1. It has been previously established that the egf for the class of derangements is
\[\hat{d}(z) = \frac{e^{-z}}{1-z} \]. Derive from this a simple recurrence equation for the number of derangements of \(n \) elements. Can you think of a combinatorial interpretation for this formula?

2. Let \(h(z) = \sum_{n \geq m} h_n z^n \), where \(h_m \neq 0 \), be a formal Laurent series. Prove the following results:

 (a) \(\text{Res}(h'(z)) = 0 \);

 (b) \(\text{Res}(h'(z)/h(z)) = m \).

3. Derive from Lagrange’s inversion formula for formal power series (Theorem 5.2 in the lecture notes) its following reformulation (useful e.g. in the analysis of tree structures): Let \(f(z) \) and \(\phi(u) \) be formal power series satisfying \(\phi(0) = \phi_0 \neq 0 \) and \(f(z) = z\phi(f(z)) \). Then for all \(n \geq 1 \):

\[
[z^n]f(z) = \frac{1}{n}[u^{n-1}]\phi(u)^n.
\]

(Hint: Consider the power series \(\psi(u) = \frac{u}{\phi(u)} \).)

4. Derive formulas for the number of \(n \)-node rooted ordered trees and \(n \)-node binary trees (rooted ordered trees where each node has 0, 1 or 2 descendents) directly by applying the respective ogf-constructions and Lagrange’s inversion formula.