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Overview

• Motivation and introduction

• Preliminaries and notation

• General theory

• Examples (constructions)

• Conclusion



2

T-79.515 Cryptography: Special Topics Mikko Kiviharju
3

Motivation: Noisy Data
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Motivation: Noisy Data
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Motivation: Noisy Data
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Motivation: non-uniform distributions

Randomness for cryptographic applications needs to be distributed 
nearly uniformly – unpredictability is lost otherwise.
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Noisy Data AND non-uniform distributions
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Introduction

• Natural world and applications of cryptology into 
real world noisy and non-uniform

• Coding theory deals with noisy data
• Extractors handle nonuniformity of random 

variables.
• Fuzzy extractors combine elements from both 

=> error-tolerant extractors
• Applications

– Biometric data, user-friendly passwords, privacy 
amplification, fast authentication (short seeds)
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Introduction: concepts
• Biometric embedding: a function to construct F.E:s to another metric 

space from its ”home space” (metric space)

• Secure Sketch: function to produce error-tolerant public values from 
private data with upper bounds for entropy loss.

• Strong Extractor: prob. function to extract uniform randomness from 
a random variable.

• Key-encapsulation: technique of PKCs of agreeing over a secret key 
by not directly communicating the secret key

• Random pairwise independent hash functions: hash functions with 
the property that the r.v.s associated with them are both 
independent and have uniform distribution
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Preliminaries: coding theory

00000

10011

01101

11110 n = 5 (five-bit strings)
K = 4 (four classes, four     

codewords)

k = log2K = 2 (dimensions)

d = 3 (minimum distance of 
codewords, 3-1 is the largest 
number of errors that can 
always be detected)

largest number 
of errors that can always be 
corrected

1
2
dt − =   

For Hamming metric: [n,k,2t+1] = [5,2,3]-code
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Preliminaries: probability and entropy

• Joint probability of variables noted as
• Entropies

– Shannon entropy H (not used here)
– Renyi entropy H2 (not used here)
– Minimum entropy 
– Average (conditional) min entropy:

(modified version in use because of statistical 
distance from     )

, , ,...⋅ ⋅ ⋅

( ) ( )( )2log max xH X P X x∞ = − =

( ) ( )( )|
2| log 2 H X Y y

y YH X Y E ∞− =
∞ ←

 = −  

U
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Notes on: ”Preliminaries: probability and entropy”

Average min-entropy of A given B is at most l 
lower than min-entropy of A. 

The statistical distance from uniform distribution 
has a so-called left-over has lemma, which upper-
bounds the SD of pairwise independent hash 
functions, and this bound has exponentials.
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Preliminaries: metric spaces

• Metric on probability distributions / random 
variables:

• Hamming metric on binary strings:

• Set metric on any finite sets:

• Edit distance:
– The number of Ins and Del – operation required to 

transform a (binary) string to another

( ) ( ) ( )1, ( , )
2 v

d X Y X Y P X v P Y v= = = − =∑SD

( ) ( ),d x y weight x y= ⊕

( ) 1,
2

d X Y X Y= ∆
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Preliminaries: extractors
• (Efficient) strong extractors: prob. 

polytime functions
• Four params: 

– source and extracted string lengths, 
– lower bound m’ on min-entropy of W 
– upper bound ε on difference to  

• Restriction on extracted strings:

• Upper bound on # of nearly random 
bits extracted (Radhakrishnan):

{ } { }: 0,1 0,1n lExt →

U

( )( ); , , ,Ext W X X U X ε≤SD Ext

W (n-bit)

X

Y (l-bit)

Ultimately a deter-
ministic function, 
probabilistic nature 
comes from external 
source( ) ( )2' 2 log 1/ 1m Oε− +

X

W,Ul

P
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General theory: secure sketches
• Two functions:

– probabilistic SS to 
produce a public ”sketch” 
from a private value, i.e. a 
password

– deterministic Rec to 
recover the original value 
with the help of the sketch 
and a value reasonably 
close to the original

• Limits the amount of 
information revealed with 
the sketch

w
w’

SSRec

X

SS(w)w

Public space
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• (M,m,m’,t)-secure sketch is a randomized 
map , such that
– there is a function 

for which 
– for every r.v W over M, for which                  ,

(m’<m)
• Example: for some code C and uniform 

random variable X, define 

{ }*: 0,1→SS M
{ }*: 0,1× →Rec M M

( )( ) ( )( ), ' , , ' : ',w w d w w t w w w∀ ∈ ≤ =Rec SSM
( )H W m∞ =

( )( )| 'H W W m∞ ≥SS

General theory: secure sketches

( ) ( );X W W C X= ⊕SS
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Notes on: ”General theory: secure sketches”

Here, W is taken over the private metric 
space, and X is the usual ”external” 
randomness inherent in the probabilistic 
function SS. The error-tolerance comes 
from the coding function – the error-
correction capabilities are transmitted to 
the actual private string via the XOR-
operation.
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General theory: fuzzy extractors
• Two procedures:

– probabilistic Gen to produce a 
public string and an extracted 
string (used i.e. as a key in key-
encapsulation mechanisms)

– deterministic Rep to recover 
the extracted string with the 
help of the public value and a 
value reasonably close to the 
original

• Constrains the distribution of 
the extracted string close to 
uniform.

