Threshold functions

• The most interesting phenomena in \(G(n,p) \) random graphs emerge when \(p = p(n) \) is not a constant but \(p = p(n) \to 0 \) in some controlled way.

• Recall: Function \(t = t(n) \) is a threshold for graph property \(\mathcal{A} \) if
 1. \(p < t \) \(\Rightarrow \) \(G \not\in \mathcal{A} \) for a.e. \(G \in G(n,p) \),
 2. \(p > t \) \(\Rightarrow \) \(G \in \mathcal{A} \) for a.e. \(G \in G(n,p) \).

• As an example, let us review Theorem 4.6: define the density of a graph \(G = (V,E) \) as \(q(G) = |E|/|V|^2 \), and say that \(G \) is balanced if \(q(G') = q(G) \) for all subgraphs \(G' \) of \(G \).

• Theorem 5.8 (Erdős & Rényi 1960). Let \(H \) be a balanced graph. Then the graph property "\(G \) has a subgraph isomorphic to \(H \)" has threshold \(n^{-1/2} q(H) \).

Proof: We apply the first- and second-moment methods as in the special case of Thm 4.3, but now simplify the calculations using Lemma \(A^* \) (p. 38).

For a given balanced graph \(H \), denote \(l = |E|, k = |V| \), so that \(q(H) = l/k \).

1. [Upper threshold / 1st-moment method:] For each vertex set \(S \), \(|S| = k \), define the indicator variable

\[X_S = \begin{cases} 1 & \text{if } S \text{ contains a copy of } H \\ 0 & \text{otherwise} \end{cases} \]

and consider the sum \(X = \sum_{|S|=k} X_S \).
Now
\[p^k \leq \Pr(X_s = 1) \leq k! \cdot p^k \]
(The upper bound is due to the fact that each ordering of the \(k \) vertices induces at most one copy of \(H_k \).)

Thus, by linearity of expectation:
\[
E[X] = \sum_{i=1}^{k} E[X_s] = \binom{n}{k} \Pr(X_s = 1) = \Theta(n^k \cdot p^k).
\]

Now if \(p > n^{-k/2} \), then \(E[X] \to 0 \) as \(n \to \infty \), and consequently also \(\Pr(X > 0) \to 0 \) as \(n \to \infty \).

(ii) [Lower threshold / 2nd-moment method:] Now assume that \(p > n^{-k/2} \), so that \(E[X] \to 0 \) as \(n \to \infty \). By lemma \(\Delta^* \), in order to show that \(\Pr(X > 0) \to 1 \) as \(n \to \infty \), it suffices to show that \(\Delta^* = o(E[X]) \), where
\[
\Delta^* = \sum_{T \in S} \Pr(X_T = 1 | X_s = 1) \quad \text{for fixed } S.
\]
(Note that all the \(k \)-sets of vertices "look the same" except for the numbering of the vertices.)

Here \(T \in S \) iff \(T \neq S \) and \(T \cap S \) have common edges, i.e. if \(|T \cap S| = r \) for some \(r = 2, \ldots, k-1 \). Thus:
\[
\Delta^* = \sum_{r=2}^{k-1} \sum_{|T \cap S| = r} \Pr(X_T = 1 | X_s = 1).
\]
Now for a fixed k and given r, there are $\binom{k}{r} \binom{n-k}{k-r}$ choices of T.

For any choice of T, there are at most $k! = O(1)$ copies of H on T. Each of these contains at most

\[g(k) \cdot r = \frac{rk}{k} \]

edges both of whose endpoints are also in S. (Consider the induced subgraph of H on $T \cap S$ and note that H is balanced!) Consequently, each copy of H on T contains at least $k - r \frac{k}{k}$ edges one of whose endpoints is not in S, and so

\[\Pr(X_T = 1 | X_e = 1) \leq k! \left(\frac{k}{k} - \frac{r}{k} \right)^k = O\left(p^\frac{k}{k} \right) = O(p^{1 - \frac{r}{k}}) \]

Hence

\[\Delta^* = \sum_{r=2}^{k-1} \binom{k}{r} \binom{n-k}{k-r} O(p^{2(1 - r/k + r)}) \]

\[= \sum_{r=2}^{k-1} O(n^{k-r} p^{2(1 - r/k + r)}) \]

\[= \sum_{r=2}^{k-1} O(n^{k-r} p^{2 - (r/k)}) \]

\[= O(k \cdot n^{-k} p^2) \]

\[= o(n^k p^2) \]

\[= o(\mathbb{E}[X]). \]

Lemma Δ^* thus applies, and $\Pr(X > 0) \to 1$ as $n \to \infty$. \qed
Corollary 5.9. For $k \geq 3$, the property "G contains a k-cycle" has threshold n^{-1}. (Note that the threshold is independent of k.)

