Zero-Knowledge Proofs Withstanding Quantum Attacks

T-79.515 Cryptography: Special Topics

Vesa Vaskelainen

 Zero-Knowledge Proofs and String Commitments
 Withstanding Quantum Attacks (Ivan Damgård, Serge Fehr anthouis Salvail, Crypto 2004)

- Zero-Knowledge Proofs and String Commitments
 Withstanding Quantum Attacks (Ivan Damgård, Serge Fehr anthouis Salvail, Crypto 2004)
- in a ZK proof of a statement, the verifier learns nothing beyond the validity of the statement

- Zero-Knowledge Proofs and String Commitments Withstanding Quantum Attacks (Ivan Damgård, Serge Fehr antiquis Salvail, Crypto 2004)
- in a ZK proof of a statement, the verifier learns nothing beyond the validity of the statement
- it is natural to ask whether classical protocols are still secure if cheating players are allowed to run (polynomial time bounded) quantum computers?

- Zero-Knowledge Proofs and String Commitments
 Withstanding Quantum Attacks (Ivan Damgård, Serge Fehr anthouis Salvail, Crypto 2004)
- in a ZK proof of a statement, the verifier learns nothing beyond the validity of the statement
- it is natural to ask whether classical protocols are still secure if cheating players are allowed to run (polynomial time bounded) quantum computers?
- To study this question, two issues are important:
 - 1. The computational assumption on which the protocol is based must remain true even if the adversary is quantum
 - 2. More difficult question is whether the proof of security remains valid against a quantum adversary

 The first one rules out many assumptions such as hardness of factoring or extracting discrete logs

- The first one rules out many assumptions such as hardness of factoring or extracting discrete logs
- The major problem with the second issue is that in the classical definition of ZK, the simulator is allowed to rewind the verifier in order to generate a simulated transcript of the protocol execution.

- The first one rules out many assumptions such as hardness of factoring or extracting discrete logs
- The major problem with the second issue is that in the classical definition of ZK, the simulator is allowed to rewind the verifier in order to generate a simulated transcript of the protocol execution.
- If the prover and verifier are quantum, rewinding is not generally applicable because when a quantum computer must produce a classical output, such as message to be sent, a measurement on its state must be done. State collapses and the original state cannot be reconstructed.

- The first one rules out many assumptions such as hardness of factoring or extracting discrete logs
- The major problem with the second issue is that in the classical definition of ZK, the simulator is allowed to rewind the verifier in order to generate a simulated transcript of the protocol execution.
- If the prover and verifier are quantum, rewinding is not generally applicable because when a quantum computer must produce a classical output, such as message to be sent, a measurement on its state must be done. State collapses and the original state cannot be reconstructed.
- Thus, protocols that are proven ZK in the classical sense using rewinding of the verifier may not be secure with the respect to a quantum verifier. ⇒ Motivation of Damgård's, Fehr's and Salvail's work

 Three distinct techniques to convert an important class of classical honest-verifier ZK (HVZK) proofs into quantum zero-knowledge (QZK) proofs are proposed, these are the first practical ZK proofs withstanding active quantum attacks

- Three distinct techniques to convert an important class of classical honest-verifier ZK (HVZK) proofs into quantum zero-knowledge (QZK) proofs are proposed, these are the first practical ZK proofs withstanding active quantum attacks
- The first technique assumes the existence of an unconditionally hiding trapdoor string commitment scheme and can be proven secure in the common-reference-string (CRS) model

- Three distinct techniques to convert an important class of classical honest-verifier ZK (HVZK) proofs into quantum zero-knowledge (QZK) proofs are proposed, these are the first practical ZK proofs withstanding active quantum attacks
- The first technique assumes the existence of an unconditionally hiding trapdoor string commitment scheme and can be proven secure in the common-reference-string (CRS) model
- The second technique assumes the existence of any quantum one-way function and is secure in the CRS model

- Three distinct techniques to convert an important class of classical honest-verifier ZK (HVZK) proofs into quantum zero-knowledge (QZK) proofs are proposed, these are the first practical ZK proofs withstanding active quantum attacks
- The first technique assumes the existence of an unconditionally hiding trapdoor string commitment scheme and can be proven secure in the common-reference-string (CRS) model
- The second technique assumes the existence of any quantum one-way function and is secure in the CRS model
- The third technique requires no computational assumptions and is provably secure in the plain model (no CRS)

Recap of Classical Protocols

- Let $R = \{(x, w)\}$ be a binary relation, $L_R = \{x \mid \exists w : (x, w) \in R\}$ the language defined by R. For $x \in L_R$, any w s.t. $(x, w) \in R$ is called a witness, $W_R(x) = \{w \mid (x, w) \in R\}$ the set of witnesses for $x \in L$.
- An (interactive) proof for a language $L=L_R$ is a protocol (P,V) between a probabilistic prover P and a probabilistic poly-time verifier V.

