T-79.515 Cryptography: Special Topics

Poly1305-AES MAC

Sami Vaarala

Helsinki University of Technology
sami.vaarala@iki.fi
Background

Security of MD5 and SHA1 is dubious, so a MAC with a security proof relative to a block cipher would be nice. Poly1305-AES provides such a MAC.

This presentation is based on the following papers:

- Daniel J. Bernstein: *Stronger security bounds for Wegman-Carter-Shoup authenticators*.
Poly1305-AES description
Poly1305-AES in a nutshell

\[
\text{Poly1305-AES}_{(k,r)}(n, m) = h_r(m) + \text{AES}_k(n) \pmod{2^{128}}
\]

- \(h_r(m) \) is a polynomial defined by message \(m \), evaluated at additional key \(r \), modulo \(2^{130} - 5 \).
- \(\text{AES}_k(n) \) computed using a 128-bit key \(k \) with a (guaranteed to be unique) nonce \(n \), result interpreted as an integer modulo \(2^{128} \).
- The two terms are finally summed modulo \(2^{128} \), yielding a 128-bit result.
Intuition

We don’t want to expose the I/O relationship of $h_r(m)$, so we mask the term with a uniform random injective function evaluated at a (guaranteed to be unique) nonce, resulting in a random “masking value” which never repeats.

An actual uniform random injective function is impractical, so we use AES to simulate one, relying on AES to be indistinguishable from a true uniform random injective function. The resulting key (k, r) has a fixed size (256 bits). The AES indistinguishability assumption is dealt with in the security proof.

The crux of Poly1305-AES description is in the details of the function $h_r(m)$, especially how an L-byte message is broken up into a polynomial (modulo $2^{130} - 5$).
Key format

The 256-bit key \((k, r)\) consists of a 128-bit AES key, \(k\), and an additional key, \(r\). The AES-key is straightforward, but the additional key has some restrictions, yielding a key length of \(128 + 106 = 234\) bits.

\[k = 128\text{-bit AES key} \]

\[r = 128\text{-bit additional key} \]
Key format...

The additional key, \(r \), is a little endian interpretation
\[r = r[0] + 2^8r[1] + \ldots + 2^{120}r[15] \]
with special bit restrictions to optimize implementation (actual key size 106 bits):

- \(r[3], r[7], r[11], r[15] \) are required to have their top four bits clear.
- \(r[4], r[8], r[12] \) are required to have their two bottom bits clear.

The implementation (which uses floating point arithmetic) represents a large integer as
\[x = x_0 + x_1 + x_2 + x_3 \]
The bit restrictions for \(r \) ensure that carries can be propagated conveniently in this representation. The restrictions don’t seem to have a security reason.
Input padding

Input message m of L bytes is processed in $q = \lceil L/16 \rceil$ 16-byte chunks, with possible last partial chunk having special treatment. The chunks are interpreted as little endian integers and referred to as c_1, \ldots, c_q:

1. Append 1 (0x01) to the ith chunk.

2. Given a partial chunk, append the chunk with zeros to 17 byte length.

3. Interpret the 17-element array as an unsigned little endian integer, c_i.
Input padding...
Input as a polynomial

Construct polynomial f from chunks c_1, \ldots, c_q:

$$f(x) = c_1 x^q + \ldots + c_q x^1 \pmod{2^{130} - 5},$$

which is easy to evaluate incrementally. Initialize accumulator $h_0 = 0$; for $i = 1, \ldots, q$, update $h_i = (h_{i-1} + c_i)x$, reducing intermediate results modulo $2^{130} - 5$, resulting in:

$$
\begin{align*}
 h_0 &= 0 \\
 h_1 &= c_1 x^1 \\
 h_2 &= c_1 x^2 + c_2 x^1 \\
 \quad &\quad \quad \vdots \\
 h_q &= c_1 x^q + \ldots + c_q x^1
\end{align*}
$$

Final value h_q is $f(x)$.
Definition of $h_r(m)$

The $h_r(m)$ term in

$$\text{Poly1305-AES}_{(k,r)}(n, m) = h_r(m) + AES_k(n) \pmod{2^{128}}$$

is computed quite simply by:

1. converting the input message m into the chunk values c_1, \ldots, c_q;
2. generating the corresponding polynomial $f(x)$; and
3. evaluating the polynomial $f(x)$ at r, the additional key, resulting in $h_r(m) = f(r)$.
Completing the computation

The $h_r(m)$ term is reduced modulo 2^{128} and added to the 128-bit AES term. The result is reduced again modulo 2^{128}, and finally converted into a little endian representation.