Corollary 5.10. For $k \geq 2$, the property "G contains a k-clique" has threshold $n^{-2/(k-1)}$.

Corollary 5.11. For $k \geq 2$, the property of G containing a specific tree structure on k nodes has threshold $n^{-k/(k-1)}$.

Theorem 5.9. Theorem 5.8 can be further generalised as follows: for a graph H, define

$$g^*(H) = \max \{ g(H') \mid H' \text{ is a subgraph of } H \}.$$

Theorem 5.9. For any given graph H, the graph property "G has a subgraph isomorphic to H" has threshold $n^{-1/g^*(H)}$.

Proof. Omitted.
7. Random Graphs

Threshold functions for global graph properties

Also known as the "phase transition".

The "epochs of evolution": Consider the structure of random graphs \(G \in G(n, p) \) as \(p = p(n) \) increases. The following results can be shown (note that \(np = \) average node degree):

0. If \(p < n^{-2} \), then a.e. \(G \) is empty.

1. If \(n^{-2} < p < n^{-1} \), then a.e. \(G \) is a forest (a collection of trees).
 - The threshold for the appearance of any \(k \)-node tree structure is \(p = n^{-k/(k-1)} \).
 - The threshold for the appearance of cycles (of all constant sizes) is \(p = n^{-1} \).

2. If \(p \sim cn^{-1} \) for any \(c < 1 \) (i.e. \(np \to c < 1 \) as \(n \to \infty \)), then a.e. \(G \) consists of components with at most one cycle and \(\Theta(\log n) \) nodes.

3. "Phase transition" or "emergence of the giant component" at \(p \sim n^{-1} \) (i.e. \(np \to 1 \)).

4. If \(p \sim cn^{-1} \) for any \(c > 1 \) (i.e. \(np \to c > 1 \)), then a.e. \(G \) consists of a unique "giant" component with \(\Theta(n) \) nodes and small components with at most one cycle.

5. If \(n^{-1} < p < \frac{\ln n}{n} \), then a.e. \(G \) is disconnected, consisting of one giant component and trees.

6. If \(p \sim \frac{\ln n}{n} \), then a.e. \(G \) is connected (in fact Hamiltonian).

\[\text{Theorem 6.10} \]

Let \(p_t(n) = \frac{\ln n - \omega(n)}{n} \), \(p_u(n) = \frac{\ln n + \omega(n)}{n} \) where \(\omega(n) \to \infty \). Then

(i) a.e. \(G \in G(n, p_t) \) is disconnected;

(ii) a.e. \(G \in G(n, p_u) \) is connected.

\[\text{Proof.} \] We shall use the second moment method on random variables \(X_k = X_k(G) = \) number of components on \(G \) with exactly \(k \) nodes.

Assume without loss of generality that \(\omega(n) \leq \ln \ln n \) and \(\omega(n) \geq 10 \).
Part II. Combinatorial Models

(i) Set \(p = p_t \) and compute \(\mu = E(X_1), \sigma^2 = \text{Var}(X_1) \). By linearity of expectation,

\[
\mu = E(X_1) = n(1 - p)^{n-1} = ne^{(n-1)\ln(1-p)} \\
\leq ne^{-np} = ne^{-\ln n + o(n)} = e^{o(n)} \xrightarrow{n \to \infty} 0.
\]

Furthermore, the expected number of ordered pairs of isolated nodes is

\[
E(X_1(X_1 - 1)) = n(n-1)(1-p)^{2n-3}.
\]

Hence,

\[
\sigma^2 = \text{Var}(X_1) = E(X_1^2) - \mu^2 \\
= E(X_1(X_1 - 1)) + \mu - \mu^2 \\
= n(n-1)(1-p)^{2n-3} + n(1-p)^{n-1} - n^2(1-p)^{2n-2} \\
\leq n(1-p)^{n-1} + pn^2(1-p)^{2n-3} \\
\leq \mu + (\ln n - o(n))ne^{-2\ln n + 2o(n)}(1-p)^{-3} \\
\leq \mu + \frac{2\ln n}{n}e^{o(n)} \leq \mu + 1 \quad \text{for large } n.
\]

Thus, \(\frac{\sigma^2}{\mu^2} \xrightarrow{n \to \infty} 0 \) and by Lemma 7.16.

\[
\Pr(\text{G is disconnected}) \geq \Pr(X_1(G) > 0) \to 1 \quad \text{as } n \to \infty.
\]

(ii) (Here basic expectation estimation, or "1st moment method" suffices.)

