
T-79.515 Cryptography: Special Topics

Poly1305-AES MAC

Sami Vaarala

Helsinki University of Technology

sami.vaarala@iki.fi

1



Background

Security of MD5 and SHA1 is dubious, so a MAC with a security

proof relative to a block cipher would be nice. Poly1305-AES

provides such a MAC.

This presentation is based on the following papers:

• Daniel J. Bernstein: The Poly1305-AES Message Authentication

Code, Fast Software Encryption (FSE) 2005.

• Daniel J. Bernstein: Stronger security bounds for

Wegman-Carter-Shoup authenticators.

2



Poly1305-AES description

3



Poly1305-AES in a nutshell

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

• hr(m) is a polynomial defined by

message m, evaluated at addi-

tional key r, modulo 2130 − 5.

• AESk(n) computed using a 128-

bit key k with a (guaranteed to

be unique) nonce n, result inter-

preted as an integer modulo 2128.

• The two terms are finally

summed modulo 2128, yielding a

128-bit result.

4



Intuition

We don’t want to expose the I/O relationship of hr(m), so we mask

the term with a uniform random injective function evaluated at a

(guaranteed to be unique) nonce, resulting in a random “masking

value” which never repeats.

An actual uniform random injective function is impractical, so we use

AES to simulate one, relying on AES to be indistinguishable from a

true uniform random injective function. The resulting key (k, r) has

a fixed size (256 bits). The AES indistinguishability assumption is

dealt with in the security proof.

The crux of Poly1305-AES description is in the details of the

function hr(m), especially how an L-byte message is broken up into a

polynomial (modulo 2130 − 5).

5



Key format

The 256-bit key (k, r) consists of a 128-bit AES key, k, and an additional

key, r. The AES-key is straightforward, but the additional key has some

restrictions, yielding a key length of 128 + 106 = 234 bits.

6



Key format...

The additional key, r, is a little endian interpretation

r = r[0] + 28r[1] + ... + 2120r[15] with special bit restrictions to

optimize implementation (actual key size 106 bits):

• r[3], r[7], r[11], r[15] are required to have their top four bits clear.

• r[4], r[8], r[12] are required to have their two bottom bits clear.

The implementation (which uses floating point arithmetic) represents

a large integer as x = x0 + x1 + x2 + x3. The bit restrictions for r

ensure that carries can be propagated conveniently in this

representation. The restrictions don’t seem to have a security reason.

7



Input padding

Input message m of L bytes is processed in q = dL/16e 16-byte

chunks, with possible last partial chunk having special treatment.

The chunks are interpreted as little endian integers and referred to as

c1, ..., cq:

1. Append 1 (0x01) to the ith chunk.

2. Given a partial chunk, append the chunk with zeros to 17 byte

length.

3. Interpret the 17-element array as an unsigned little endian

integer, ci.

8



Input padding...

9



Input as a polynomial

Construct polynomial f from chunks c1, ..., cq:

f(x) = c1x
q + ... + cqx

1 (mod 2130 − 5),

which is easy to evaluate incrementally. Initialize accumulator

h0 = 0; for i = 1, ..., q, update hi = (hi−1 + ci)x, reducing

intermediate results modulo 2130 − 5, resulting in:

h0 = 0

h1 = c1x
1

h2 = c1x
2 + c2x

1

...

hq = c1x
q + ... + cqx

1

Final value hq is f(x).

10



Definition of hr(m)

The hr(m) term in

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

is computed quite simply by:

1. converting the input message m into the chunk values c1, ..., cq;

2. generating the corresponding polynomial f(x); and

3. evaluating the polynomial f(x) at r, the additional key, resulting

in hr(m) = f(r).

11



Completing the computation

The hr(m) term is reduced modulo 2128 and added to the 128-bit

AES term. The result is reduced again modulo 2128, and finally

converted into a little endian representation.

This results in a 16-byte (128-bit) final authenticator value.

12



Poly1305-AES security proof

13



Attack model

S(n, m) = h(m) + f(n)

S(n, m) = hr(m) + AESk(n)

• Attacker performs C (adaptive) queries

(ni, mi) → S(ni, mi) = ai from oracle

S, with restriction mi 6= mj ⇒ ni 6= nj .

(Duplicate nonces not allowed unless

message also duplicate.)

• Attacker prints out D forgery attempts

(n′

i, m
′

i, a
′

i).

• Attack successful if at least one forgery

attempt has a′

i = S(n′

i, m
′

i) and n′

i, m
′

i

is a fresh pair.

• I.e. forged nonce/message pair is new,

and accepted as authentic.

14



Preliminaries - Interpolation probability

Let f : N → G be random (not necessarily uniform). Maximum

k-interpolation probability of f is the maximum, for all

x1, ..., xk ∈ G and all distinct n1, ..., nk ∈ N of the probability that

(f(n1), ..., f(nk)) = (x1, ..., xk).

