What do you think about T-functions?

T-79.515 Cryptography: Special Topics

Seminar talk

Emilia Käsper
Talk overview

- The motivation behind T-functions
- Constructing a stream cipher: attempt #1
- Constructing a stream cipher: attempt #2
- T-functions in other applications
- Conclusions and discussion
What is a T-function?

- i^{th} output bits depend only on input bits $[x]_i, \ldots, [x]_0$
- $T = \text{Triangular}$
- $+, -, \times, \oplus, \lor, \land$ and their combinations
Some landmarks in the history of T-functions

- 1997: RC6 uses the mapping \(x \mapsto 2x^2 + x \) (Rivest et. al.)
- 2002: T-functions as a new class (Klimov and Shamir)
- 2003: A stream cipher proposal (Klimov and Shamir)
- 2004: T-functions go mainstream, several papers, several attacks
- 2005: New applications in block ciphers and hash functions
Why T-functions?

- LFSR-s are “tame” — too well studied
- T-functions are “semi-wild”:
- And they are fast.
Why T-functions? (cont.)

- Mix “crazy” design with provable properties
- Provable single cycle property
- ... but single cycle T-functions are not easy to find

$$x \mapsto 2x^2 + x$$

$$x = x_1x_2\ldots x_n\underbrace{00\ldots 0}_n = 2^n X$$

$$2x^2 + x = 2 \cdot 2^{2n} X^2 + 2^n X = 2^n X = x$$
Let’s construct a stream cipher
[Shamir, Klimov 2004]

- Take the most compact known single cycle mapping:

\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} \mapsto \begin{pmatrix}
 x_0 \oplus s \\
 x_1 \oplus (s \land a_0) \\
 x_2 \oplus (s \land a_1) \\
 x_3 \oplus (s \land a_2)
\end{pmatrix}
\]

\[
a_0 = x_0, \quad a_i = a_{i-1} \land x_i, \quad s = s(x) = (a_3 + C) \oplus a_3,
\]

where \(C \) is an odd constant and \(|x_i| = 64 \).
Parameters

\[s = s(x) = (a_3 + C) \oplus a_3 = (x_0 \land x_1 \land x_2 \land x_3 + C) \oplus (x_0 \land x_1 \land x_2 \land x_3) \]

\[x_1 \]
\[x_2 \]
\[x_3 \]
\[x_4 \]

\[[x]_{i-1} [x]_0 \]

\[= x \rightarrow s(x) = [s(x)]_i \]
Let’s construct a stream cipher (cont.)

- This is not secure:

\[s(x)_0 = 1 \Rightarrow T(x)_0 = x_0 + 1 \pmod{2^m} \]

\[
\left[T(x)\right]_i = \begin{cases}
[x]_i & \text{if } [s(x)]_i = 0 \\
[x]_i + 1 \pmod{2^m} & \text{if } [s(x)]_i = 1.
\end{cases}
\]

- \(C = 1 \) gives a counter!
Let’s construct a stream cipher (still cont.)

- Add multiplication

\[
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\mapsto
\begin{pmatrix}
x_0 \oplus s \oplus (2x_1x_2) \\
x_1 \oplus (s \land a_0) \oplus (2x_2x_3) \\
x_2 \oplus (s \land a_1) \oplus (2x_3x_0) \\
x_3 \oplus (s \land a_2) \oplus (2x_0x_1)
\end{pmatrix}
\]
Let’s construct a stream cipher (still cont.)

- Avoid zero-tail attacks on multiplication
- Stay compact

\[
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 x_0 \oplus s \oplus (2(x_1 \lor C_1)x_2) \\
 x_1 \oplus (s \land a_0) \oplus (2x_2(x_3 \lor C_3)) \\
 x_2 \oplus (s \land a_1) \oplus (2(x_3 \lor C_3)x_0) \\
 x_3 \oplus (s \land a_2) \oplus (2x_0(x_1 \lor C_1))
\end{pmatrix}
\]
We’re done!

• This looks secure enough!

• It looks so secure that we’ll just take as output the 32 msb-s from each word.

