

11 · Basic fact 2: if X is a rendom variable on a probability space (Du, F, Pr), then there are w, w'EDS sth. $X(w) \leq E(X), X(w) \geq E(X)$ · Theorem 2.1 (Szele 1943). For any n. there is a tournoment T with n players and at least 2n. 12 Howildonian partles. Alon (1990): Any n-player tournament contains at most n! / (2-o(1))" tiquiblionian paters.] Proof. Let X = X(T) be the number of Hamiltonian parties in a lunif.) rendom tournament T with a players. For any permudation & of [n], let Xg be the indicator variable for & yielding a thankidonian path in T, 1.0. $X_{\mathcal{S}}(T) = \begin{cases} 1, & \text{if in } T : & S(1) \rightarrow S(2) \rightarrow \dots \rightarrow S(n) ; \\ X_{\mathcal{S}}(T) = \begin{cases} 0, & \text{otherwise} \end{cases}$ Then X = E X & and $E[X] = \sum_{g} E[X_{g}]$ = E Pr (S Hamiltonian w.r.t. T) $= n! (\frac{1}{2})^{-1}$ = 2. 27 Thus there is at least one tournament - T site. $X(T) \ge E(X) = 2 \cdot \frac{1}{2^n} \cdot B$

· Theorem 2.2

In any graph G = (V, E), the vertices can be pordificined indo $V = TU(V \setminus T)$, so that the number of edges crossing the cut $(T, V \setminus T)$ is at least IEV/2. Proof. Consider a random cut (T, VIT) defined by Pr(XET) = 1/2, indep. and unif. for each XEV. Danade X(T) = number of edges crossing and T and for each edge $e = \frac{1}{x}, \frac{1}{y} \in E$: $X_{e}(T) = \begin{cases} 1, & \text{if } e \text{ crosses cul } T(x \in T, y \notin T \text{ or }); \\ X_{e}(T) = \begin{cases} 0, & \text{otherwise} \end{cases}$ Then E[X] = Pr(e crosses T) = = and $E[X] = E[\Sigma_{e}X_{e}] = \Sigma E[X_{e}] = 1E1 \cdot \frac{1}{2}.$ is at least one curl T sith. Hence ture $X(T) \ge E[X] = \frac{1E1}{2}$

12

13 · Now that the techique is established, the proofs of the following complicated - looking results a straightforwood: Theorem 2.3 For any n and k, there is a two-colouring of Kn inducing at most $\binom{2}{2}/\binom{2}{2}^{\binom{n}{2}-1}$ monochromodic Kis. A Theorem 24 For any m,n, h, k, there is a two-colouring of Km,n [-the complete to partite graph on man vertices] inducing at most (h)(k)/2^{he-1} monochromadic Khiks. D Balancing vectors · flow well can linear combinations of basis vectors be approximated with simple (±1) loefficients? Theorem 2.4 Let Vy, Vm ER, Wy = 1 Hi. Then there exist Ey, Em E 1+1, -13 S.th. lev, +-.. + Enville Im, and also E, _ Em E {+1, -1} s.fr. Il E, V, +-- + Em Vm U > Vm.

14 Proof Choose the E. 6 (+1, -13 unif. &indop. at random, and consider r.v. $X(\vec{z}) = |z_1 v_1 + \dots + z_m v_m ||^2$ Then : $X(\vec{z}) = \left(\sum_{i} z_i v_i \right)^{\prime} \left(\sum_{j} z_j v_j \right)$ = E, E, E; E; U, TU; , and so: $E[X] = \sum_{i \in J} \sum_{j \in I} E[e_i e_j] v_j^T v_j$ $= \sum_{i \in I} \|v_i\|^2$ $= \sum_{i \in I} \|v_i\|^2$ E[==]=]0, i=j Home there exist specific \$, \$' s.th. $X(\vec{\epsilon}) \leq m, \quad X(\vec{\epsilon}') \geq m.$ Taking square roots completes the result.

15 Theorem 2.5 Let $v_{1}, \dots, v_{m} \in \mathbb{R}^{2}$, $\|v_{i}\| \leq 1$ $\forall i$. Then for arbitrary $p_{1}, \dots, p_{m} \in [0, 1]$ and $u = p_{1}v_{1} + \dots + p_{m}v_{m}$ there exist $\varepsilon_{1}, \dots, \varepsilon_{m} \in \{0, 1\}$ s.th. for $V = \varepsilon_{1}v_{1} + \dots + \varepsilon_{m}v_{m}$: $\|u-v\| \in \frac{\sqrt{n}}{2}$ Proof Idea: "approximations reals with probabilities" Pick the e; E SO, 13 indep. w/ probability Pr(E; =1) = p; and courider r.v. $X(\bar{\epsilon}) = \|u - v\|^2$ = 11 E. (p== E;)v; 12 $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (p_i - \varepsilon_i) (p_j - \varepsilon_j) v_i^{\mathsf{T}} v_j.$ Now for it; $\frac{\xi_i + \xi_j}{E[(p_i - \varepsilon_i)(p_j - \varepsilon_j)]} = \frac{\xi_i + \xi_j}{E[(p_i - \varepsilon_i)]E[(p_j - \varepsilon_j)]} = 0$ and for i=j: Nortei] $E[(p_{i}-\epsilon_{i})^{2}] = p_{i}(p_{i}-1)^{2} + (1-p_{i})p_{i}^{2} = p_{i}(1-p_{i}) \leq \frac{1}{4}$ Thus : $E[X] = \sum_{p_i} (1 - p_i) \|v_i\|^2$ \$ 1, m, and the rest of the proof concludes as in Them 24

