP | = 3!(5!)34!, since the contents of the 4- and 5-subsets in P in P can
be arbitrarily permuted without changing P ; additionally there are 3! ways of
ordering the 5-subsets. The number of distinct partitionings is thus

|G(P )| = 19!

3!(5!)34!
=

121645100408832000

248832000
= 488864376.

Problem ** 38. (a)

The automorphism group of the given square is isomorphic to the dihedral group
D8. The group consists of the permutations

g0 = (0)(1)(2)(3)(4)(5)(6)(7)(8)

g1 = (0, 2, 8, 6)(1, 5, 7, 3)(4)

g2 = (0, 8)(1, 7)(2, 6)(5, 3)(4)

g3 = (0, 6, 8, 2)(1, 3, 7, 5)(4)

g4 = (0, 2)(3, 5)(6, 8)(1)(4)(7)

g5 = (1, 5)(0, 8)(3, 7)(2)(4)(6)

g6 = (0, 6)(1, 7)(2, 8)(3)(4)(5)

g7 = (1, 3)(2, 6)(5, 7)(0)(4)(8).

The permutations are of types

type(g0) = (9, 0, 0, 0, 0, 0, 0, 0, 0)

type(g1,3) = (1, 0, 0, 2, 0, 0, 0, 0, 0)

type(g2) = (1, 4, 0, 0, 0, 0, 0, 0, 0)

type(g4,5,6,7) = (3, 3, 0, 0, 0, 0, 0, 0, 0).

How many 5-subsets does each permutation map onto itself? If an element of
a cycle in the permutation belongs to the subset, then all elements in the cycle
must belong to the subset for the permutation to map the subset onto itself. So
we compute the number of ways of choosing cycles from the permutations so that
the sum of the lengths of the cycles is 5.
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χ5(g0) =

(
9

5

)
= 126

χ5(g1,3) =

(
2

1

)
= 2

χ5(g2) =

(
4

2

)
= 6

χ5(g4,5,6,7) =

(
3

1

)(
3

2

)
+

(
3

3

)(
3

1

)
= 12

By Burnside’s Lemma (p. 215, Theorem 6.10 in the book)

Nk =
1

|G|
∑
g∈G

χk(g),

and we obtain N5 = 1
8
(126 + 2 · 2 + 6 + 4 · 12) = 23.

Problem ** 38. (b)

We construct sets of representatives of k-subset orbits Rk for 0 ≤ k ≤ 2. The set
R2 will be the answer to the problem.

R0 = {∅}, since the empty set is the only 0-element subset of the 9-element set.
Now we add to each element in R0 in turn each of the elements {0, . . . , 8} in
turn, and we append the result to R1 unless R1 already contains a 1-subset from
the same orbit that precedes the result.

R1 = {{0} , {1} ,

{0}︷︸︸︷
{2} ,

{1}︷︸︸︷
{3} , {4} ,

{1}︷︸︸︷
{5} ,

{0}︷︸︸︷
{6} ,

{1}︷︸︸︷
{7} ,

{0}︷︸︸︷
{8} } = {{0} , {1} , {4}}

Now we take in turn each element in R1 and append each element in turn that
is larger than all elements already in the set. We append the result to R2 unless
it already contains an earlier 2-subset from the same orbit.

R2 = { {0, 1} , {0, 2} ,

{0,1}︷ ︸︸ ︷
{0, 3}, {0, 4} , {0, 5} ,

{0,2}︷ ︸︸ ︷
{0, 6},

{0,5}︷ ︸︸ ︷
{0, 7}, {0, 8} ,

{0,1}︷ ︸︸ ︷
{1, 2}, {1, 3} , {1, 4} ,

{1,3}︷ ︸︸ ︷
{1, 5},

{0,5}︷ ︸︸ ︷
{1, 6}, {1, 7} ,

{0,5}︷ ︸︸ ︷
{1, 8},

{1,4}︷ ︸︸ ︷
{4, 5},

{0,4}︷ ︸︸ ︷
{4, 6},

{1,4}︷ ︸︸ ︷
{4, 7},

{0,4}︷ ︸︸ ︷
{4, 8} }
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so we have

R2 = {{0, 1} , {0, 2} , {0, 4} , {0, 5} , {0, 8} , {1, 3} , {1, 4} , {1, 7}} .

