
1. CDH and DDH 
 
One of the most important goals in Cryptography is to identify the exact complexity assumptions 
used by cryptographic protocols. 
 
CDH is where the Modern Cryptography originated. 
 
CDH implies difficulty of computing discrete logarithms. The converse, however, is unknown for 
most practical groups. 
  
CDH by itself is not sufficient to prove that the Diffie-Hellman protocol is useful for practical 
cryptographic purposes. 
 
There is a theoretical way to use CDH alone: we can derive one unpredictable bit (known as a hard 
core bit) from gab. If, given ga, gb, the adversary could predict the hard core bit of gab, they could also 
compute gab in its entirety. 
  
Later a much stronger assumption was introduced. The Decisional Diffie-Hellman (DDH) 
assumption: 
given the values ga and gb, one can�t efficiently distinguish gab from a random group element. 
  
We refer to groups in which the DDH assumption holds as DDH groups. 



 
The need to rely on the DDH disqualifies many natural groups where the assumption does not hold. 
For example, any group whose order is divisible by small factors, such as the classic groups Zp

*, 
where CDH is believed to hold (distinguishing can be based on Legendre symbol of gab). 
 
Examples of groups in which DDH is believed to be intractable. 
 
1. Let p = 2q + 1 where both p and q are prime, and let Qq be the subgroup of quadratic residues in 
Zp

*. It is a cyclic group of prime order. The family of groups is parameterized by p. 
 
2. More generally, let p = aq + 1 where both p and q are prime and q > p1/10. Let Qp,q be the subgroup 
of Zp

* of order q. This family of groups is parameterized by both p and q. 
 
3. Let N = pq where p, q, (p-1)/2, (q-1)/2 are prime. Let T be the cyclic subgroup of ZN

* of order 
¼ (p-1)(q-1). Although T does not have prime order, DDH is believed to be intractable. The group 
family is parameterized by N. 
 
4. Let p be a prime and Ea,b/Fp be an elliptic curve where ord(Ea,b) is prime. The group is 
parameterized by (p, a, b). 
 
We�ll discuss certain results on the security of DDH later. 
In the cryptographic literature, it is often recommended to work over subgroups of large prime order 
where no attacks are known on the DDH assumption. 



 
 
2. DDH may not be sufficient 
 
The DDH assumption, while apparently necessary, may be insufficient for guaranteeing the security 
of even the most basic DH transform applications. 
 
Consider the ElGamal encryption scheme: given a public key y = ga (for secret a), a message m ∈ G 
is encrypted by the pair (gb, myb) where the value b is chosen randomly anew for each encryption. 
 
DDH guarantees the semantic security of the scheme (against chosen-plaintext attacks) provided that 
the plaintexts m are elements of the group G. However, if the message space is different, e.g., the set 
of strings of some length smaller than log(ord(G)), then the above encryption scheme becomes 
problematic.  
We need to encode messages m as group elements in G, which is not straightforward when G is, e.g., 
a subgroup of prime order of Zp

*. A naive (and common) approach of encoding m as an integer and 
performing the multiplication myb modulo p makes the scheme insecure even if the group G satisfies 
DDH. 



 
A good illustration of the potential weaknesses of this straightforward (or �textbook") application of 
ElGamal is presented in [Boneh, Joux, Nguyen, �Why Textbook ElGamal and RSA Encryption are 
Insecure�]. They show that if the space of plaintexts consists of random strings of length shorter than 
log(ord(G)) (e.g., when using public key encryption to encrypt symmetric keys), the above scheme 
turns out to be insecure even under a ciphertext-only attack and even if the group G is DDH. 
 
Here is one of the [BJN] results: 
 
Suppose the plaintext m is k bits long. 
Let <p, g, y> be an ElGamal public key. When the order of g is at most p/2k, it is possible to recover 
m from any ElGamal ciphertext of m in the time it takes to compute 2k/2 + 1 modular exponentiations. 
The attack succeeds with probability 18% (over the choice of m from {0, 1, �, 2k-1}), and requires k 
2k/2 bits of memory. Can be parallelized. 
 
