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Introduction

We will discuss the possibility of any meaningful type of zero-knowledge using a
one-message (that is, non-interactive) proof system in the plain model (that is,
without common reference strings, random oracles, . . . ).

Our presentation is based on Boaz Barak and Rafael Pass, On the possibility
of one-message weak zero-knowledge, Theory of Cryptology Conference (TCC)
2004, volume 2951 of LNCS, pages 121–132, Springer-Verlag, 2004.

It is well-known that both interaction and randomness are necessary for zero-
knowledge in the plain model for a non-trivial language.

Thus, some sort of relaxation of zero knowledge is needed to obtain a one-
message protocol in the plain model (unlike in the common reference string or
random oracle models).
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Zero-knowledge proofs and arguments

Let L be a language in NP and let RL be its witness relation (that is, for all
x ∈ L, there is a w of length poly(|x|) such that (x, w) ∈ RL and the relation
RL can be decided in deterministic polynomial time).

We write RL(x) = {y : (x, y) ∈ RL}, and L(x) = 1 if x ∈ L and L(x) = 0

otherwise.

For an interactive system (P, V ) for L, where V is a polynomial-time algorithm,
we define the following properties:

Perfect completeness: For all x ∈ L and witnesses w of x, V always accepts
the common input x after interacting with P whose auxiliary input is w.
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Zero-knowledge proofs and arguments: soundness

Soundness for proofs: For all x 6∈ L and all P ∗, the probability that V accepts
the common input x after interacting with P ∗ is negligible.

Soundness for arguments: For all x 6∈ L and all P ∗ that can be implemented
by non-uniform polynomial-size circuits, the probability that V accepts the com-
mon input x after interacting with P ∗ in negligible.

For one-message (that is, non-interactive) systems, proofs and arguments are
equivalent: if there is some prover strategy that makes the verifier accept, the
message can be hard-coded into the non-uniform circuit.
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Zero-knowledge proofs and arguments: simulation

Simulation in polynomial-time: The system (P, V ) is simulatable in time T (n) =
poly(n) if there for all probabilistic polynomial-time V ∗ exists a probabilistic
T (n)O(1)-time simulator S such that for all x ∈ L, y ∈ RL(x) and z, the view
of V ∗ after interacting with P when the common input is x, the auxiliary input of
P is y and the auxiliary input of V ∗ is z, 〈P (y), V ∗(z)〉(x), is computationally
indistinguishable from the output S(x, z) of the simulator.

That is, for all probabilistic algorithms D whose running time is polynomial in the
first argument, all x ∈ L, y ∈ RL(x) and z,

|Pr[D(x, z, 〈P (y), V ∗(z)〉(x)) = 1]− Pr[D(x, z, S(x, z)) = 1]|
is a negligible function of |x|, where the probability is over the coin tosses of P ,
V ∗, S and D.
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Main result

Under reasonable, but non-standard, complexity assumptions, Barak and Pass
shows that every language L ∈ NP has a non-interactive system (P, V ), where
V is a deterministic polynomial algorithm, with the following properties:

Perfect completeness: For all x ∈ L and w ∈ RL(x), V (x, P (x, w)) = 1.

Soundness against uniform provers: For every uniform probabilistic polynomial-
time P ∗, the probability that P ∗ outputs an x 6∈ L and proof π such that V (x, π) =

1 is negligible.

This is a relaxation, since the standard definition requires soundness against
non-uniform polynomial-size circuits.
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Main result (cont.)

Quasi-polynomial-time simulation: There is a npoly(logn)-time simulator S

such that for all x ∈ L ∩ {0,1}n and witnesses w for x, S(x) and P (x, w) are
computationally indistinguishable by polynomial-size circuits.

This is a relaxation of the standard zero-knowledge property that requires a
polynomial-time simulator.

The function npoly(logn) can be replaced with any super-polynomial function.
The important thing is that the simulator is allowed to use longer running time
than the cheating prover.

Note also that the zero-knowledge property is uniform—that is, non-auxiliary
input.
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Cryptographic assumptions (1)

The protocol relies on 3 non-standard (but reasonable) assumptions.

We assume that there is an one-message (that is, non-interactive) witness indis-
tinguishable proof system for every language in NP.

A witness indistinguishable proof system is simply a proof system where verifiers
cannot tell the difference between the witnesses used.