Note: Above in constructing Rk+1 it suffices to only consider adding to each ele-
ment of Rk elements that are larger than the elements already in there, since in
this version of the algorithm an orbit is always represented by the lexicographical
minimum element in it. If the (k + 1)-subset S ∈ Rk+1 is the lexicographical
minimum element in its orbit, it holds that also the set S ′ = S \ {max (S)} is
the lexicographical minimum element of its orbit, so S ′ ∈ Rk. From this it fol-
lows that each element in Rk+1 can be constructed from some element in Rk by
adding an element that comes after the elements already in the set.

Problem ** 39.

The automorphism group Aut(G) of the graph G contains 48 elements:

I (0, 2, 3, 1)(4, 6, 7, 5) (0, 5, 3)(2, 4, 7)
(2, 4)(3, 5) (0, 2, 6, 7, 5, 1)(3, 4) (0, 5)(2, 7)
(1, 2)(5, 6) (0, 3, 6)(1, 7, 4) (0, 5, 3, 6)(1, 7, 2, 4)
(1, 2, 4)(3, 6, 5) (0, 3, 5, 6)(1, 7, 4, 2) (0, 5, 6)(1, 7, 2)
(1, 4, 2)(3, 5, 6) (0, 3, 6, 5)(1, 2, 7, 4) (0, 6, 3)(1, 4, 7)
(1, 4)(3, 6) (0, 3)(1, 2)(4, 7)(5, 6) (0, 6, 3, 5)(1, 4, 2, 7)
(0, 1, 3, 7, 6, 4)(2, 5) (0, 3, 5)(2, 7, 4) (0, 6, 5, 3)(1, 2, 4, 7)
(0, 1, 3, 2)(4, 5, 7, 6) (0, 3)(4, 7) (0, 6, 5)(1, 2, 7)
(0, 1, 5, 4)(2, 3, 7, 6) (0, 4, 6, 7, 3, 1)(2, 5) (0, 6)(1, 7)(2, 4)(3, 5)
(0, 1, 5, 7, 6, 2)(3, 4) (0, 4, 5, 1)(2, 6, 7, 3) (0, 6)(1, 7)
(0, 1)(2, 3)(4, 5)(6, 7) (0, 4, 6, 2)(1, 5, 7, 3) (0, 7)(1, 6)(2, 5)(3, 4)
(0, 1)(2, 5)(3, 4)(6, 7) (0, 4)(1, 5)(2, 6)(3, 7) (0, 7)(1, 6)(2, 3)(4, 5)
(0, 2, 6, 4)(1, 3, 7, 5) (0, 4, 5, 7, 3, 2)(1, 6) (0, 7)(1, 5)(2, 6)(3, 4)
(0, 2)(1, 3)(4, 6)(5, 7) (0, 4)(1, 6)(2, 5)(3, 7) (0, 7)(1, 5, 4, 6, 2, 3)
(0, 2, 3, 7, 5, 4)(1, 6) (0, 5, 6, 3)(1, 4, 7, 2) (0, 7)(1, 3, 2, 6, 4, 5)
(0, 2)(1, 6)(3, 4)(5, 7) (0, 5)(1, 4)(2, 7)(3, 6) (0, 7)(1, 3)(2, 5)(4, 6)

This group is generated by the permutations (0, 1, 3, 7, 6, 4)(2, 5) and
(0, 1, 3, 2)(4, 5, 7, 6). The stabilizer subgroups can be determined either algo-
rithmically by first generating the Schreier–Sims representation for the group
(note that there is a typo in Algorithm 6.9 of the book; see the errata at http:
//www.math.mtu.edu/~kreher/cages.html) and then using Algorithm 6.6 to

http://www.math.mtu.edu/~kreher/cages.html
http://www.math.mtu.edu/~kreher/cages.html
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test for each element whether they map {0, 7} and {0, 1, 2, 3} onto themselves.
On the other hand, at least the stabilizers of {0, 7},