In other words: consider all input-output vectors and compute the

probability of that input-output combination over distribution of f.

Take the maximum. This is useful as a bound for the probability of a

certain input-output combination given that f has some random

distribution, and is used in the security proof for f (ultimately, AES).

15



Preliminaries - Interpolation probability

Uniform random function, N and G finite, #N ≤ #G. Then

maximum k-interpolation probability of f is 1/#Gk.

Proof: (f(n1), ..., f(nk)) = (x1, ..., xk) with probability 1/#Gk. Note that

each selection independent because ni are distinct.

Uniform random injective function, N and G finite,

#N ≤ #G. Then maximum k-interpolation probability of f is

(1 − (k − 1)#G)−k/2/#Gk.

Proof: Fix xi and (distinct) ni. If xi = xj for some i 6= j (collision),

probability is 0. If no collisions, P [f(n1) = x1] = 1/#G,

P [f(n2) = x2] = 1/(#G − 1) (conditional), etc. Total probability

(1/#G)...(1/(#G− k + 1)) = ... = (1 − (k − 1)#G)−k/2/#Gk, independent

of particular xi, ni (when xi don’t collide).

16



Preliminaries - Differential probability

Let h : M → G be random (not necessarily uniform), M a finite set,

and G a commutative group. Assume for all g ∈ G and all distinct

m, m′ ∈ M that P [h(m) = h(m′) + g] ≤ ε (over distribution of h).

Then h is said to have a differential probability of ε.

In other words: when considering certain two distinct inputs (messages)

m, m′ what bound can be placed on the probability that their output

difference h(m) − h(m′) is exactly equal to some specific value g? Note

that the probability is computed over h, the polynomial, which is not

assumed to be uniform in the main proof.

17



Statement of main theorem

Assumptions

• Let h : M → G be random, M nonempty, G finite commutative

group. Let f : N → G be random, N finite, h and f independent.

• Let C (# oracle queries) and D (# forgery attempts) be positive

integers. Assume C + 1 ≤ #N ≤ #G.

• Assume maximum differential probability of h to be at most ε.

• Assume maximum C-interpolation probability of f to be at most

δ/#GC , and maximum C + 1-interpolation probability to be at

most δε/#GC .

Then any attack with at most C oracle queries and at most D

forgery attempts succeeds against (n, m) → h(m) + f(n) with

probability at most Dδε.

18



Proof of main theorem

Simplifications

• Suffices to show that probability of one successful forgery

attempt is δε.

• Assume all C queries are distinct.

• ⇒ We’re trying to bound the probability of one successful

forgery attempt, given C distinct queries.

Naming

• (ni, mi) is the ith oracle query with response ai = h(mi) + f(ni),

ni distinct.

• (n′, m′, a′) is the attempted forgery, where n′ may be one of ni.

19



Proof of main theorem ...

All outputs of the attack (algorithm) are functions of (1) coin flips b

and (2) oracle responses ai. In particular:

• n1, ..., nC , m1, ..., mC , n′, m′, a′ are all functions evaluated at

b, a1, a2, ..., aC .

• Furthermore, ai = h(mi) + f(ni) ⇒ f(ni) = ai − h(mi) is a

function of h, b, a1, ..., aC .

Fix ḡ = (g1, g2, ..., gC) ∈ GC , and let ā = (a1, ..., aC). Consider the

event that ā = ḡ and (n′, m′, a′) is a successful forgery. If we can

prove that the probability for this is at most δε/#GC (for arbitrary

ḡ), then the probability of a successful forgery (regardless of

particular ā) is at most δε (regardless of distribution of ā).

20



Proof of main theorem ...

The proof is split into two sub-cases: (1) n′ is fresh; and (2) n′ = ni

for some i. More formally: let p the unknown probability (case 1)

that ā = ḡ ⇒ n′ /∈ {n1, ..., nC}. Since ḡ fixed, p depends only on b.

Case 1. By assumptions, #{n1, ..., nC , n′} = C + 1, and

f(n1), ..., f(nC), f(n′) are various functions evaluated at h, b, ḡ, and

f , h, and b are independent, ḡ fixed. The conditional probability of f

interpolating these C + 1 values is at most δε/#GC (assumption on

f ’s interpolation probability). (Note that we first compute the

required values for f and then the probability of f taking on the

values.)

21



Proof of main theorem ...

Case 2. By assumptions, #{n1, ..., nC , n′} = C, and n′ = ni for a

unique i. We must have m′ 6= mi (otherwise not a forgery),

ai = h(mi) + f(ni) and a′ = h(m′) + f(n′) = h(m′) + f(ni). Then

h(mi) − h(m′) = ai − a′. The inputs mi, m
′ and output ai − a′ are

various functions evaluated at b, ḡ, and thus independent of h. By

assumption on h’s differential probabilities,

P [h(mi) − h(m′) = ai − a′] ≤ ε. Furthermore, the probability that f

interpolates the required C values f(n1), ..., f(nC) is at most δ/#GC .

