2. Linearity of Expectation

- Elementary, but extremely useful tool.
- Bass feet 1 : if X_{1}, X_{n} are randan umiables and $x=c_{1} x_{1}+\cdots+c_{n} x_{n}$, then:

$$
E[x]=c_{1} E\left[x_{1}\right]+\cdots+c_{n} E\left[x_{n}\right]
$$

Note: Nothing needs to be assumed about the independence of the X_{i}.

- In applications of the technique, the X_{i} are often $0 / 1$-valued indicator variables for "went "occurs", in which care for $X=x_{1}+\cdots+x_{n}$:
$E[X]=$ "expected total number of events".
- Example 1. Let σ be a unify random pusimedation of $[n]$ and
$X(\Delta)=$ number of fixed points of 6 .
Consider events " i is a fixpoint of σ " and their indicators:

$$
x_{i}(s)= \begin{cases}1, & \text { if } s(i)=i ; \\ 0, & \text { if } \sigma(i) \neq i .\end{cases}
$$

Clearly

$$
\begin{aligned}
E\left[X_{i}\right] & =1 \cdot \operatorname{Pr}(\Delta(i)-i)+0 \cdot \operatorname{Pr}(\sigma(i)+i) \\
& =\operatorname{Pr}(\sigma(i)=i)=\frac{1}{n},
\end{aligned}
$$

and so

$$
E[x]=E\left[x_{1}+\cdots+x_{n}\right]=\frac{1}{n}+\cdots+\frac{1}{n}=1 .
$$

- Baric faced 2: if x is a rendom variable on a mrobabinif space $\left(\Omega_{3}, \mathcal{F}, P_{r}\right)$, then there are $\omega, \omega^{\prime} \in \Omega$ isth.

$$
X(\omega) \leqslant E[x], \quad X\left(\omega^{\prime}\right) \geqslant E[x] .
$$

- Theorem 2.1 (Stele 1943).

For any n. there is a tournament T with n plages and at least $2 n!/ 2^{n}$ Hamillovion paths.
[Alon (1990): Any n-playes tournament contains at most $n!/(2-a(1))^{n}$ Hamibbomian paths.]

Proof. Lat $X=X(T)$ be the number of Hamillonion paths in a cunif) random tournament T with n player.
For any permutation σ of [n], let X_{s} be the indicator variable for \leqslant yielding a Hawidoniom path in T, ie.

$$
X_{\sigma}(T)=\left\{\begin{array}{l}
1, \text { ff in } T: \sigma(1) \rightarrow \sigma(2) \rightarrow \cdots \rightarrow \sigma(n) ; \\
0, \text { otherwise. }
\end{array}\right.
$$

Then $x=\sum_{5} X_{6}$ and

$$
\begin{aligned}
E[X] & =\sum_{\delta} E\left[X_{6}\right] \\
& =\sum_{\sigma} \operatorname{Pr}(6 \text { Hamillowion w.r.t. } T) \\
& =n!\left(\frac{1}{2}\right)^{n-1} \\
& =2 \cdot \frac{n!}{2^{n}} .
\end{aligned}
$$

Thus there is at least one tournament $-T$ seth.

$$
x(T) \geqslant E(x]=2 \cdot \frac{n!}{2^{n}} \cdot \square
$$

- Theorem 2.2

In any graph $G=(V, E)$, the vertices con be partitioned into $V=T_{U}(V I T)$, so that the number of edges crossing the cut $(T, N \backslash T)$ is at least $\mid E / / 2$.
Proof. Consider a random cut $(T, V \backslash T)$ defined by $\operatorname{Pr}(x \in T)=1 / 2$, indef. and unif. for each $x \in V$.

Dense
$X(T)=$ number of edger crossing cat T
and for each edge $e=\{x, y\} \in E$:

$$
\begin{aligned}
& \text { for each edge } e=\vec{x}, y) \in E: \\
& X_{e}(T)=\left\{\begin{array}{l}
1, \text { if e crosses ant } T\binom{x \in T, y \in T \text { or }}{x \in T, y \in T} \text {; otherwise }
\end{array}\right. \text { : }
\end{aligned}
$$

Then

$$
E\left[X_{e}\right]=\operatorname{Pr}(e \text { crosses } T)=\frac{1}{2}
$$

and

$$
E[x]=E\left[\sum_{e} x_{e}\right]=\sum_{e} E\left[x_{e}\right]=|E| \cdot \frac{1}{2} .
$$

