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Background

Security of MD5 and SHA1 is dubious, so a MAC with a security

proof relative to a block cipher would be nice. Poly1305-AES

provides such a MAC.

This presentation is based on the following papers:

• Daniel J. Bernstein: The Poly1305-AES Message Authentication

Code, Fast Software Encryption (FSE) 2005.

• Daniel J. Bernstein: Stronger security bounds for

Wegman-Carter-Shoup authenticators.
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Poly1305-AES description
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Poly1305-AES in a nutshell

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

• hr(m) is a polynomial defined by

message m, evaluated at addi-

tional key r, modulo 2130 − 5.

• AESk(n) computed using a 128-

bit key k with a (guaranteed to

be unique) nonce n, result inter-

preted as an integer modulo 2128.

• The two terms are finally

summed modulo 2128, yielding a

128-bit result.

4



Intuition

We don’t want to expose the I/O relationship of hr(m), so we mask

the term with a uniform random injective function evaluated at a

(guaranteed to be unique) nonce, resulting in a random “masking

value” which never repeats.

An actual uniform random injective function is impractical, so we use

AES to simulate one, relying on AES to be indistinguishable from a

true uniform random injective function. The resulting key (k, r) has

a fixed size (256 bits). The AES indistinguishability assumption is

dealt with in the security proof.

The crux of Poly1305-AES description is in the details of the

function hr(m), especially how an L-byte message is broken up into a

polynomial (modulo 2130 − 5).

5



Key format

The 256-bit key (k, r) consists of a 128-bit AES key, k, and an additional

key, r. The AES-key is straightforward, but the additional key has some

restrictions, yielding a key length of 128 + 106 = 234 bits.
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Key format...

The additional key, r, is a little endian interpretation

r = r[0] + 28r[1] + ... + 2120r[15] with special bit restrictions to

optimize implementation (actual key size 106 bits):

• r[3], r[7], r[11], r[15] are required to have their top four bits clear.

• r[4], r[8], r[12] are required to have their two bottom bits clear.

The implementation (which uses floating point arithmetic) represents

a large integer as x = x0 + x1 + x2 + x3. The bit restrictions for r

ensure that carries can be propagated conveniently in this

representation. The restrictions don’t seem to have a security reason.
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Input padding

Input message m of L bytes is processed in q = dL/16e 16-byte

chunks, with possible last partial chunk having special treatment.

The chunks are interpreted as little endian integers and referred to as

c1, ..., cq:

1. Append 1 (0x01) to the ith chunk.

2. Given a partial chunk, append the chunk with zeros to 17 byte

length.

3. Interpret the 17-element array as an unsigned little endian

integer, ci.
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Input padding...
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Input as a polynomial

Construct polynomial f from chunks c1, ..., cq:

f(x) = c1x
q + ... + cqx

1 (mod 2130 − 5),

which is easy to evaluate incrementally. Initialize accumulator

h0 = 0; for i = 1, ..., q, update hi = (hi−1 + ci)x, reducing

intermediate results modulo 2130 − 5, resulting in:

h0 = 0

h1 = c1x
1

h2 = c1x
2 + c2x

1

...

hq = c1x
q + ... + cqx

1

Final value hq is f(x).
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Definition of hr(m)

The hr(m) term in

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

is computed quite simply by:

1. converting the input message m into the chunk values c1, ..., cq;

2. generating the corresponding polynomial f(x); and

3. evaluating the polynomial f(x) at r, the additional key, resulting

in hr(m) = f(r).
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Completing the computation

The hr(m) term is reduced modulo 2128 and added to the 128-bit

AES term. The result is reduced again modulo 2128, and finally

converted into a little endian representation.

This results in a 16-byte (128-bit) final authenticator value.
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Poly1305-AES security proof
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Attack model

S(n, m) = h(m) + f(n)

S(n, m) = hr(m) + AESk(n)

• Attacker performs C (adaptive) queries

(ni, mi) → S(ni, mi) = ai from oracle

S, with restriction mi 6= mj ⇒ ni 6= nj .

(Duplicate nonces not allowed unless

message also duplicate.)

• Attacker prints out D forgery attempts

(n′

i, m
′

i, a
′

i).

• Attack successful if at least one forgery

attempt has a′

i = S(n′

i, m
′

i) and n′

i, m
′

i

is a fresh pair.

• I.e. forged nonce/message pair is new,

and accepted as authentic.
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Preliminaries - Interpolation probability

Let f : N → G be random (not necessarily uniform). Maximum

k-interpolation probability of f is the maximum, for all

x1, ..., xk ∈ G and all distinct n1, ..., nk ∈ N of the probability that

(f(n1), ..., f(nk)) = (x1, ..., xk).