P		V
	common input x	
private $w \in W_R(x)$		
claims that $x \in L$		
	execution (P, V)	
		if $x \in L$ accept, $Pr = 1$
		if $x \notin L$ accept, $\epsilon < 1$

• A Σ -protocol for a language $L=L_R$ is a three-move inteactive proof (P,V) for L

P		V
computes a 1st message a		
	\leftarrow $-c$	chooses a random challenge c decides accept/reject by
computes an answer z	$z \longrightarrow$	decides accept/reject by
		applying a predicate
		$Verify_x(a,c,z)$

- special sound if the soundness-error ϵ equals the inverse of the number of possible challenges c
- i.e. if for $x \notin L$ any valid first message a uniquely defines a challenge c which allows an answer z with $Verify_x(a,c,z) = accept$

- An interactive proof (or argument) is called Zero-Knowledge (ZK) if for every poly-time verifier V there exist a poly-time simulator S, which takes as input $x \in L$ and outputs a simulated view of V in the execution of (P, V) on input x, indistinguishable from the real view.
- depending on the flavor of indistinguishability, ZK can be perfect, statical or computational
- Honest Verifier Zero-Knowledge (HVZK), means that it needs only be possible for a poly-time simulator to approximate the view of a verifier that follows the specified protocol

The Quantum Case

- ZK quantum interactive proof systems are defined as the natural generalization of their classical counterpart, letting prover be any quantum algorithm and verifier be any poly-time quantum algorithm
- Completeness, Soundness and the case when the proof is called an argument remains the same
- Quantum ZK (QZK) is defined as for the classical case except that the quantum simulator is required to produce a state that is exponentially close in the trace-norm sense to the verifier's view
- in the trace-norm sense is also defined perfect QZK, statistical QZK, and computational QZK

Classical Commitment Schemes

- classical (trapdoor) commitment schemes secure against quantum attacks do not require quantum computation, but they are guaranteed to remain secure even under quantum attacks.
- their construction is based on hard-to-decide languages with special-sound Σ -protocols and yields to the first unconditionally hiding string commitment schemes withstanding quantum attacks
- these commitments are used to construct QZK proofs
- A commitment scheme allows a party to commit to a secret s by publishing a commitment
 C = commit_{pk}(s, ρ) for a random ρ s.t. the commitment
 C reveals nothing about s (hiding property) while on the other hand the committed party can open C to s by publishing (s, ρ) but only to s (binding property).

Alice	$\mathcal{G}(l) \Rightarrow pk$	Bob
has a secret s		
publishes a commitment		
$C = commit_{pk}(s, \rho)$	$C \longrightarrow$	
can $\operatorname{open} C$ to s		
by publishing (s, ρ)	$(s,\rho) \longrightarrow$	checks if $C = \operatorname{commit}_{pk}(s, p)$

- $\neg \exists$ forger able to compute s, s' and ρ , ρ' s.t. $s \neq s'$ but $\mathsf{commit}_{pk}(s,\rho) = \mathsf{commit}_{pk}(s',\rho')$ (binding property)
- $\neg \exists$ distinguisher able to distinguish $C = \mathsf{commit}_{pk}(s, \rho)$ from $C = \mathsf{commit}_{pk}(s', \rho')$ with an advantage which cannot be ignored (hiding property)
- If the distinguisher (the forger) is restricted to be poly-time, the scheme is said to be computationally hiding (binding), while without restriction it is unconditionally hiding (binding)

Security in a Quantum Setting

- the computational or unconditional hiding property can be adapted in a straightforward manner by allowing the distinguisher to be quantum, the same holds for the unconditional binding property
- adapting the computational binding property in a similar manner results too weak definition
- in order to prove secure an application of a commitment scheme, which is done by showing that an attacker that breaks the application can be transformed in a black-box manner into a forger that violates the binding property, the attacker typically needs to be rewound, which cannot be justified in a quantum setting by the no-quantum-rewinding paradigm