More precisely, an one-message witness indistinguishable proof system (P, V )

for L is a proof system such that for all x ∈ L and w, w′ ∈ RL(x), P (x, w) and
P (x, w′) are computationally indistinguishable.
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Cryptographic assumptions (1): validity

In Barak, Ong and Vadhan, Derandomization in cryptography (Crypto 2003), it
was shown that such a witness indistinguishable proof system exists, if there
exist trapdoor permutations and E = DTIME(2O(n)) contains a function of
non-deterministic circuit complexity 2Ω(n).

The basic idea in the protocol is to take a two-round public-coin witness indistin-
guishable proof system for NP (such a system exist based on trapdoor permu-
tations by Dwork and Naor, Zaps and their applications (41st FOCS, 2000)) and
derandomise it.
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Cryptographic assumptions (1): validity (cont.)

If E contains a function of non-deterministic circuit complexity 2Ω(n), there are
(good enough) hitting set generators. Instead of sending random bits to the
prover, the interactive protocol is simulated on all the elements in the hitting set
as verifier messages.

Since this protocol was presented at the T-79.300 Postgraduate Course in The-
oretical Computer Science seminar last autumn, we skip the details.
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Cryptographic assumptions (2)

We assume that there is a non-interactive perfectly binding and computationally
hiding commitment scheme that is extractable in quasi-polynomial time.

More precisely, there is an algorithm running in time nlogc n, where n is the
security parameter and c is a constant, that given a commitment C(x, r) to x

recovers the message x.

Note that we assume that the hiding property holds against polynomial-time al-
gorithms but can be broken using a quasi-polynomial time algorithm.
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Cryptographic assumptions (2): validity

If there a one-way permutation with sub-exponential hardness, such a commit-
ment scheme exists: simply take Blum’s well-known commitment scheme with a
scaled-down security parameter (see Pass, Simulation in quasi-polynomial time,
and its application to protocol composition (Eurocrypt 2003) for details).

Alternatively, if there is a sub-exponentially hard one-way function and E con-
tains a function of non-deterministic circuit complexity 2Ω(n), such a commit-
ment scheme exists [Barak, Ong and Vadhan, 2003]: take Naor’s well-known
commitment scheme and derandomise it using a hitting-set generator.

Again, we omit the details.
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Cryptographic assumptions (3)

We assume that there is a language ∆ ∈ P and constants c1 < c2 such that
the following holds.

The language ∆ is hard to sample (that is, generate an element of) in time
nlogc1 n: for every probabilistic nlogc1 n-time algorithm A, the probability that
A(1n) ∈ ∆ ∩ {0,1}n is negligible.

The language ∆ is easy to sample in time nlogc2 n: there is a probabilistic
nlogc2 n-time algorithm S such that the probability that S(1n) ∈ ∆ ∩ {0,1}n
is greater than 1− µ(n) for some negligible function µ.

We will discuss the validity of this (new) assumption later.
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The protocol

Let L ∈ NP be a language with witness relation RL.

Let ∆ ∈ P be a language that is hard to sample in time nlogc1 n but easy to
sample in time nlogc2 n (Assumption (3)).

Let C be a perfectly binding and computationally hiding commitment scheme
that is extractable in time nlogc0 n (Assumption (2)). By scaling the parameters,
we can assume that c0 < c1.

The protocol will furthermore use a non-interactive witness indistinguishable
proof system for NP (Assumption (1)).
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The protocol (cont.)

The common input is x ∈ L and a security parameter 1n. By padding, we can
assume that the length of x and all witnesses is n.

The prover computes a commitment σ = C(0n, r) to 0n and a one-message
witnesses indistinguishable proof z of the statement that x ∈ L or there exist
y, r′ such that σ = C(y, r′) and y ∈ ∆. The prover sends (σ, z) to the verifier.

The verifier simply verifies the witnesses indistinguishable proof in deterministic
polynomial time.
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Main theorem

Under assumptions (1)–(3), the protocol is a one-message weak zero-knowledge
argument with perfect completeness and uniform (polynomial-time) soundness
for NP.

Here, weak zero-knowledge means that the protocol satisfies the uniform (that is,
non-auxiliary input) zero-knowledge property under quasi-polynomial time simu-
lation.
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Proof: soundness

Suppose that there is a uniform probabilistic polynomial-time algorithm P ∗ that
produces an accepting proof (σ, z) for some x 6∈ L.

Let y be the (unique, by perfect binding) value committed to by σ. By the perfect
soundness of the witness indistinguishable proof, either x ∈ L or y ∈ ∆.

Since the commitment is extractable, there is an uniform algorithm E running in
time nlogc0 n that extracts y from σ.