• Does not, per se, limit the 
information given out in the 
public string

w
w’

GenRep

X

P
Public 
spaceR
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• (M,m,l,t,ε) fuzzy extractor is given by two 
procedures (Gen, Rep).

• and for any p.d W over M,
with and , it holds
that

• and         

• Example: in constructions… 

General theory: fuzzy extractors

{ } { }: 0,1 0,1l p→ ×Gen M
( )H W m∞ = ( ) ,W R P→Gen
( ), , ,R P U P ε≤SD

{ } { }: 0,1 0,1p l× →Rep M ( )( ), ' , ';w w w w td∀ ∈ ≤M
( )',w P R=Rep
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Notes on: ”General theory: fuzzy extractors”

Actually, P is not fixed to any particular set. In 
practice, it could be a binary string, e.g. coming 
from a secure sketch.
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Theory: constructing F.Es
• Fuzzy extractors do not restrict the amount of 

information revealed in the public string P.
• Utilize secure sketches and strong extractors
• Idea: 

– secure sketches to produce the public string P
– strong extractors to produce the ”key material”, R

• To produce (M,m,l,t,ε) fuzzy extractor (where            
.           can be represented with n bits), pick
– (M,m, l+2log(1/ ε), t )-secure sketch
– (n, l+2log(1/ ε), l,ε)-strong extractor (2 instances)
– Entropy loss of 2log(1/ ε) is minimal, and due to 

pairwise-independent hash functions

w∈M
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Theory: constructing F.Es

Ext

Gen

w
w’

SSRec

X1

R

Public space

w

X2

P

P

Ext

R

Rep

Private 
space

X2

Result: often nearly optimal F.Es
(w.r.t entropy loss; proof omitted here)
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Theory: transitive metric spaces
• Define a set of isometric permutations                on a 

metric space M
• If , both M and π are 

called transitive: If
• Example: Hamming spaces with the set of all shifts:

• Secure sketches can be built on any transitive metric 
spaces:
– a random permutation of a random codeword as the sketch 

function
– recovery function is the inverse permutation of the decoded trial 

word
– entropy loss:

{ }i i
π

∈Ι
Π =

( )( , ) ( ) :i ia b a bπ π∀ ∈ ∃ ∈Π =M
( ) ( )( ) ( )( ):i k ma b b c m a cπ π π= ∧ = ⇒ ∃ =

( )x w w xπ = ⊕

2" " log Kπ −
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Notes on: ”Theory: transitive metric spaces”
K is the number of legal codewords in the code, ”pi” is the 
representation on the permutation in canonical format (in 
cycles, lowest-numbered first, encoded as bits). This 
quantity is small if the family of transitive isometries is 
small and the code is dense.
Entropy loss is from counting: one gives out information 
about pi (which reduces entropy with the number of bits 
used in its encoding), but one would still have to guess b’ 
such that it belongs to the right codeword-ball – and there 
are K codewords, encoded in log(K) bits.
Here, as in the Hamming code, the efficiency very much 
depends on the efficiency of the underlying code. Linear 
codes are fast and good in this respect.
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Theory: transitive metric spaces

w

SS

Rec

X1

Public space

Metric 
space

w’

b

iπpicks

iπ

iπ

b’

( )1 'i b wπ − =
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Notes on: ”Theory: transitive metric spaces”

This works, because when d(w,w’)<t, and 
due to isometry d(pi(w),pi(w’))=
d(b,b’)<t, which can be corrected by the 
code, thus giving out the original w



14

T-79.515 Cryptography: Special Topics Mikko Kiviharju
27

Theory: biometric embeddings
• How to construct fuzzy extractors, if the metric 

space is not transitive?
• Solution: embed the problematic space into a 

more friendly one
• Limit the min-entropy and deviations from 

uniform distribution of the resulting F.E
• Note: particular embeddings do not necessarily 

work for secure sketches (embedding function 
needs to be efficiently invertible to return the 
output of Rec to source space)
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Theory: biometric embeddings
• Defined by                 to be a (t1,t2,m1,m2)-

biometric embedding, if 
–
– For any W1 on M:

• Now, if (Gen(*), Rep(*,*)) is a 
(M2,m2,l,t2,ε)-F.E, then (Gen(f(*)), 
Rep(f(*),*)) is a (M1,m1,l,t1,ε)-F.E

1 2:f →M M

( )( ) ( ) ( )( )1 1 1 1 1 1 1 1 2, ' , , ' : , 'w w d w w t d f w f w t∀ ∈ ≤ ≤M
( ) ( )1 1 2 2H W m H W m∞ ∞≥ ⇒ ≥
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Constructions: Hamming (1/3)

• Fuzzy commitment (Juels, Wattenberg) directly 
applicable for secure sketches: 

• When C is linear syndrome (of n-k bits) 
revealed information leak (entropy loss) = n-k