(A meet-in-the-middle method based on the fact that a relatively small integer can often be 
expressed as a product of much smaller integers.) 



  
A general and practical approach to addressing the above problems: 
instead of using the DH value itself to �mask" m via multiplication, we hash the DH value gab to 
obtain a pseudorandom key K of suitable length, then use K to encrypt m under a particular 
encryption function (e.g., one-time pad). 
 
The hash function here is used to extract the pseudorandomness present in the DH value. Universal 
Hash Functions, for instance, possess the required extraction properties. This is common to many 
applications of the DH transform including the Diffie-Hellman key-exchange protocol, where we 
derive agreed shared keys via hashing of the DH result. 
 
 
3. And if we have to hash anyway? 
 
Can we relax our requirements? Can we work over non-DDH groups? In particular, is doing hashed 
DH over Zp

* secure? 
 
The main result, informally: 
For any cyclic group G, applying the hashed DH transform over G has the same security as applying 
the hashed DH transform directly over the maximal disjoint DDH subgroup of G. 
 
So, we are only concerned with the existence of a sufficiently large DDH subgroup (no need to know 
its exact size or structural properties, nor how to construct it). In the Zp

* case, it is enough to assume 
that DDH holds on large prime-order subgroups of Zp

* and we can work directly over Zp
*, where p is 

an unconstrained random prime. 



  
Machinery: 
 
t-DDH assumption (as a relaxation of DDH). 
Informally, a group G satisfies the t-DDH assumption (0 < t ≤ log(ord(G))) if given the pair (ga, gb), 
the value gab contains t bits of computational entropy. 
 
Then the entropy-smoothing theorem gives us a way to efficiently transform (via universal hashing) 
DH values over groups in which the t-DDH assumption holds into shorter outputs that are 
computationally indistinguishable from the uniform distribution. 
 
To be 2-k-computationally close to uniform one can output up to (t - 2k) pseudorandom bits (e.g., to 
produce 128-bit keys with a security parameter of k = 80, the group G should be 288-DDH). 
We show that if G contains a DDH subgroup of order m, then G is log(m)-DDH. 
 
Direct product characterization of the DDH assumption: we show that a group is DDH if and only if 
it is the direct product of (disjoint) prime power DDH subgroups. 
 
In particular, this result plays a central role in our proof that the hashed DH transform over Zp

* is 
secure as long as the DDH assumption holds in the subgroups of Zp

* of large prime order. 



 
Short-Exponent Diffie-Hellman. Can one use short exponents (e.g. as in [RFC2409]) and still 
preserve the security of the hashed DH transform? An obviously necessary requirement for the short 
exponent practice to be secure is the assumption that the discrete log problem is hard when 
exponents are restricted to a short length (say of s bits). This requirement (called the s-DLSE 
assumption) is, in fact, sufficient. More precisely, we can prove that if the s-DLSE assumption holds 
in a group G, then the hashed DH transform in G is as secure with full exponents as with s-bit 
exponents. 
 
Immediate practical impact: the results justify certain practices in IKE and other commonly used 
protocols. 



4. Discussing formalities 
 
Probability ensembles {Dn}, with each distribution Dn is taken over a set An ⊂ {0, 1}n’, where n’ is 
polynomial in n (each ensemble has a fixed polynomial in n that determines the value n’). 
 
Statistical and computational indistinguishability: 
 
Let Xn, Yn be two probability distributions over a support set An. We say that Xn and Yn have 
statistical distance bounded by d(n) if 
 
∑x∈An |PrXn(x) � PrYn(x)| ≤ d(n) 
 
We say that the ensembles Xn and Yn are statistically indistinguishable if for every polynomial P(⋅) 
and for all sufficiently large n we have that d(n) ≤ 1/ P(n). 
 
We say that the probability ensembles Xn and Yn are computationally indistinguishable (by non-
uniform distinguishers) if no polynomial size circuit (family) can distinguish between samples drawn 
according to Xn or according to Yn. 



 
[GKR]�s choice: asymptotic model, non-uniform distinguishers, �security of individual groups�. 
 