Wrap-up. Total probability of success is at most

p(δε/#GC) + (1 − p)(ε)(δ/#GC) = δε/#GC . Final probability is

Dδε. We’re done.

22



Derivatives of the main theorem

Note that we didn’t assume any particular distributions for f and h.

By strengthening the assumptions on f we get more specific results.

The following we’ll need in the Poly1305-AES security proof (we skip

the proof):

• h random (not necessarily uniform) with maximum differential

probability ε, f uniform random injective function ⇒ chance

of success is D[(1 − C/#G)−(C+1)/2]ε (bracketed part equals δ).

23



Poly1305-AES security proof

First, the authors prove the following.

• h random (not necessarily uniform) with maximum differential

probability ε, f = AES ⇒ chance of success (distinguish AES or

forgery) is β + D[(1 − C/2128)−(C+1)/2]ε, where β is the

probability of distinguishing AES.

Note that the criterion for success is now either that we distinguish

AES or that we get a successful forgery. AES is modelled (ideally) as

a uniform random injective function.

(AES is not special; Poly1305-XYZ works with suitable XYZ.)

24



Poly1305-AES security proof ...

Finally, we consider the concrete functions involved in Poly1305-AES:

• h(m) = hr(m) as defined in Poly1305-AES paper (polynomial

defined by message, evaluated at additional key r), f = AES,

simulates uniform random injective function ⇒ h has small

differential probabilities, ε ≤ 8dL/16e/2106 where L is

(maximum) length of message (separate proof). Chance of

success is at most β + D[(1 − C/2128)−(C+1)/2][8dL/16e/2106]. In

particular, if C ≤ 264, then chance of success is at most

β + 14DdL/16e/2106.

The first bracketed part is (a bound for) δ and the second is (a

bound for) ε. The Poly1305-AES paper contains a bound on the

differential probabilities of h(m) = hr(m), which is one key ingredient

in the proof. (Due to time constraints we have to skip the proof.)

25



Review of security proof

• (n, m) → h(m) + f(n) secure if h has small differential

probabilities and f has small interpolation probabilities. Assume

C oracle queries and D forgery attempts in what follows.

• h random (not necessarily uniform) with maximum differential

probability ε, f random (not necessarily uniform) with maximum

C-interpolation probability δ/#GC , C + 1-interpolation

probability δε/#GC , h and f independent ⇒ chance of success is

Dδε.

• h random (not necessarily uniform) with maximum differential

probability ε, f uniform random injective function ⇒ chance

of success is D(1 − C/#G)−(C+1)/2ε.

26



Review of security proof ...

• h random (not necessarily uniform) with maximum differential

probability ε, f = AES, simulates uniform random injective

function ⇒ chance of success (distinguish AES or forgery) is

β + D(1 − C/2128)−(C+1)/2ε, where β is the probability of

distinguishing AES.

27



Review of security proof ...

• h(m) = hr(m) as defined in Poly1305-AES paper (polynomial

defined by message, evaluated at additional key r), f = AES,

simulates uniform random injective function ⇒ proved that h has

small differential probabilities, ε ≤ 8dL/16e/2106 where L is

(maximum) length of message. Chance of success is at most

β + D(1 − C/2128)−(C+1)/28dL/16e/2106. In particular, if

C ≤ 264, then chance of success is at most β + 14DdL/16e/2106.

• Note that the special form of r is not required for the proof; it’s

to make the implementation easier.

• Example (IPsec): L ≤ 65536 ⇒ β + 14D212/2106 < β + D/290.

Assume 232 forgery attempts, then total probability of success

less than β + 1/258.

28



Poly1305-AES implementation

29



Poly1305-AES implementation

The author describe an implementation based on x86 floating point

(!) arithmetic. A few key facts about the implementation:

• Precomputation (key schedule or similar) not necessary

• The special form of r helps in doing floating point carries of a

“multipart” representation x = x0 + x1 + x2 + x3

• 1024-byte message and code in cache ⇒ about 4-5 cycles / byte

• 1600MHz AMD Duron can handle 3 gbps (384 MB/s) of

1500-byte messages

• Comparison: 1600MHz Athlon XP, OpenSSL HMAC-MD5 ⇒ 1.7

gpbs (216 MB/s) of 1024-byte messages

30



Summary

Poly1305-AES(k,r)(n, m) = hr(m) + AESk(n) (mod 2128)

• Poly1305-AES is a fast MAC with a security proof.

• AES can be replaced with another cipher should AES break.

• Security proof is based on modelling interpolation probabilities of f

and differential probabilities of h.

Thank you!

31