This results in a 16-byte (128-bit) final authenticator value.
Attack model

\[S(n, m) = h(m) + f(n) \]

\[S(n, m) = h_r(m) + AES_k(n) \]

- Attacker performs \(C\) (adaptive) queries \((n_i, m_i) \rightarrow S(n_i, m_i) = a_i\) from oracle \(S\), with restriction \(m_i \neq m_j \Rightarrow n_i \neq n_j\). (Duplicate nonces not allowed unless message also duplicate.)
- Attacker prints out \(D\) forgery attempts \((n'_i, m'_i, a'_i)\).
- Attack successful if at least one forgery attempt has \(a'_i = S(n'_i, m'_i)\) and \(n'_i, m'_i\) is a fresh pair.
- I.e. forged nonce/message pair is new, and accepted as authentic.
Preliminaries - Interpolation probability

Let $f : N \rightarrow G$ be random (not necessarily uniform). **Maximum k-interpolation probability of** f is the maximum, for all $x_1, ..., x_k \in G$ and all distinct $n_1, ..., n_k \in N$ of the probability that $(f(n_1), ..., f(n_k)) = (x_1, ..., x_k)$.

In other words: consider all input-output vectors and compute the probability of that input-output combination **over distribution of** f. Take the maximum. This is useful as a bound for the probability of a certain input-output combination given that f has some random distribution, and is used in the security proof for f (ultimately, AES).
Preliminaries - Interpolation probability

Uniform random function, N and G finite, \(\#N \leq \#G \). Then maximum \(k \)-interpolation probability of \(f \) is \(1/\#G^k \).

Proof: \((f(n_1), ..., f(n_k)) = (x_1, ..., x_k) \) with probability \(1/\#G^k \). Note that each selection independent because \(n_i \) are distinct.

Uniform random injective function, N and G finite, \(\#N \leq \#G \). Then maximum \(k \)-interpolation probability of \(f \) is \((1 - (k - 1)\#G')^{-k/2}/\#G^k \).

Proof: Fix \(x_i \) and (distinct) \(n_i \). If \(x_i = x_j \) for some \(i \neq j \) (collision), probability is 0. If no collisions, \(P[f(n_1) = x_1] = 1/\#G' \), \(P[f(n_2) = x_2] = 1/(\#G - 1) \) (conditional), etc. Total probability \((1/\#G')...((\#G - k + 1)) = ... = (1 - (k - 1)\#G')^{-k/2}/\#G^k \), independent of particular \(x_i, n_i \) (when \(x_i \) don’t collide).
Preliminaries - Differential probability

Let $h : M \to G$ be random (not necessarily uniform), M a finite set, and G a commutative group. Assume for all $g \in G$ and all distinct $m, m' \in M$ that $P[h(m) = h(m') + g] \leq \epsilon$ (over distribution of h). Then h is said to have a differential probability of ϵ.

In other words: when considering certain two distinct inputs (messages) m, m' what bound can be placed on the probability that their output difference $h(m) - h(m')$ is exactly equal to some specific value g? Note that the probability is computed over h, the polynomial, which is not assumed to be uniform in the main proof.
Statement of main theorem

Assumptions

- Let $h : M \to G$ be random, M nonempty, G finite commutative group. Let $f : N \to G$ be random, N finite, h and f independent.

- Let C (# oracle queries) and D (# forgery attempts) be positive integers. Assume $C + 1 \leq \#N \leq \#G$.

- Assume maximum differential probability of h to be at most ϵ.

- Assume maximum C-interpolation probability of f to be at most $\delta/\#G^C$, and maximum $C + 1$-interpolation probability to be at most $\delta \epsilon/\#G^C$.

Then any attack with at most C oracle queries and at most D forgery attempts succeeds against $(n, m) \to h(m) + f(n)$ with probability at most $D \delta \epsilon$.
Proof of main theorem

Simplifications

• Suffices to show that probability of one successful forgery attempt is $\delta \epsilon$.