We consider infinite families of cyclic groups {(Gn, gn, mn)}n, where log(mn) is bounded by a 
polynomial in n. 
  
CDH problem: given a pair (gn

a, gn
b), compute gn

ab. If this problem is intractable over a given group 
family, we say the CDH holds over the family. 
 
DDH is a much stronger, but also more useful, assumption. Consider the family of sets Gn x Gn x Gn, 
and the following two probability ensembles: 
 
Rn = {(gn

a, gn
b, gn

c)  for a, b, c ∈R [0, mn)} 
 
and 
 
DHn = {(gn

a, gn
b, gn

ab)  for a, b ∈R [0, mn)} 
 
We say that DDH holds over a group family if the ensembles Rn and DHn are computationally 
indistinguishable (with respect to non-uniform distinguishers). 



 
Why non-uniform setting? We want to allow for �auxiliary input" for each group Gn in the family G 
being given to a distinguisher. [GKR]: �In formal terms one may assume that we have a single group 
Gn for each value of the security parameter n. This approach allows us to keep the simplicity of 
arguments in the asymptotic polynomial-time model while capturing the fact that we are interested in 
the security of individual groups for which the attacker may have some side information.� 
 
Problems with �a single group Gn for each value of the security parameter n�. 
 
The very first theorem � �forget asymptotic�, needs to be interpreted correctly. 
 
Possible way to address the problems: talk of �advantages�, concrete security. We would then define 
(t, ε)-DDH and talk about individual (or finite collections of) groups and their subgroups. 



 
Alternative definition � Instance Generator: 
 
A group family G is a set of finite cyclic groups {Gα}, where α ranges over an infinite index set. We 
assume there is a polynomial time (in log(α)) algorithm that given α and two elements in Gα outputs 
their sum. 
 
An Instance Generator for G is a randomized algorithm that given an integer n (in unary), runs in 
polynomial time in n and outputs some random index α and a generator g of Gα. Note that for each 
n, the Instance Generator induces a distribution on the set of indices α. 
 
The index α encodes the group parameters (e.g., (p, a, b) for Ea,b/Fp). The instance generator is used 
to select a random member of G of the appropriate size. For instance, when G is the family of prime 
order subgroups of Zp

*, the instance generator, on input n, may generate a random n-bit prime p such 
that (p-1)/2 is also prime. In some cases it may make sense to generate distributions other than 
uniform. For instance, one may wish to avoid primes of the form 2k + 1. 
 
In defining advantage of a distinguisher, we take probability over the random choice of (α, g) 
according to the distribution induced by the Instance Generator, the random choice of a, b, c ∈R [0, 
ord(Gα)), and random bits used by the distinguisher. 
 
Which approach is a better model of real applications? Comes down to when (G, g) are chosen. 



 
 
5. Some evidence about DDH security and an interesting DDH application 
 
(a) Random self-reducibility (for groups of prime order): a distinguisher with a non-negligible 
advantage can be converted into an almost perfect one, that is, for a negligible function ε(n) for large 
enough n, we have 
 
Pr [A(α, g, ga, gb, gc) = �true� | c = ab] > 1 - ε 
 
Pr [A(α, g, ga, gb, gc) = �true� | c ≠ ab] <  ε 
 
Given a triple (x, y, z), we pick random integers u, v, w, and construct the triple (x’, y’, z’) =  
(xwgu, ygv, zwyuxvwguv). If (x, y, z) is a valid DH triple, then (x’, y’, z’) is a random DH triple, and if (x, 
y, z) is not a valid DH triple, then (x’, y’, z’) is a random triple. 
Then we generate k independent triples (x’, y’, z’) as above and feed them to our DDH oracle, and 
then we generate k random triples and also feed them to the DDH oracle, and we count the number 
of �true� answers in the first and second experiments. If the difference is greater than δk/2 (where δ 
is our DDH oracle advantage), we output �true�, otherwise we output �false�. Knowledge of δ issue: 
either existential meaning or non-uniformity. 