Strong Enough Definition

- Their definition for the computational binding property of the commitment scheme is strong enough to prove QZK applications secure
- Idea of the definition is that it requires that it is infeasible to produce a list of commitments and then open (a subset of) them in a certain specified way with a probability significantly greater than expected.
- The definition uses a predicate Q, which models a condition that must be satisfied by the opened value in order for the opening to be useful for the committer.
- A commitment scheme (\mathcal{G} , commit) is called computational Q-binding if for every predicate Q, every polynomially bounded quantum forger \mathcal{F} wins the game with probability $p_{\mathsf{REAL}} = p_{\mathsf{IDEAL}} + adv$, where adv is the advantage of \mathcal{F} , which is negative or negligible.

Trapdoor Commitment Scheme

- Besides the public-key pk, the generator G also outputs a trapdoor τ which allows to break either the hiding or the binding property.
- if the scheme is unconditionally binding, then τ allows to efficiently compute s from $C = \operatorname{commit}_{pk}(s, \rho)$
- if it is unconditionally hiding, then τ allows to efficiently compute commitments C and correctly open them to any s

A General Framework

- Assume a (statistical) HVZK special-sound Σ -protocol $\Pi = (a, c, z)$ for a language $L = L_R$, existence of an efficient generator \mathcal{G}_{yes} generating $x \in L$ and $w \in W_R(x)$ and require that for every distinguisher \mathcal{D} it is hard to distinguish a randomly generated yes-instance $x \in L$ from some no-instance $x \notin L$
- For such *L*, the following construction provides an unconditionally hiding and computationally Q-binding trapdoor string commitment scheme
- concrete languages which are believed to be hard to decide are proposed e.g. the Code-Equivalence (CE) problem, known to be at least as hard as the Graph-Isomorphism (GI) problem

$(\mathcal{G}, commit)$

 $\mathcal{G} = \mathcal{G}_{yes} \Rightarrow x \in L$ is parsed as pk, $w \in W_R(x)$ as τ

Alice		Bob
secret $s \in \mathcal{S} = \{0, 1\}^t$		
$commit_{pk}$: generate (a, z, c)		
with HVZK simulator for Π ,		
$set\ C = (a, s \oplus c)$		
$open\ C\ to\ s$	$s, c, z \rightarrow$	checks if $s \oplus c = d$ and
		$Verify_x(a,c,z) = accept$

QZK proof protocol in the CRS model

- The common-reference-string (CRS) model assumes a string σ which is honestly generated according to some distribution and available to all from beginning.
- In the CRS model, an interactive proof is (Q)ZK if there exists a simulator which can simulate the (possibly dishonest) verifier's view of the protocol together with a CRS σ having correct joint distribution as in a real execution.
- The following shows how to convert any HVZK
 Σ-protocol into a quantum zero-knowledge (QZK)
 argument under the assumption that (*G*, commit) is ^{an}
 unconditionally hiding and computationally Q-binding
 trapdoor commitment scheme.

Let a HVZK Σ -protocol Π =(a,c,z). Assume w.l.o.g. that a and c sample first messages a and challenges c offixed lengths r and t. Let an (\mathcal{G} , commit) with the domain $\mathcal{S} = \{0,1\}^{r+t}$ be given.

P	$\mathcal{G} \to pk$	V
	CRS = pk	
input x		input x
private $w \in W_R(x)$		
computes $a \leftarrow a$		
chooses $c_P \leftarrow c$		
$commit_{pk}(a \parallel c_P, \rho)$	$C \longrightarrow$	
	\leftarrow c_V	chooses $c_V \leftarrow c$
$z \leftarrow \mathbf{z}_x(a, c_P \oplus c_V)$	$(a, c_P, \rho),$	
	$z \longrightarrow$	if $C = commit_{pk}(a \parallel c_P, \rho)$ and
		$Verify_x(a, c_P \oplus c_V, z) = accept$

Conclusions

 concrete QZK protocols which remain secure under quantum attacks and which do not need quantum computation or communication were obtained

Conclusions

- concrete QZK protocols which remain secure under quantum attacks and which do not need quantum computation or communication were obtained
- Does QZK proof systems exist without having to rely upon CRS?