Since c0 < c1, we get by combining P ∗ and E an uniform algorithm with running
time bounded by nlogc1 n that samples ∆—a contradiction.
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Proof: simulation

On input x, the simulator samples y ∈ ∆ in time nlogc2 n, computes a commit-
ment σ = C(y, r) to y and then computes a witness indistinguishable proof of
the true statement that either x ∈ L or y ∈ ∆ and σ is a commitment to y.

For all (x, w) ∈ RL, let H = (C(y), z) be the hybrid distribution where y ∈ ∆ is
the value computed by the simulator and z is the witness indistinguishable proof
computed by the real prover on input x using w as a witness.

The hybrid H is computationally indistinguishable from the output of the simula-
tor by the hiding property of the commitment and by the witness indistinguisha-
bility.

By the same reason, the hybrid H is computationally indistinguishable from the
output of the real prover.
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Validity of Assumption (3): uniform hash functions

We will give two examples of reasonable assumptions that implies Assumption
(3)—that is, that there exists a language ∆ ∈ P that is hard to sample in time
nlogc1 n but easy to sample in time nlogc2 n.

Suppose that there exists a hash function h (that is computable in polynomial
time) and a constant ε > 0 such that |h(x)| = |x| /2, and for every uniform
2kε

-time algorithm A, the probability that A outputs distinct x, y ∈ {0,1}k such
that h(x) = h(y) is negligible.

Let ∆ = {(1n, x, y) : x, y ∈ {0,1}k, x 6= y, h(x) = h(y)}, where k =
log2/ε n.

Note that an algorithm that runs in time less than 2kε
= nlogn cannot sample

∆, while it is trivial to sample ∆ by trying all the 2k = npoly logn values.
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Validity of Assumption (3): hardness of NP ∩ coNP

Suppose that there is a unary language L ∈ NP ∩ coNP and a constant ε > 0

such that for every 2kε
-time probabilistic algorithm A, there is for almost all i a

2i < k ≤ 2i+1 such that A(1k) 6= L(1k).

By padding, we assume that the witnesses have the same length as the input.
The language ∆ consists of all tuples (1m,1i, w2i+1, b2i+1, . . . , w2i+1, b2i+1)

such that i = log log3/ε m and for all 2i < k ≤ 2i+1, wk is a witness that
L(1k) = bk.

Note that ∆ is in P, and that ∆ can be sampled by searching exhaustively
through all the possible witnesses in time mpoly logm.
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Validity of Assumption (3): hardness of NP ∩ coNP

Suppose that A is an algorithm that on input 1m outputs a member of ∆ starting
with 1m. We construct an algorithm B for L as follows.

On input 1k, B finds i such that 2i < k ≤ 2i+1 and m such that i = log log3/ε m.
It then runs A(1m) to obtain (1m,1i, w2i+1, b2i+1, . . . , w2i+1, b2i+1) ∈ ∆ and

outputs bk. This takes at most mlogm = 2log2 m steps, and thus the running
time of B is less than 2kε

.
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Necessity of Assumption (3)

Suppose that there exists one-way injections hard against quasi-polynomial time
algorithms and that there is a one-message weak zero-knowledge argument with
uniform soundness for NP. Then there is a language ∆ that is hard to sample
by polynomial-time algorithms but can be sampled by a quasi-polynomial time
algorithm.

Note that this is a weakening of Assumption (3) only with respect to the hardness
of sampling.
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Necessity of Assumption (3): proof

Let f be a one-way function as in the statement, and let h be its hard-core bit.
Let L = {(f(x), h(x)) : x ∈ {0,1}∗} ∈ NP. Let V be the verifier algorithm for
the weak zero-knowledge argument system for L.

Define ∆ = {(y, b, π, x) : y = f(x), b 6= h(x), V (y, b, π) = 1}. That is, ∆ is
the languages of “false proofs”.

By the uniform soundness of the zero-knowledge system, ∆ cannot be sampled
by uniform polynomial-time algorithms.

Let A be an algorithm that on input 1n picks x ∈ {0,1}n and b ∈ {0,1} at
random, and outputs (f(x), b, π, x), where π is obtained by applying the zero-
knowledge simulator to the statement (f(x), b). The running time is clearly
npoly logn.

22



Necessity of Assumption (3): proof (cont.)

Note that the probability that V (f(x), b, π) = 1 is very close to 1: otherwise,
the simulator and verifier forms a distinguisher for (f(x), b) and (f(x), h(x))

contradicting the hard-coreness of h for f .

Note furthermore that the probability that b 6= h(x) is 1/2, since b is chosen
independently.

Thus, A outputs a member of ∆ with probability very close to 1/2.

Since membership in ∆ can be verified, this probability can be amplified to be
negligibly close to 1.
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