• Show that this is true of nonlinear codes as well:
– Define a [n,k,2t+1] code C with decoder D, any m, SS

as above, and let 
– If                 , then since 

D can correct up to t errors
– Thus 

( ) ( );X W W C X= ⊕SS

( ) ( ),v w X w C x= = ⊕SS

( ), 'd w w t≤ ( ) ( )( )' 'D w v D w w C x x⊕ = ⊕ ⊕ =

( ) ( )( ) ( ) ( )', 'w v v C D w v w C x C x w= ⊕ ⊕ = ⊕ ⊕ =Rec
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Constructions: Hamming (2/3)

• (cont’d) for entropy, let 
• Then for (X,W) the min-entropy is m+k, k is from 

the number of code-words in C.
• SS(W) is n-bit reveals n bits of information
• W and SS(W) uniquely determine the value of X 

the presence of X does not increase the 
average entropy

•
• Yields a (M,m,m+k-n,t)-secure sketch

( )H W m∞ =

( )( ) ( )( )| , |H W W H W X W m k n∞ ∞= ≥ + −SS SS
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Constructions: Hamming (3/3)

• How about F.Es? 
• A straightforward from ”fuzzy commitment”, by 

setting R=X, P=V,                       and                        
.   

• W must be uniform, though (revealed V is tied to R via W
and the Gen-procedure)

• However, using SS, we can have a general F.E 
for any [n,k,2t+1]-code with parameters                 
. 

( )V W C X= ⊕
( ) ( )', 'W V D V W= ⊕Rep

2
1, , 2 log , ,m m k n t ε
ε

  + − −     
M

T-79.515 Cryptography: Special Topics Mikko Kiviharju
32

Constructions: Set difference (1/4)

• Metric can be viewed as Hamming distance, if the 
”weight” of the representation of the set is not too ”small”. 
(Size of the universe of the set is small)

• For small universes, several constructions work:
– ”Fuzzy vaults” by Juels and Sudan
– Encoding as bitstrings – reverting to Hamming
– Using the transitivity of the SetDiff-metric for a permutation-

based sketch
• Permutation based sketch allows optimal entropy loss but 

is in practice not implemented
• Fuzzy vaults achieve poor parameters: practice currently 

favors conversion to Hamming 
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Notes on: ”Constructions: Set difference (1/4)”

Efficient implementations of constant-weight-
codes are not known yet. In general, the whole 
concept, or limitation of codes to constant weight 
seems to be new area of research.
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Constructions: Set difference (2/4)
• Permutation based sketch

– use the set of all permutations as the isometric transitive 
transformation 

– choose any [n,k,d]-code, where n is the size of the universe
– for a given set A of size s, choose a random B from the selected 

code.
– choose a random matching between A and B and their 

complements a random permutation 
– output 
– Set 

• Results in a  -secure sketch

[ ] [ ] ( ): ;n n A Bπ π→ =
( )A π=SS

( )( )1( , ') 'A D Aπ π −=Rec

2, , log ,
n

m m k t
s

  
− +  

  
M
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Constructions: Set difference (3/4)

• Large universes: permutation finding inefficient 
(have to find a suitable images for the complements as well)

• Three main sketches: fuzzy vault (JS-scheme), 
modified JS-scheme and BCH-codes (omitted here)

• Both JS-based schemes encode the members of 
the universe as members of GF(pk) ([n] is 
assumed to have exactly pk members)

• The public sketch is information about a random 
polynomial (over the field) evaluated on the 
members of the private set
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Constructions: Set difference (4/4)

Entropy loss for JS:
Entropy loss for modified JS: 

( )2 2 22 log log log ;
r n

t n n r
s s
   

+ −   
   ( )22 logt n

r ”evasion” 
points s real 

points

JS Modified JS

publish this
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Constructions: Edit distance (1/2)

• Edit metric is not known to be transitive normal 
sketch constructions do not work

• Embedding edit metric with relative distance-
preserving embeddings (such as low-distortion 
embeddings into Hamming metric) are not known 
(in fact, some lower distortion bounds are even proven (by Andoni et 
al.))

• Solution biometric embeddings
• Looser restrictions on preserving the distances; 

for F.Es it is sufficient that ”close” points do not 
become ”distant”.
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Constructions: Edit distance (2/2)

• A suitable biometric embedding is the c-shingling 
map SHc(w):

w

n

c

n

SHc(w)
Biometric embedding:

Resulting fuzzy extractor (optimized):

2log, , , n nt ct m m
c

 − 
 

3
1

1 2 2
2

1( ), , 2 log , ,
2 16 log
m mn m

n n
ε

ε
 

− 
 
Edit
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Conclusion
• Error-tolerant extractors are very useful in natural settings, 

especially authentication

• Fuzzy extractors combine two important properties: uniformity and 
error-tolerance

• Efficiency stressed throughout the construction, but the theory 
doesn’t contribute anything for efficiency, instead relies on efficiency 
of the underlying primitives

• More research needed in actual constructions and different metrics

• Other constructions beyond fuzzy extractors combining even more 
useful properties?