• Assume all C queries are distinct.

• \Rightarrow We’re trying to bound the probability of one successful forgery attempt, given C distinct queries.

Naming

• (n_i, m_i) is the ith oracle query with response $a_i = h(m_i) + f(n_i)$, n_i distinct.

• (n', m', a') is the attempted forgery, where n' may be one of n_i.
Proof of main theorem ...

All outputs of the attack (algorithm) are functions of (1) coin flips b and (2) oracle responses a_i. In particular:

- $n_1, ..., n_C, m_1, ..., m_C, n', m', a'$ are all functions evaluated at $b, a_1, a_2, ..., a_C$.

- Furthermore, $a_i = h(m_i) + f(n_i) \Rightarrow f(n_i) = a_i - h(m_i)$ is a function of $h, b, a_1, ..., a_C$.

Fix $\bar{g} = (g_1, g_2, ..., g_C) \in G^C$, and let $\bar{a} = (a_1, ..., a_C)$. Consider the event that $\bar{a} = \bar{g}$ and (n', m', a') is a successful forgery. If we can prove that the probability for this is at most $\delta \epsilon / \# G^C$ (for arbitrary \bar{g}), then the probability of a successful forgery (regardless of particular \bar{a}) is at most $\delta \epsilon$ (regardless of distribution of \bar{a}).
Proof of main theorem ...

The proof is split into two sub-cases: (1) \(n' \) is fresh; and (2) \(n' = n_i \) for some \(i \). More formally: let \(p \) the unknown probability (case 1) that \(\bar{a} = \bar{g} \Rightarrow n' \notin \{n_1, ..., n_C\} \). Since \(\bar{g} \) fixed, \(p \) depends only on \(b \).

Case 1. By assumptions, \(\#\{n_1, ..., n_C, n'\} = C + 1 \), and \(f(n_1), ..., f(n_C), f(n') \) are various functions evaluated at \(h, b, \bar{g}, \) and \(f, h, \) and \(b \) are independent, \(\bar{g} \) fixed. The conditional probability of \(f \) interpolating these \(C + 1 \) values is at most \(\delta \epsilon / \#G^C \) (assumption on \(f \)’s interpolation probability). (Note that we first compute the required values for \(f \) and then the probability of \(f \) taking on the values.)
Proof of main theorem ...

Case 2. By assumptions, $\#\{n_1, \ldots, n_C, n'\} = C$, and $n' = n_i$ for a unique i. We must have $m' \neq m_i$ (otherwise not a forgery), $a_i = h(m_i) + f(n_i)$ and $a' = h(m') + f(n') = h(m') + f(n_i)$. Then $h(m_i) - h(m') = a_i - a'$. The inputs m_i, m' and output $a_i - a'$ are various functions evaluated at b, \bar{g}, and thus independent of h. By assumption on h’s differential probabilities, $P[h(m_i) - h(m') = a_i - a'] \leq \epsilon$. Furthermore, the probability that f interpolates the required C values $f(n_1), \ldots, f(n_C)$ is at most $\delta/\#G^C$.

Wrap-up. Total probability of success is at most $p(\delta \epsilon/\#G^C) + (1 - p)(\epsilon)(\delta/\#G^C) = \delta \epsilon/\#G^C$. Final probability is $D\delta \epsilon$. We’re done.
Derivatives of the main theorem

Note that we didn’t assume any particular distributions for f and h. By strengthening the assumptions on f we get more specific results. The following we’ll need in the Poly1305-AES security proof (we skip the proof):

- h random (not necessarily uniform) with maximum differential probability ϵ, f uniform random injective function \Rightarrow chance of success is $D[(1 - C/\#G)^{(C+1)/2}]\epsilon$ (bracketed part equals δ).
Poly1305-AES security proof

First, the authors prove the following.

- h random (not necessarily uniform) with maximum differential probability ϵ, $f = AES \Rightarrow$ chance of success (distinguish AES or forgery) is $\beta + D[(1 - C/2^{128})^{-(C+1)/2}]\epsilon$, where β is the probability of distinguishing AES.

Note that the criterion for success is now either that we distinguish AES or that we get a successful forgery. AES is modelled (ideally) as a uniform random injective function.