In other words: consider all input-output vectors and compute the

probability of that input-output combination over distribution of f.

Take the maximum. This is useful as a bound for the probability of a

certain input-output combination given that f has some random

distribution, and is used in the security proof for f (ultimately, AES).

15



Preliminaries - Interpolation probability

Uniform random function, N and G finite, #N ≤ #G. Then

maximum k-interpolation probability of f is 1/#Gk.

Proof: (f(n1), ..., f(nk)) = (x1, ..., xk) with probability 1/#Gk. Note that

each selection independent because ni are distinct.

Uniform random injective function, N and G finite,

#N ≤ #G. Then maximum k-interpolation probability of f is

(1 − (k − 1)#G)−k/2/#Gk.

Proof: Fix xi and (distinct) ni. If xi = xj for some i 6= j (collision),

probability is 0. If no collisions, P [f(n1) = x1] = 1/#G,

P [f(n2) = x2] = 1/(#G − 1) (conditional), etc. Total probability

(1/#G)...(1/(#G− k + 1)) = ... = (1 − (k − 1)#G)−k/2/#Gk, independent

of particular xi, ni (when xi don’t collide).

16



Preliminaries - Differential probability

Let h : M → G be random (not necessarily uniform), M a finite set,

and G a commutative group. Assume for all g ∈ G and all distinct

m, m′ ∈ M that P [h(m) = h(m′) + g] ≤ ε (over distribution of h).

Then h is said to have a differential probability of ε.

In other words: when considering certain two distinct inputs (messages)

m, m′ what bound can be placed on the probability that their output

difference h(m) − h(m′) is exactly equal to some specific value g? Note

that the probability is computed over h, the polynomial, which is not

assumed to be uniform in the main proof.
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Statement of main theorem

Assumptions

• Let h : M → G be random, M nonempty, G finite commutative

group. Let f : N → G be random, N finite, h and f independent.

• Let C (# oracle queries) and D (# forgery attempts) be positive

integers. Assume C + 1 ≤ #N ≤ #G.

• Assume maximum differential probability of h to be at most ε.

• Assume maximum C-interpolation probability of f to be at most

δ/#GC , and maximum C + 1-interpolation probability to be at

most δε/#GC .

Then any attack with at most C oracle queries and at most D

forgery attempts succeeds against (n, m) → h(m) + f(n) with

probability at most Dδε.
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Proof of main theorem

Simplifications

• Suffices to show that probability of one successful forgery

attempt is δε.

• Assume all C queries are distinct.

• ⇒ We’re trying to bound the probability of one successful

forgery attempt, given C distinct queries.

Naming

• (ni, mi) is the ith oracle query with response ai = h(mi) + f(ni),

ni distinct.

• (n′, m′, a′) is the attempted forgery, where n′ may be one of ni.
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Proof of main theorem ...

All outputs of the attack (algorithm) are functions of (1) coin flips b

and (2) oracle responses ai. In particular:

• n1, ..., nC , m1, ..., mC , n′, m′, a′ are all functions evaluated at

b, a1, a2, ..., aC .

• Furthermore, ai = h(mi) + f(ni) ⇒ f(ni) = ai − h(mi) is a

function of h, b, a1, ..., aC .

Fix ḡ = (g1, g2, ..., gC) ∈ GC , and let ā = (a1, ..., aC). Consider the

event that ā = ḡ and (n′, m′, a′) is a successful forgery. If we can

prove that the probability for this is at most δε/#GC (for arbitrary

ḡ), then the probability of a successful forgery (regardless of

particular ā) is at most δε (regardless of distribution of ā).
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Proof of main theorem ...

The proof is split into two sub-cases: (1) n′ is fresh; and (2) n′ = ni

for some i. More formally: let p the unknown probability (case 1)

that ā = ḡ ⇒ n′ /∈ {n1, ..., nC}. Since ḡ fixed, p depends only on b.

Case 1. By assumptions, #{n1, ..., nC , n′} = C + 1, and

f(n1), ..., f(nC), f(n′) are various functions evaluated at h, b, ḡ, and

f , h, and b are independent, ḡ fixed. The conditional probability of f

interpolating these C + 1 values is at most δε/#GC (assumption on

f ’s interpolation probability). (Note that we first compute the

required values for f and then the probability of f taking on the

values.)
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Proof of main theorem ...

Case 2. By assumptions, #{n1, ..., nC , n′} = C, and n′ = ni for a

unique i. We must have m′ 6= mi (otherwise not a forgery),

ai = h(mi) + f(ni) and a′ = h(m′) + f(n′) = h(m′) + f(ni). Then

h(mi) − h(m′) = ai − a′. The inputs mi, m
′ and output ai − a′ are

various functions evaluated at b, ḡ, and thus independent of h. By

assumption on h’s differential probabilities,

P [h(mi) − h(m′) = ai − a′] ≤ ε. Furthermore, the probability that f

interpolates the required C values f(n1), ..., f(nC) is at most δ/#GC .