Hence there is at least one cur Is th.

$$
x(T) \geqslant E[x]=\frac{|E|}{2}
$$

- Now that the techique is established, the proofs of the following complicated-Cooknly results is straighifformand:

Theorem 2.3 For any n and $k_{\text {, }}$, there is a two-wolouring
of K_{n} inducing at vast

$$
\binom{n}{k} / 2^{\left(\frac{k}{2}\right)-1}
$$

monochromatic K_{l} 's. D
Theorem 24 For any m, n, h, k, there is a two-colounng of K_{n+1} [the complete bipartite graph on math vertices? inducing al most

$$
(k)\binom{n}{k} / 2^{n k-1}
$$

monochromatic $K_{h, k}{ }^{\prime}$ s. प)

Balancing vectors

- How well con linear combinations of basis vectors be approximated with simple ($\pm 1)$ beffrients?

Theorem e 2.4 let $v_{11}, v_{m} \in \mathbb{R}^{n},\left\|_{v_{i}}\right\|=1$ Hi. Then there exist $\varepsilon_{1,-}, \varepsilon_{m} \in\{+1,-1\}$ s.th.

$$
\left\|\varepsilon_{1} v_{1}+\cdots+\varepsilon_{m} v_{m}\right\| \leq \sqrt{m}
$$

and also $\varepsilon_{1}, \varepsilon_{m} \in\{+1,-1\}$ situ.

$$
\| \varepsilon_{1} v_{1}+\cdots+\varepsilon_{m} v_{m} U \geqslant \sqrt{m} .
$$

Proof Chore the $\varepsilon_{i} \in\{+1,-1\}$ unif. Finder. at random, and consider r.v.

$$
X(\vec{\varepsilon})=\left\|\varepsilon_{1} v_{1}+\cdots+\varepsilon_{m} v_{m}\right\|^{2}
$$

Then:

$$
\begin{aligned}
x(\vec{\varepsilon}) & =\left(\sum_{i} \varepsilon_{i} v_{i}\right)^{\top}\left(\sum_{j} \varepsilon_{j} v_{j}\right) \\
& =\sum_{i} \sum_{j} \varepsilon_{i} \varepsilon_{j} v_{i}^{\top} v_{j}
\end{aligned}
$$

and so:

$$
\text { so: } \begin{aligned}
E[X] & =\sum_{j} \sum_{j} E\left[\varepsilon_{i} \varepsilon_{j}\right] v_{i}^{\top} v_{j} \quad \left\lvert\, E\left[\varepsilon-\varepsilon_{j}\right]= \begin{cases}0, i \neq j \\
1, i=j\end{cases} \right. \\
& =\sum_{i}\left\|_{v_{i}}\right\|^{2} \\
& =m .
\end{aligned}
$$

Hence there exist specific $\vec{\varepsilon}, \vec{\varepsilon}^{\prime}$ s. th.

$$
x(\vec{\varepsilon}) \leq m, \quad x\left(\vec{\varepsilon}^{\prime}\right) \geqslant m .
$$

Talking square roots completes the remits.

Theorem 2.5 Let $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n},\left\|v_{i}\right\| \leq 1 \quad \forall_{i}$. Than for arbitrary $p_{1}, p_{m} \in[0,1]$ and $u=p_{1} v_{1}+\cdots+p_{m} v_{m}$ there exist $\varepsilon_{1}, \ldots, \varepsilon_{m} \in\{0,1\}$ s th. for $v=\varepsilon_{1} v_{1}+\ldots+\varepsilon_{m} v_{m}$:

$$
\|u-v\| \leq \frac{\sqrt{m}}{2} \text {. }
$$

Proof Idea: "approximating reals urth probatodlities":
Dick the $\varepsilon_{i} \in\{0,1\}$ indep. $\omega /$ probability $\operatorname{Pr}\left(\varepsilon_{i}=1\right)=p_{i}$ and consider ruN.

$$
\begin{aligned}
x(\vec{\varepsilon}) & =\|u-v\|^{2} \\
& =\left\|\sum_{i}\left(p_{i}-\varepsilon_{i}\right) v_{i}\right\|^{2} \\
& =\sum_{i} \sum_{j}\left(p_{i}-\varepsilon_{i}\right)\left(p_{j}-\varepsilon_{j}\right) v_{i}^{\top} v_{j} .
\end{aligned}
$$