(AES is not special; Poly1305-XYZ works with suitable XYZ.)
Poly1305-AES security proof ...

Finally, we consider the concrete functions involved in Poly1305-AES:

- $h(m) = h_r(m)$ as defined in Poly1305-AES paper (polynomial defined by message, evaluated at additional key r), $f = AES$, simulates uniform random injective function $\Rightarrow h$ has small differential probabilities, $\epsilon \leq 8[L/16]/2^{106}$ where L is (maximum) length of message (separate proof). Chance of success is at most $\beta + D[(1 - C/2^{128})^{-(C+1)/2}][8[L/16]/2^{106}]$. In particular, if $C \leq 2^{64}$, then chance of success is at most $\beta + 14D[L/16]/2^{106}$.

The first bracketed part is (a bound for) δ and the second is (a bound for) ϵ. The Poly1305-AES paper contains a bound on the differential probabilities of $h(m) = h_r(m)$, which is one key ingredient in the proof. (Due to time constraints we have to skip the proof.)
Review of security proof

- \((n, m) \rightarrow h(m) + f(n)\) secure if \(h\) has small differential probabilities and \(f\) has small interpolation probabilities. Assume \(C\) oracle queries and \(D\) forgery attempts in what follows.

- \(h\) random (not necessarily uniform) with maximum differential probability \(\epsilon\), \(f\) random (not necessarily uniform) with maximum \(C\)-interpolation probability \(\delta/\#G^C\), \(C + 1\)-interpolation probability \(\delta\epsilon/\#G^C\), \(h\) and \(f\) independent \(\Rightarrow\) chance of success is \(D\delta\epsilon\).

- \(h\) random (not necessarily uniform) with maximum differential probability \(\epsilon\), \(f\) uniform random injective function \(\Rightarrow\) chance of success is \(D(1 - C/\#G)^{-(C+1)/2\epsilon}\).
Review of security proof ...

- h random (not necessarily uniform) with maximum differential probability ϵ, $f = AES$, simulates uniform random injective function \Rightarrow chance of success (distinguish AES or forgery) is $\beta + D(1 - C/2^{128})^{-\frac{(C+1)}{2}}\epsilon$, where β is the probability of distinguishing AES.
Review of security proof ...

- $h(m) = h_r(m)$ as defined in Poly1305-AES paper (polynomial defined by message, evaluated at additional key r), $f = AES$, simulates uniform random injective function \Rightarrow proved that h has small differential probabilities, $\epsilon \leq 8\lceil L/16 \rceil / 2^{106}$ where L is (maximum) length of message. Chance of success is at most $\beta + D(1 - C/2^{128})^{-(C+1)/2}8\lceil L/16 \rceil / 2^{106}$. In particular, if $C \leq 2^{64}$, then chance of success is at most $\beta + 14D\lceil L/16 \rceil / 2^{106}$.

- Note that the special form of r is not required for the proof; it’s to make the implementation easier.

- Example (IPsec): $L \leq 65536 \Rightarrow \beta + 14D2^{12}/2^{106} < \beta + D/2^{90}$. Assume 2^{32} forgery attempts, then total probability of success less than $\beta + 1/2^{58}$.
Poly1305-AES implementation
Poly1305-AES implementation

The author describes an implementation based on x86 floating point (!) arithmetic. A few key facts about the implementation:

- Precomputation (key schedule or similar) not necessary
- The special form of r helps in doing floating point carries of a “multipart” representation $x = x_0 + x_1 + x_2 + x_3$
- 1024-byte message and code in cache \Rightarrow about 4-5 cycles / byte
- 1600MHz AMD Duron can handle 3 gbps (384 MB/s) of 1500-byte messages
- Comparison: 1600MHz Athlon XP, OpenSSL HMAC-MD5 \Rightarrow 1.7 gpbs (216 MB/s) of 1024-byte messages
Summary

\[\text{Poly1305-AES}_{(k,r)}(n,m) = h_r(m) + \text{AES}_k(n) \pmod{2^{128}} \]

- Poly1305-AES is a fast MAC with a security proof.
- AES can be replaced with another cipher should AES break.
- Security proof is based on modelling interpolation probabilities of \(f \) and differential probabilities of \(h \).

Thank you!