I (1, 4, 2)(3, 5, 6) (0, 7)(1, 5)(2, 6)(3, 4)
(2, 4)(3, 5) (1, 4)(3, 6) (0, 7)(1, 5, 4, 6, 2, 3)
(1, 2)(5, 6) (0, 7)(1, 6)(2, 5)(3, 4) (0, 7)(1, 3, 2, 6, 4, 5)
(1, 2, 4)(3, 6, 5) (0, 7)(1, 6)(2, 3)(4, 5) (0, 7)(1, 3)(2, 5)(4, 6),

are easy to pick out from the list of all permutations. Here the stabilizer subgroup
Aut(G){0,7} is of order 12, so the length of the orbit of {0, 7} and on the other
hand the size of the left transversal of the stabilizer is

|Aut(G)|/|Aut(G){0,7}| = 48/12 = 4.

The left transversal could be computed by Algorithm 6.17 of the book, which
computes the left transversal although this is not explicitly mentioned in the text.
One left transversal is

g1 = I g3 = (0, 2, 6, 4)(1, 3, 7, 5)
g2 = (0, 1, 3, 7, 6, 4)(2, 5) g4 = (0, 3, 6)(1, 7, 4)

.

The orbit of {0, 7} and the corresponding transversal are given below.
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I (0,1,3,7,6)(2,5)

(0,2,6,4)(1,3,7,5) (0,3,6)(,1,7,4)
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Similarly the stabilizer subgroup Aut(G){0,1,2,3} of {0, 1, 2, 3} consists of the per-
mutations

I (0, 2)(1, 3)(4, 6)(5, 7)
(1, 2)(5, 6) (0, 2, 3, 1)(4, 6, 7, 5)
(0, 1, 3, 2)(4, 5, 7, 6) (0, 3)(1, 2)(4, 7)(5, 6)
(0, 1)(2, 3)(4, 5)(6, 7) (0, 3)(4, 7)

,

so the orbit length of the subset {0, 1, 2, 3} and also the size of the left transversal
of Aut(G){0,1,2,3} is 48/8 = 6. One left transversal consists of the permutations

g1 = I g3 = (1, 2, 4)(3, 6, 5) g5 = (0, 2, 6, 4)(1, 3, 7, 5)
g2 = (2, 4)(5, 3) g4 = (0, 1, 3, 7, 6, 4)(2, 5) g6 = (0, 4)(1, 5)(2, 6)(3, 7)

.

The orbit of the subset and the corresponding transversal elements are shown
below.
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I (2,4)(5,3)

(0,1,3,7,6,4)(2,5) (0,2,6,4)(1,3,7,5) (0,4)(1,5)(2,6)(3,7)

(1,2,4)(3,6,5)

Problem * 40.

The graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic (denoted by G1
∼= G2)

if there is a bijection π : V1 → V2 such that for all u, v ∈ V1 it holds that
{u, v} ∈ E1 if and only if {π(u), π(v)} ∈ E2. The bijection π is an isomorphism.
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Let F be a family of graphs and X be some set. The mapping Φ : F → X is
invariant for the family F if for all G1,G2 ∈ F it holds that Φ(G1) = Φ(G2) always
when G1

∼= G2. Thus, if Φ(G1) 6= Φ(G2) then we must have G1 6∼= G2.

To solve the problem it therefore suffices to find an invariant that can distinguish
the given graphs.

(a) We can choose, for example, the list of the degrees of the vertices (in as-
cending order). The isomorphism π must map the degree list [deg(v1), . . . ,
deg(vn)], when deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn) onto the correspond-
ing list [deg(π(v1)), . . . , deg(π(vn))] so that deg(π(v1)) ≤ deg(π(v2)) ≤
· · · ≤ deg(π(vn)). (Obviously two graphs must have the same number
of vertices to be isomorphic.) The degree list of the graph on the left is
[2, 3, 3, 3, 3] and the degree list of the graph on the right is [2, 2, 3, 3, 4].
Therefore the graphs are nonisomorphic.

(b) We can consider the number of triangles in the graph: an isomorphism π
must map an arbitrary triangle {{u, v}, {u, w}, {v, w}} ⊆ E1 onto the cor-
responding triangle {{π(u), π(v)}, {π(u), π(w)}, {π(v), π(w)}} ⊆ E2, so
two isomorphic graphs G1,G2 must contain the same number of triangles.
Now we observe that the graph on the left contains no triangles while there
are two in the graph on the right. Thus the graphs cannot be isomorphic.