Set \(p = p_u = \frac{\ln n + o(n)}{n} \) and compute

\[
\Pr(\text{G is disconnected}) = \Pr \left(\sum_{k=1}^{\lfloor n/2 \rfloor} X_k \geq 1 \right) \\
\leq E \left(\sum_{k=1}^{\lfloor n/2 \rfloor} X_k \right) = \sum_{k=1}^{\lfloor n/2 \rfloor} E(X_k) \\
\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} (1-p)^k(1-p)^{n-k} \\
= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} (1-p)^n (1-p)^{-k} \\
= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} (1-p)^{n-k} \\
\]

(5)
Split the sum (5) in two parts:

\[(a) \quad \sum_{1 \leq k \leq n^{3/4}} \binom{n}{k} (1 - p)^{k(n-k)} \leq \sum_{1 \leq k \leq n^{3/4}} \left(\frac{en}{k} \right)^k e^{k(1-\omega(n))} e^{k^2 \ln n/n} \]
\[= \sum_{1 \leq k \leq n^{3/4}} k^{-1} e^{(1-\omega(n))k} e^{2k \ln n/n} \leq e^{-\omega(n)} \sum_{1 \leq k \leq n^{3/4}} \exp \left(-k \ln k + k + \frac{2k^2 \ln n}{n} \right) \leq 3e^{-\omega(n)}.\]

\[(b) \quad \sum_{n^{3/4} \leq k \leq n/2} \binom{n}{k} (1 - p)^{k(n-k)} \leq \sum_{n^{3/4} \leq k \leq n/2} \left(\frac{en}{k} \right)^k e^{k(1-\omega(n))} \leq \frac{n}{2} e^{n/2} n^{-1/4} n^{3/4} \leq n^{-3/4/5} \leq e^{-\omega(n)} \quad \text{for large } n.\]

Thus, altogether

\[\Pr(G \text{ is disconnected}) \leq 4e^{-\omega(n)} \xrightarrow{n \to \infty} 0. \qed\]
Part II. Combinatorial Models

What happens at the “phase transition” $p \sim n^{-1}$? For fixed values of n and $N = \binom{n}{2}$, consider the space of “graph processes” $\mathcal{G} = (G_t)_{t=0}^N$, where at each “time instant” t a new edge is selected uniformly at random for insertion into an n-node graph. (Thus, picking graph G_t from a randomly chosen process $G \in \mathcal{G}(n,M)$, where $M = t$.)

5.11

Theorem 5.11 Let $c > 0$ be a constant and $\omega(n) \to \infty$. Denote $\beta = (c - 1 - \ln c)^{-1}$ and $t = t(n) = \lceil cn/2 \rceil$. Then

(i) At $c < 1$, every component C of a.e. G_t satisfies

$$|C| - \beta \left(\ln n - \frac{5}{2} \ln \ln n \right) \leq \omega(n).$$

(ii) At $c = 1$, for any fixed $h \geq 1$ the h largest components C of a.e. G_t satisfy

$$|C| = \Theta(n^{2/3}).$$

(iii) At $c > 1$, the largest component C_0 of a.e. G_t satisfies

$$|C_0| - \gamma n \leq \omega(n) \cdot n^{1/2},$$

where $0 < \gamma = \gamma(c) < 1$ is the unique root of

$$e^{-\gamma} = 1 - \gamma.$$

The other components C of a.e. G_t satisfy also in this case

$$|C| - \beta \left(\ln n - \frac{5}{2} \ln \ln n \right) \leq \omega(n).$$

Thus, the fraction of nodes in the “giant” component of a.e. G_t for $t = cn/2$ behaves as illustrated in Figure 8.

Let us prove one part of this result, the emergence of a gap in the component sizes of $G \in \mathcal{G}(n,p)$ at $p \sim n^{-1}$. (This corresponds to $t \sim N_p \sim n/2$.)