Now for $i \neq j$:

$$
E\left[\left(p_{i}-\varepsilon_{i}\right)\left(p_{j}-\varepsilon_{j}\right)\right]=E\left[\varepsilon_{i}-\varepsilon_{i}\right] E\left[\varepsilon_{p j}-\varepsilon_{j}\right]=0
$$

and for $i=j: \quad \operatorname{Var}\left[\varepsilon_{i}\right]$

$$
E\left[\left(p_{i}-\varepsilon_{i}\right)^{2}\right]=p_{i}\left(p_{i}-1\right)^{2}+\left(1-p_{i}\right) p_{i}^{2}=p_{i}\left(1-p_{i}\right) \leqslant \frac{1}{4} .
$$

Thus:

$$
\begin{aligned}
E[x] & =\sum_{i} p_{i}\left(1-p_{i}\right)\left\|v_{i}\right\|^{2} \\
& \leqslant \frac{1}{4} \cdot m^{\prime}
\end{aligned}
$$

and the rest of the prose concendes os in Thun 2.4.

Derandomisetion

- In same (many? all?) cases a probabilistic choice can be replaced by a deterministic selection protocol; either a simple greedy one, or something more cleverly balanced.
- E.g. Th the care of Thu 2.2 (large cuts), place the vertices $x \in V$ sequentially in cither T or $V I T$; in each case so that the mapaity of edges connecting
x to previously considered vertices crosses the cut. Then:

$$
\begin{aligned}
X(T) & =\text { \#edges crossing } T \\
& =\sum_{e=\{x, y\}} \mathbb{1}[e=\{x, y\} \text { crosses } T] \\
& =\sum_{x} \sum_{y<x} \mathbb{1}[e=\{x, y\} \text { crosses } T] \\
& \geqslant \sum_{x} \frac{1}{2}\left(\sum_{y<x} \mathbb{1}[e=\{x, y\} \in E]\right) \\
& =\frac{1}{2} \sum_{x} \sum_{y^{<x}} \mathbb{1}[e=\{x, y\} \in E] \\
& =|E| / 2 .
\end{aligned}
$$

- In the case of The 2.5 /good approximations to linear combinations), a greedy procedure also works.
Given $u_{1}, \ldots, v_{m} \in R^{n}, p_{1 r}, p_{m} \in[0,1]$, suppose $\varepsilon_{1, \ldots}, \varepsilon_{s-1} \in\{0,1\}$ hove already been chosen, and
Denude by $w_{t}=\sum_{i=1}^{t}\left(p_{p_{i}}-\varepsilon_{i}\right) v_{i}$ the "error vector of the selection process by stage t.

Now given ω_{s-1}, choose that value of $\varepsilon_{s} \in\{0,1\}$ that minimises the norm of

$$
w_{s}=\sum_{i=1}^{s}\left(p_{p}-\varepsilon_{i}\right)_{v_{i}}=w_{s-1}+\left(p_{s}-\varepsilon_{i}\right) v_{s} .
$$

Since for radom $\varepsilon_{s} \in\{0,1\}$ chosen with $\operatorname{Pr}\left(\varepsilon_{s}=1\right)=p_{s}$
it holds that

$$
\begin{aligned}
E\left[\left\|\omega_{s}\right\|^{2}\right]=\left\|\omega_{s-1}\right\|^{2} & +2 E\left[p_{s}-\varepsilon_{s}\right] \omega_{s-1}^{\top} v_{s} \\
& +E\left[\left(p_{s}-\varepsilon_{s}\right)^{2}\right]\left\|v_{s}\right\|^{2} \\
= & \left\|\omega_{s-1}\right\|^{2}+p_{s}\left(1-p_{s}\right)\left\|_{v_{s}}\right\|^{2}
\end{aligned}
$$

there is some choice of ε_{s} that yields:

$$
\left\|\omega_{s}\right\|^{2} \leq\left\|\omega_{s-1}\right\|^{2}+p_{s}\left(1-p_{s}\right)\left\|v_{s}\right\|^{2}
$$

Thus, waling the "greecty" choice of $\varepsilon_{s} \in\{0,1\}$ for all of $s=1, \ldots$ guarantees

$$
\begin{aligned}
\left\|\omega_{m}\right\|^{2} & \leq \sum_{i=1}^{m} p_{i}\left(1-p_{i}\right)\left\|v_{i}\right\|^{2} \\
& \leq \frac{1}{4} m .
\end{aligned}
$$