Problem ** 41.

We take as the symmetry group of K8 the dihedral group D8, which is generated
by the permutations (0, 1, 2, 3, 4, 5, 6, 7) and (0, 7)(1, 6)(2, 5)(3, 4). (The cyclic
group C8 is a subgroup of D8 so a D8-symmetric coloring is also C8-symmetric.)
Symmetricity of a coloring means that edges of the same color map onto each
other when an element of the symmetry group acts on the vectices, that is, the
edges in each D8-orbit must be of the same color.

The D8-orbits of the edge set of K8 are (see also Figure 6):

∆1 = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, [5, 6}, {6, 7}, {0, 7}},
∆2 = {{0, 2}, {2, 4}, {4, 6}, {0, 6}, {1, 3}, {3, 5}, {5, 7}, {1, 7}},
∆3 = {{0, 3}, {0, 5}, {1, 4}, {1, 6}, {2, 5}, {2, 7}, {3, 6}, {4, 7}},

∆4 = {{0, 4}, {1, 5}, {2, 6}, {3, 7}}.

There are 5 D8-orbits Γ1, . . . , Γ5 of 3-subsets, and their lexicographically mini-
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mum representatives are

γ1 = {0, 1, 2}, γ2 = {0, 1, 3}, γ3 = {0, 1, 4}, γ4 = {0, 2, 4}, γ5 = {0, 2, 5}.

Similarly there are 8 D8-orbits Σ1, . . . , Σ8 of 4-subsets, and their lexicographically
minimum representatives are

σ1 = {0, 1, 2, 3}, σ2 = {0, 1, 2, 4}, σ3 = {0, 1, 2, 5},
σ4 = {0, 1, 3, 4}, σ5 = {0, 1, 3, 5}, σ6 = {0, 1, 3, 6},

σ7 = {0, 1, 4, 5}, σ8 = {0, 2, 4, 6}.
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Figure 6: The D8-orbits of the edges of K8

The orbit indicence matrix of the 2-subset and 3-subset orbits is

Γ1 Γ2 Γ3 Γ4 Γ5

∆1 2 2 2 0 0
∆2 1 2 0 2 1
∆3 0 2 2 0 2
∆4 0 0 4 2 0

.

Similarly the orbit incidence matrix of 2-subset and 4-subset orbits is

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8

∆1 3 4 2 2 2 1 1 0
∆2 2 4 1 1 4 2 0 1
∆3 1 2 2 2 4 3 1 0
∆4 0 4 2 2 4 0 2 1

.
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In the orbit incidence matrix the element on row i in column j tells how many
elements of the orbit Γj (similarly Σj) contain a chosen element of the orbit ∆i.
For example the edge {0, 1} from orbit ∆1 is contained in exactly two 3-subsets
of orbit Γ1, that is, {0, 1, 2} and {0, 1, 6}.

The desired edge coloring can now be found by using orbit incidence matri-
ces. Clearly every 3-subset represents a triangle of three edges, and each 4-subset
represents a 4-clique with

(
4
2

)
= 6 edges. If some triangle appears in the edge col-

oring with color 1, by symmetry of the coloring all triangles in the same orbit Γj

are colored with color 1. Thus then all edges incident with triangles (3-subsets)
in Γj must be colored with color 1. By the structure of the orbit incidence matrix
this is clearly possible exactly when the orbits colored with color 1 include all
orbits ∆i with a nonzero value in column j of the orbit incidence matrix.

Thus we can color the orbit sets {∆1}, {∆2}, {∆3}, {∆4},
{∆1, ∆3}, {∆1, ∆4} and {∆3, ∆4} with color 1. Since we must be able to color
the remaining orbits with color 2 so that no 4-clique in color 2 appears, by using
the second orbit incidence matrix we find two colorings that satisfy the condi-
tions: in solution 1 we color the orbits {∆1, ∆4} with color 1 and orbits {∆2, ∆3}
with color 2; in solution 2 we color the orbits {∆3, ∆4} with color 1, and orbits
{∆1, ∆2} with color 2.