Wrap-up. Total probability of success is at most

p(δε/#GC) + (1 − p)(ε)(δ/#GC) = δε/#GC . Final probability is

Dδε. We’re done.
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Derivatives of the main theorem

Note that we didn’t assume any particular distributions for f and h.

By strengthening the assumptions on f we get more specific results.

The following we’ll need in the Poly1305-AES security proof (we skip

the proof):

• h random (not necessarily uniform) with maximum differential

probability ε, f uniform random injective function ⇒ chance

of success is D[(1 − C/#G)−(C+1)/2]ε (bracketed part equals δ).
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Poly1305-AES security proof

First, the authors prove the following.

• h random (not necessarily uniform) with maximum differential

probability ε, f = AES ⇒ chance of success (distinguish AES or

forgery) is β + D[(1 − C/2128)−(C+1)/2]ε, where β is the

probability of distinguishing AES.

Note that the criterion for success is now either that we distinguish

AES or that we get a successful forgery. AES is modelled (ideally) as

a uniform random injective function.

(AES is not special; Poly1305-XYZ works with suitable XYZ.)
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Poly1305-AES security proof ...

Finally, we consider the concrete functions involved in Poly1305-AES:

• h(m) = hr(m) as defined in Poly1305-AES paper (polynomial

defined by message, evaluated at additional key r), f = AES,

simulates uniform random injective function ⇒ h has small

differential probabilities, ε ≤ 8dL/16e/2106 where L is

(maximum) length of message (separate proof). Chance of

success is at most β + D[(1 − C/2128)−(C+1)/2][8dL/16e/2106]. In

particular, if C ≤ 264, then chance of success is at most

β + 14DdL/16e/2106.

The first bracketed part is (a bound for) δ and the second is (a

bound for) ε. The Poly1305-AES paper contains a bound on the

differential probabilities of h(m) = hr(m), which is one key ingredient

in the proof. (Due to time constraints we have to skip the proof.)
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Review of security proof

• (n, m) → h(m) + f(n) secure if h has small differential

probabilities and f has small interpolation probabilities. Assume

C oracle queries and D forgery attempts in what follows.

• h random (not necessarily uniform) with maximum differential

probability ε, f random (not necessarily uniform) with maximum

C-interpolation probability δ/#GC , C + 1-interpolation

probability δε/#GC , h and f independent ⇒ chance of success is

Dδε.

• h random (not necessarily uniform) with maximum differential

probability ε, f uniform random injective function ⇒ chance

of success is D(1 − C/#G)−(C+1)/2ε.
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Review of security proof ...

• h random (not necessarily uniform) with maximum differential

probability ε, f = AES, simulates uniform random injective

function ⇒ chance of success (distinguish AES or forgery) is

β + D(1 − C/2128)−(C+1)/2ε, where β is the probability of

distinguishing AES.
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Review of security proof ...

• h(m) = hr(m) as defined in Poly1305-AES paper (polynomial

defined by message, evaluated at additional key r), f = AES,

simulates uniform random injective function ⇒ proved that h has

small differential probabilities, ε ≤ 8dL/16e/2106 where L is

(maximum) length of message. Chance of success is at most

β + D(1 − C/2128)−(C+1)/28dL/16e/2106. In particular, if

C ≤ 264, then chance of success is at most β + 14DdL/16e/2106.

• Note that the special form of r is not required for the proof; it’s

to make the implementation easier.

• Example (IPsec): L ≤ 65536 ⇒ β + 14D212/2106 < β + D/290.

Assume 232 forgery attempts, then total probability of success

less than β + 1/258.
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Poly1305-AES implementation
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Poly1305-AES implementation

The author describe an implementation based on x86 floating point

(!) arithmetic. A few key facts about the implementation:

• Precomputation (key schedule or similar) not necessary

• The special form of r helps in doing floating point carries of a

“multipart” representation x = x0 + x1 + x2 + x3

• 1024-byte message and code in cache ⇒ about 4-5 cycles / byte

• 1600MHz AMD Duron can handle 3 gbps (384 MB/s) of

1500-byte messages

• Comparison: 1600MHz Athlon XP, OpenSSL HMAC-MD5 ⇒ 1.7

gpbs (216 MB/s) of 1024-byte messages
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Summary

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

• Poly1305-AES is a fast MAC with a security proof.

• AES can be replaced with another cipher should AES break.

• Security proof is based on modelling interpolation probabilities of f

and differential probabilities of h.

Thank you!
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