(b) Generic algorithms must make oracle queries to compute in given groups, they have to deal with 
random encodings (can�t take advantage of a particular group encoding). Generic algorithms can�t 
break DDH faster than breaking DL, and the complexity of the latter is provably lower bounded by 
O(p1/2). 
 
 
(c) Ability to compute O(log(p)1/2) most significant bits of gab implies the ability to compute the 
entire gab. (Lattice basis reduction and LLL.) 
 
 
(d) Statistical distribution of DH triples in Zp

*. Weyl discrepancy is small: 
 
if B is a box in Zp

3, then 
 
supB | N(B) � vol(B) (p-1)2 / (p-1)3 | = o(p2) 
 
 
Proving a link between DDH and a known hard problem is a crucial open problem. 
Another open problem: in a prime order subgroup of Zp

*, is there an algorithm for DDH better than 
the fastest DL algorithm in that subgroup? 



 
An interesting application of DDH 
 
Naor and Reingold (�Number theoretic constructions of efficient pseudo random functions�) 
describe a beautiful application of DDH. Prior to their results, existing constructions based on 
number theoretic primitives were by far less efficient. 
 
At a high level, a set Fn of functions An → Bn (finite domains) is called a pseudo random function 
ensemble if no efficient statistical test can distinguish between a random function chosen in the set 
and a truly random function, i.e. a function chosen at random from the set of all functions An → Bn. 
The statistical test is only given �black-box� access to the function. That is, it can ask an oracle to 
evaluate the given function at a point of its choice, but cannot view the internal implementation. 
 
Let G be a group family. In the NR construction, Fn is a set of functions from {0, 1}n to Gα (index α 
may be different for different functions in Fn). A function from Fn is parameterized by a triple (α, g, 
a), where the first two values come from the Instance Generator, and the third one is a vector of 
(n+1) random integers in the range [1, ord(Gα)). Given x = x1�xn, we compute 
 
                     a0a1

x1�an
xn 

f(α, g, a)(x) = g  
 
Such functions can be evaluated very efficiently. 



 
The main result is: 
 
Let Af be the algorithm A with access to an oracle for evaluating f. Let G be a group family and 
suppose DDH holds for G. Let {Fn} be the NR pseudo-random function ensemble. Then for every 
probabilistic polynomial-time algorithm A and sufficiently large n, we have 
 
| Pr(Af (α, g) = �true�) � Pr(AR (α, g) = �true�) | < ε 
 
for a negligible function ε(n). The first probability is over the choice of f from Fn. The second 
probability is over the random distribution induced by the Instance Generator and the random choice 
of the function R among the set of all {0, 1}n → Gα functions. 



 
6. Direct Product DDH Characterization 
 
Lemma 1 If DDH holds in a cyclic group G, then it holds in all the subgroups of G. 
 
Lemma 2 Let G be a cyclic group of order m = m1m2, where (m1, m2) = 1, and let G1 and G2 be the 
subgroups of orders m1, m2 respectively. If DDH holds in G1 and G2, then it holds in G. 
(Lift pairs of triples in G1 and G2 into G and consider hybrid distributions.) 
 
How can this be interpreted asymptotically? Consider a family {Gn} and the family of all prime 
power order subgroups of groups in G (indexed in a way consistent with indexing in G). Then DDH 
holds in one family iff it holds in the other one.  
 
Why is this called �Direct Product Characterization�? 
 
Enjoying freedom in choosing consistent generators in G and its subgroups? Non-uniform model 
helps: if DDH holds for one generator of a group, then it holds for all generators. This is because if 
for some generator g DDH is easy, then for any other generator h, we simply provide the algorithm 
with logg(h) as an auxiliary input.  



 
Do we really need (m1, m2) = 1 condition in Lemma 2? 
 
There is at least an example by Don Coppersmith of a cyclic group G of order q2 which contains a 
subgroup H of order q, such that H is believed to be DDH while G is trivially not DDH (can be 
constructed for any given DDH group of order q). 
 
Coppersmith�s example: 
 
Given a cyclic DDH group H of order q with generator g, we take G = {(h, a): h ∈ H, a ∈ Zq}, and 
the group operation * is defined as (h1, a1) * (h2, a2) = (h, a), where 
(i) if a1+ a2 < q then h = h1h2, a = a1 + a2; and 
(ii) h = gh1h2, a = a1 + a2 � q otherwise. 
 