Problem * 42.

We use the algorithm in Section 7.3.1 of the book after adding a bit of precision:

1. Label all vertices in the tree by 01.

2. Repeat until there are no more than two vertices:

(a) Let the set T consist of all nonleaf vertices, that have at most one
nonleaf neighbor. (In a tree, a vertex is a leaf if it has at most one
neighbor.)

(b) For each x ∈ T repeat:

i. Let the set Y be the set of labels of nonleaf neighbors of x, and x
too, with the beginning 0 and ending 1 removed.

ii. Replace the name of x with the name obtained by concatenating
the elements of Y in lexicographical order, prepending a 0 and
appending a 1.

iii. Remove from the tree leaf neighbors of x.
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3. If only one vertex remains, its label is the certificate.

4. If two vertices remain, the certificate is their labels concatenated in lexico-
graphical order.

The computation of the algorithm for the trees given is presented in the figure
below. The circled vertices belong to T .
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As a result we obtain the same certificate for each tree, so the trees are isomorphic.
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Problem * 43.

We use the rising water algorithm presented in the book (pp. 248–252). The
computation is represented in the following figure.

0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 1

0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1 1
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Problem ** 44.

Let G = (V , E) be the graph considered. Denote the set of neighbors of a vertex
v ∈ V by NG(v). Define for subsets T ⊆ V :

DT (v) = |NG(v) ∩ T |,

that is, DT (v) is the number of neighbors of v in the set T . The ordered parti-
tioning

B = [B[0], B[1], . . . , B[|B| − 1]]

of the vertex set V is equitable) if for all i, j ∈ {0, 1, . . . , |B| − 1} it holds that
DB[j](u) = DB[j](v) for all u, v ∈ B[i]. The ordered partition B is a refinement
of the ordered partition A if

• for each subset B[i] there is some subset A[j] such that B[i] ⊆ A[j]; and

• if u ∈ A[i1] and v ∈ A[j1], where i1 < j1, then u ∈ B[i2], v ∈ B[j2], where
i2 < j2.

Conversely we can say that A is a coarser partition than B. B is a strict refinement
(strictly coarser than) A if B is a refinement (coarser than) A and additionally
A 6= B.

Let A be an ordered partition of the vertex set of the graph. For the partition
A there exists a unique (up to the order of the components) coarsest equitable
partition B, which is a refinement of A. The algorithm given below finds an
ordered coarsest equitable partition B, which is a refinement of A.

1. Let B = A.

2. Push the subsets of B onto the stack S.

3. Repeat until S = ∅:

(a) Pop the subset T from the top of the stack S.

(b) Repeat for all subsets B[i] in B:

i. Let L[h] = {v ∈ B[i] : DT (v) = h} for all h = 0, 1, . . . , |V|−1.
ii. If there are more than one nonempty sets in L, replace B[i] by

the nonempty sets L[0], L[1], L[2], . . ., and push the nonempty
sets onto the stack S.
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The degrees of the vertices of the graph in question are

Solmu 0 1 2 3 4 5 6
Asteluku 2 5 4 4 4 1 2

.

Partition the vertices into increasing order of their degree

A = [{5}, {0, 6}, {2, 3, 4}, {1}].

Execute the given algorithm step by step. Initially

B = [{
0

5}, {
1

0,
1

6}, {
1

2,
1

3,
1

4}, {
0

1}]
S = [{5}, {0, 6}, {2, 3, 4}, {1}︸︷︷︸

=T

]

(above each vertex v in B is the corresponding value DT (v)). Clearly no compo-
nent can be split, as DT (v) is constant in all components. Things are the same
in the next step:

B = [{
1

5}, {
1

0,
1

6}, {
2

2,
2

3,
2

4}, {
3

1}]
S = [{5}, {0, 6}, {2, 3, 4}︸ ︷︷ ︸

=T

].

At the third step {2, 3, 4} is split into parts {3} and {2, 4}:

B = [{
0

5}, {
0

0,
0

6}, {
1

2,
0

3,
1

4}, {
2

1}]
S = [{5}, {0, 6}︸ ︷︷ ︸

=T

].