5.12

Theorem 5.12 Let $a \geq 2$ be fixed. Then for large n, $\varepsilon = \varepsilon(n) < 1/3$ and $p = p(n) = (1 + \varepsilon)n^{-1}$, with probability at least $1 - n^{-\alpha}$, a random $G \in \mathcal{G}(n,p)$ has no component C that satisfies

$$\frac{8a}{\varepsilon^2 \ln n} \leq |C| \leq \frac{\varepsilon^2}{12} n.$$
7. Random Graphs

![Image of a graph with nodes and edges]

Figure 8: Fraction of nodes in the giant component.

Proof. Let us consider "growing" the component $C(u)$ of an arbitrary node u in G incrementally as follows:

1. (Stage 0:) Set $A_0 = \emptyset, B_0 = \{u\}.$

2. (Stage $i + 1$:) If $B_i = A_i,$ then stop with $C(u) = B_i.$ Otherwise pick an arbitrary $v \in B_i \setminus A_i$; set $A_{i+1} = A_i \cup \{v\},$ $B_{i+1} = B_i \cup \{\text{neighbours of } v \text{ in } G\}.$

Now what is the probability distribution of $|B_i|$ (=size of set B_i)?

Consider any node $v \in G \setminus \{u\}.$ It participates in i independent Bernoulli trials for being included in $B_i,$ each with success probability equal to $p.$ Thus the inclusion probability for any fixed $v \neq u$ is $1 - (1 - p)^i,$ independently of each other.

Consequently, the size of each B_i obeys a simple binomial distribution

$$\Pr(|B_i| = k) = \binom{n-1}{k} (1 - (1 - p)^i)^k (1 - p)^{(n-k-1)}.$$

This gives also for each k an upper bound on the probability

$$\Pr(|C(u)| = k) = \Pr(|B_i| = k \land \text{ process stops at stage } i).$$

Denoting $p_k = \Pr(|C(u)| = k)$ for any fixed $u \in G,$ it is clear that

$$\Pr(G \text{ contains a component of size } k) \leq np_k,$$

and to prove the theorem it suffices to show that

$$\sum_{k=k_0}^{k_1} p_k \leq n^{-a-1},$$
where \(k_0 = [8\sigma e^{-2}\ln n] \), \(k_1 = [\varepsilon^2 n/12] \).

Since presumably \(k_0 \leq k_1 \), we may assume \(\varepsilon^4 \geq \frac{9k_1 \ln n}{n} \geq \frac{1}{n} \).

We may now estimate

\[
P_k \leq \Pr(|B_1| = k) \leq \frac{n^k}{k!} e^{-\frac{k^2}{2n}} (kp)^k (1 - p)^{k(n-k-1)},
\]

because

\[
\binom{n-1}{k} = \frac{n^k}{k!} \prod_{j=1}^{k} \left(1 - \frac{j}{n}\right) \leq \frac{n^k}{k!} e^{-\frac{k^2}{2n}}, \text{ and}
\]

\[(1 - p)^k \geq 1 - kp.
\]

Applying Stirling's formula

\[
\sqrt{2\pi k} \left(\frac{k}{e}\right)^k \leq k! \leq e^{12\pi} \sqrt{2\pi k} \left(\frac{k}{e}\right)^k
\]

and the bounds \(k_0 \leq k \leq k_1 \) to (6) we obtain

\[
P_k \leq \exp \left(\frac{-k^2}{2n} - \frac{\varepsilon^3 k}{3} + \frac{k^2(1 + \varepsilon)}{n}\right)
\]

\[
\leq \exp \left(\frac{-\varepsilon^2 k}{3} + \frac{k^2}{n}\right)
\]

\[
\leq \exp \left(\frac{-\varepsilon^2 k}{4}\right),
\]

and consequently

\[
\sum_{k=k_0}^{k_1} p_k \leq \sum_{k=k_0}^{k_1} e^{-\varepsilon^2 k/4} \leq e^{-\varepsilon^2 k_0/4} \cdot (1 - e^{-\varepsilon^2/4})^{-1}
\]

\[
\leq \frac{5}{\varepsilon^2} e^{-\varepsilon^2 k_0/4} \leq 5\sqrt{n} \cdot n^{-2\alpha}
\]

\[
= 5n^{-2\alpha+1/2} < n^{-a-1},
\]

for large \(n \). \(\Box \)