G is a cyclic group with generator (e, 1). 
 
Clearly, (e, 1)q = (g, 0) generates the DDH subgroup H x {0}. However, G is not even CDH. 
 
We may have a better luck in some specific families of groups. An important open question: how 
plausible is DDH in prime-power order subgroups of Zp

*? 



 
7. The t-DDH assumption. Large DDH subgroups and t-DDH in ambient groups. 
 
Min-entropy:   Hmin(X) = minx:Pr(x)≠0(� log(Pr(x))) 
 
Universal Hash Functions: 
Definition Let Hn be a family of functions, where each h ∈ Hn is defined as h: An → 
{0, 1}m(n). We say that Hn is a family of (pairwise-independent) universal hash functions if, for all 
x, x’ ∈ An, x ≠ x’, and for all a, a’ ∈ {0, 1}m(n) we have 
Prh∈Hn [h(x) = a and h(x’) = a’] = 2-2m(n). 
That is, a randomly chosen h will map any pair of distinct elements independently and uniformly. 
 
Entropy Smoothing Theorem 
Theorem Let t be a positive integer and let X be a random variable defined on {0, 1}n such that 
Hmin(X) > t. Let k > 0 be an integer parameter. Let H be a family of universal hash functions such 
that h ∈ H, h: {0, 1}n → {0, 1}t-2k. Let U be the uniform distribution over {0, 1}t-2k. Then, the 
distributions <h(X), h>  and  <U, h>, where h ∈R H, have statistical distance at most 2-(k+1). 
 
Definition A probability ensemble Yn has computational entropy t(n) if there exists a probability 
ensemble Xn such that  Hmin(Xn) ≥ t(n)  and Xn and Yn are computationally indistinguishable. 
 
Using a standard hybrid argument it is easy to show that the Entropy Smoothing Theorem, as 
discussed above, can be generalized to probability ensembles Xn that have computational entropy 
t(n). In this case, applying a (randomly chosen) universal hash function Xn results in a pseudorandom 
ensemble, namely, an ensemble which is computationally indistinguishable from the uniform 
distribution. 



Definition We say that the t(n)-DDH Assumption holds over a group family G = {Gn} if for 
all n there exists a family of probability distributions Xn(gn

a, gn
b) over Gn (one distribution for each 

pair gn
a, gn

b) such that: 
 
Hmin(Xn(gn

a, gn
b)) ≥ t(n) and 

 
the probability ensemble DHn is computationally indistinguishable from the ensemble 
Rn

* = {(gn
a, gn

b, C) for a, b ∈R [0, ord(Gn)) and C ∈Xn(gn
a, gn

b) Gn}. 
 
It is important to note that the distributions Xn(gn

a, gn
b) in the above definition may be different for 

each pair of values (gn
a, gn

b). Requiring instead a single distribution X for all pairs (as may seem 
more natural at the first glance) results in a significantly stronger, and consequently less useful, 
assumption. 
 
Reconsider the example with breaking DDH in Zp

* by inspecting Legendre symbols. 
 
DDH assumption over a group G is equivalent to the t-DDH assumption over G for t = log(ord(G)). 
 
Samplable (semi-samplable) t-DDH assumption: we require Xn(gn

a, gn
b) to be polynomial-time 

samplable (resp., polynomial-time samplable when either exponent a or b is known). Will need that 
only when studying DDH with short exponent. 



 
If the t-DDH assumption holds, we can apply universal hashing to DH values gab and obtain 
distribution, which is computationally indistinguishable from the uniform distribution even when the 
hash function and both ga and gb are given to the distinguisher.  
 
For groups of prime order, the t-DDH Assumption is equivalent to the full DDH assumption: 
 
Lemma Let G be a group of prime order q. If the t-DDH assumption holds in G for t ≥ 1, then the 
DDH assumption holds in G as well. 
(Upper bound Pr(D(x) = 1) for random x, lower bound Pr(D(x) = 1) for x chosen in accordance with 
R*.) 
 