Now the partition remains unchanged until the stack S is emptied:

B = [{
0

5}, {
1

0,
1

6}, {
2

3}, {
1

2,
1

4}, {
2

1}]
S = [{5}, {3}, {2, 4}︸ ︷︷ ︸

=T

].

B = [{
1

5}, {
0

0,
0

6}, {
0

3}, {
1

2,
1

4}, {
1

1}]
S = [{5}, {3}︸︷︷︸

=T

].

B = [{
0

5}, {
0

0,
0

6}, {
1

3}, {
0

2,
0

4}, {
0

1}]
S = [ {5}︸︷︷︸

=T

].

The desired partition is thus

B = [{5}, {0, 6}, {3}, {2, 4}, {1}].
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Problem *** 45.

The Petersen graph is an example of an extremely regular graph, whose vertex set
no invariant inducing function can partition into more than one parts. Thus for
example Algorithm 7.1 in the book will execute a brute force backtrack search to
find isomorphisms regardless of which invariants are used.

A slightly better result can be achieved by using the ideas developed in the con-
text of computing certificates. An isomorphism could be found for example by
computing a certificate for both graphs, and storing some vertex permutation π,
that produces the least certificate matrix. (Assume that the vertices of the graph
on the right are numbered so that a 7→ 0, b 7→ 1, jne.)

If the permutation π1 ∈ Sym({0, . . . , 9}) produces the certificate from the adja-
cency matrix A of the left-hand graph, and π2 ∈ Sym({0, . . . , 9}) similarly from
the adjacency matrix B of the right hand graph, we find Aπ1 [i, j] = Bπ2 [i, j] for
all i, j, since the graphs are isomorphic and the certificates must be equal. Now

B[i, j] = B[π2(π
−1
2 (i)), π2(π

−1
2 (j))] = Bπ2 [π

−1
2 (i), π−1

2 (j)] =
= Aπ1 [π

−1
2 (i), π−1

2 (j)] = (Aπ1)π−1
2

[i, j] = Aπ1π−1
2

[i, j],

so the permutation π1π
−1
2 is the desired isomorphism that maps vertices of the

left-hand graph onto vertices of the right-hand graph such that edges map onto
edges.

With pen and paper an isomorphism can be found for example by examining
the neighborhood of a vertex (this works especially well in the case of a transitive
automorphism group, as one can pick any vertex to start with). In the left-hand
graph of Figure 7 the neighborhood of vertex 0 is considered: 0 has the neighbors
1, 4, and 5. Furthermore, in addition to 0, the vertex 1 has the neighbors 2 and
6, the vertex 4 has 3 and 9, and vertex 5 has 7 and 8. If this 2-neighborhood of 0
is drawn radially, we can get the graph on the left. If we repeat this for the graph
on the right starting from vertex j we obtain (in one case) the bottom graph in
Figure 7, and the isomorphism can be directly read out.

The order of the automorphism group can be determined either by the algorithms
in the book (say, algorithm 7.2 or 7.9), or by examining the symmetries. From
the structure of the graphs in Figure 7 we can see that after choosing the initial
vertex, its neighbors can be permuted at will, and the vertices still remaining can
be ordered so that we still get the same graph. Once the order of the neighbors
of the initial vertex is fixed, we can see that we can still choose the order of the
vertices in one “branch” (say, vertices 2 and 6, both neighbors of vertex 1, in the
graph on the left) and still fix the remaining vertices so that we obtain the same
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graph. After fixing the vertices in one “branch” the remaining vertices are clearly
fixed.

Since the original graph on the left clearly has cyclic rotational symmetry, and on
the other hand in Figure 7 identical neighborhood graphs have been presented
for vertices 0 ja 5, it is clear that the automorphism group must be transitive, that
is, the same neighborhood graph can be drawn starting from any vertex. Now
there are 10 ways of choosing the initial vertex, its neighbors can be permuted in
3! = 6 ways, and the 2 vertices in one “branch” in 2 ways. Thus there are exactly
10 · 6 · 2 = 120 ways of mapping the neighborhood graph onto itself.
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Figure 7: Isomorphisms of Petersen graphs.