• Bad idea...
An attack on the cipher
[Mitra, Sarkar, Asiacrypt 2004]

\[
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}
= \begin{pmatrix}
x_0 \oplus s \oplus (2(x_1 \lor C_1)x_2) \\
x_1 \oplus (s \land a_0) \oplus (2x_2(x_3 \lor C_3)) \\
x_2 \oplus (s \land a_1) \oplus (2(x_3 \lor C_3)x_0) \\
x_3 \oplus (s \land a_2) \oplus (2x_0(x_1 \lor C_1)) \\
\end{pmatrix}
= \begin{pmatrix}
y_0 \\
y_1 \\
y_2 \\
y_3 \\
\end{pmatrix}
\]

- The msb-s of \(x_i, y_i, a_i\) and \(s\) are known
- Mount a time-memory tradeoff attack on multiplications
- Complexity \(2^{40}\)
Let’s construct a stream cipher: Attempt 2

[Hong, Lee et.al, FSE 2005]

- Apply S-boxes on columns \ll non-dogmatic
- A single cycle S-box will not give a single cycle T-function
- Employ parameters to get

$$T(x) = (s(x) \land S(x)) \oplus ((s(x) \land S^2(x)).$$

- This is a single cycle function for certain parameters.
Let’s construct a stream cipher: Attempt 2 (cont.)

- Take 4 words, 32 bits each
- Use the T-function as a substitution for an LFSR in a filter model
 \[f(x) = ((x_0 \ll 9) + x_1) \ll 15) + ((x_2 \ll 7) + x_3) \]
- Rotations ensure that output from the same S-box does not contribute directly to the same output bit
- Remove possibility of separate handling of memory
This, too, is vulnerable
[FSE 2005 Rump session]

- Distinguishing attack: requires 2^{22} words
- Small-size parameter affecting the whole state:
- Wait for a “nice” output of the parameter, then attack
T-Functions in other applications

- Diffusion layers of block ciphers
- Self-synchronizing hash functions
- Self-synchronizing stream ciphers
- ... (Use your imagination) ...
The general T-function methodology

[Klimov, Shamir]

1. Find a skeleton bitwise mapping from 1-bit inputs to 1-bit outputs with desired property

2. Extend to n-bit words in a natural way

3. Add some parameters to obtain a larger class of mappings and provide mixing

4. Change some \oplus operations to $+$ or $-$
MDS mappings

- The desired property:

\[\phi : X^m \rightarrow X^m, \; y = \phi(x), \; y' = \phi(x') \]

\[D_\phi = \min_{x,x'} (d(x,x') + d(y,y')) \]

- Maximum Distance Separable mapping: \(D_\phi = m + 1 \)

- Almost MDS mapping: \(D_\phi \geq m \)

- In SPN-s: Large \(D_\phi \) ⇒ many active S-boxes
Let’s construct an almost MDS mapping

1. Find a skeleton bitwise mapping from 1-bit inputs to 1-bit outputs with desired property:

\[
\begin{pmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 y_3
\end{pmatrix} =
\begin{pmatrix}
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 0
\end{pmatrix}
\times
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} +
\begin{pmatrix}
 s_0 \\
 s_1 \\
 s_2 \\
 s_3
\end{pmatrix}
\]

\[d(x, x') + d(y, y') \geq 4\]
Let’s construct an almost MDS mapping (cont.)

2. Extend to n-bit words in a natural way

\[
\begin{align*}
y_0 &= x_1 \oplus x_2 \oplus x_3 + s_0 \\
y_1 &= x_2 \oplus x_3 \oplus x_0 + s_1 \\
y_2 &= x_3 \oplus x_0 \oplus x_1 + s_2 \\
y_3 &= x_0 \oplus x_1 \oplus x_2 + s_3
\end{align*}
\]
Let’s construct an almost MDS mapping (still cont.)

3. Add some parameters to obtain a larger class of mappings and provide mixing

\[y_0 = (x_1 \oplus x_2 \oplus x_3)(2x_0 + 1) \]
\[y_1 = (x_2 \oplus x_3 \oplus x_0)(2x_1 + 1) \]
\[y_2 = (x_3 \oplus x_0 \oplus x_1)(2x_2 + 1) \]
\[y_3 = (x_0 \oplus x_1 \oplus x_2)(2x_3 + 1) \]
Let’s construct an almost MDS mapping (still cont.)

4. Change some \oplus operations to $+$ or $-$

\[
\begin{align*}
 y_0 &= x_1 + (x_2 \oplus x_3)(2x_0 + 1) \\
 y_1 &= x_2 + (x_3 \oplus x_0)(2x_1 + 1) \\
 y_2 &= x_3 + (x_0 \oplus x_1)(2x_2 + 1) \\
 y_3 &= x_0 + (x_1 \oplus x_2)(2x_3 + 1)
\end{align*}
\]
Conclusions

- T-functions have some attractive properties
- But T-functions themselves are not secure — they are just building material
- First attempts to give a complete cipher design have failed quite miserably
- A comment from an internet forum:

 Security can be achieved through usage but effectiveness cannot, it is something that should be there from the beginning.
Do you agree?