So we have an interesting all-or-nothing law for prime order groups. Can we show that CDH is 
equivalent to DDH for such groups? 
 
 
Theorem Let G be a cyclic group of order m = m1m2 where (m1, m2) = 1, and G1 be a subgroup of 
order m1 in G. If the DDH assumption holds over G1 then the log(m1)-DDH assumption holds in G. 
(Choose i, j at random in Zm, construct A = A1gi, B = B1gj, �) 



8. Working over Zp
*. 

 
If our application requires a pseudorandom output of l bits and our security parameter is k, the above 
results show that the hashed DH is secure over Zp

* provided that (p-1) has enough prime divisors 
(with multiplicity 1) whose product is larger than the entropy bound 2l+2k, and for which the 
subgroups of corresponding prime order are DDH. In particular, the fact that (p-1) has additional 
smaller prime factors does not invalidate the security of the hashed DDH in Zp

*. 
 
A particularly interesting group is Zp

* for p = 2q + 1, q prime, because it is (log p � 1)-DDH under the 
standard assumption. Note that these groups are free from the potentially serious attacks described in 
[Lim, Lee, �A Key Recovery Attack on DL-Based Schemes Using a Prime Order Subgroup�] that 
affect subgroups of prime order q where (p-1)/q has a relatively large smooth factor. 



 
Usually, one has to know the full or partial factorization of (p � 1), which is essential for selecting a 
generator of the group. It is a theoretically and practically important to establish whether the 
knowledge of the factorization of (p � 1) is essential for working securely over Zp

* or over one of its 
subgroups. We show that the answer is negative.  Specifically, it follows from our results that if one 
chooses a random prime p (of an appropriate size) and a random element g in Zp

*, then performing 
the hashed DH transform over the group generated by g is secure (based on heuristic facts about 
large numbers factorization, believed by most computational number theorists). 
 
Let p be a random prime such that p � 1 = p1p2⋅⋅⋅pn and p1 ≤ p2 ≤ ... ≤ pn are all (not necessarily 
different and possibly unknown) primes. Let h be an element randomly chosen from Zp

*, and let Gh 
denote the subgroup generated by h. We first claim that with overwhelming probability the large 
prime factors of (p � 1) divide the order of Gh. Namely: 
 
Lemma For all 1 ≤ i ≤ n:  Pr(pi doesn�t divide ord(h)) ≤ 1/ pi. 
 
Corollary If pj, ..., pn > B, for a given bound B, then 
  Pr(pj⋅⋅⋅pn | ord(h)) ≥ 1 � (1/ pj + � + 1/ pn) ≥ 1 � (n � j + 1)/B ≥ 1 � log(p)/B 
 
Thus, for large values of B, with overwhelming probability, Gh has as subgroups all the prime-order 
subgroups of Zp

* whose order is larger than B. If we denote by P the product of all prime factors of (p 
� 1) larger than B, and assume that the DDH holds in subgroups of prime order larger than B, we get 
that Gh is log(P)-DDH. 



 
All that is left to argue is that log(P) is large enough. For this we use the following lemma providing 
an upper bound on the expected size of the product of all prime divisors of (p � 1) that are smaller 
than B (which gives a lower bound on the expected size of log(P)). 
 
Lemma For a random prime p (as above) and a fixed bound B, the expected length of ∏ pi, where pi 
< B, is log(B) + 1. 
 
In other words, the lemma states that the expected size of log(P) is log(p) � log(B). 
 
To illustrate, if we set log(p) = 1024 and log(B) = 160, then we expect Gh to be 864-DDH. However, 
it�s just an expected value, and if all that we have is Markov inequality, our estimates will not be 
very impressive. If p happens to have a B-smooth part that is 4 times larger than expected, we are 
still left with a 384-DDH subgroup Gh with enough computational entropy for most DH applications 
(such as deriving a 128-bit pseudorandom key), which sounds good. But the probability of the B-
smooth part being 6 times larger than expected is not that small. Upper bounding the variance? 
 


