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Overview

Stream ciphers and the most common attacks
Algebraic attacks (on LSFR-based ciphers)
Fast(er) algebraic attacks

Case: EO

Conclusion
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Stream ciphers

o Stream cipher: output stream of symbols, usually
bits, is a function of plaintext and key stream

symbols.

« Key stream could be anything (i.e a genuine
OTP), but is usually a state machine.
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Stream ciphers: attacks

« Key reuse (medieval)

 Time-memory tradeoffs (Babbage, 1995)
e Guess-and-determine (Gunther, 1988)

e Correlation (Siegenthaler, 1984)

o Algebraic (Shamir et al., 1999)

« Backtracking (Golic, 1997)

* Binary Decision Diagrams (Krause, 2002)
o Side channel (Kocher et al., 1999)
 Resynchronization (Daemen et al. 1993)
¢ efc.
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Stream ciphers: categories

[ Stream ciphers ]

[ Synchronous ] [ Self-synchronous ]
1 . 1
Pure nonlinear ] [ LFSR components ]
1
4 N
RC4, RC5 [ Pure LFSR } [ Combiners J
& J
( ) . L
Block ciphers used L With memory J L Simple ]
L in stream mode(e.g. OFB))
—[ EO ] LILI128 ]
Toyocrypt ]
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Stream ciphers: combiners

 Pure LFSR-ciphers trivial to break
— complexity O(n3), from 2n linear equations
« Add non-linearity (in GF(2k)-arithmetic)

— a non-linear function combining some LFSRs =>
(pure) combiner. Example: LILI-128

* |n pure combiners, high correlation immunity
Implies vulnerability to algebraic attacks

 Make keystream dependent on a (non-linear)
state-machine as well
— Combiner with memory. Example: Bluetooth EO
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Stream ciphers: combiners
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Algebraic attacks

e Principle:
— Find equations (on any cipher) with the key bits as
unknowns

— Fill in the known variables and constants
— Solve the equation

e Problems:

— Non-linear equations (of high degree)

— Finite field algebras (fast methods from analysis
generally not applicable, 3enera| Diophantine
equations at least as hard as NP-hard)

— Finding the equations highly dependent on the cipher
— Inserting the keystream bits turns out to be non-trivial
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Algebraic attacks: combiners

Promising target:
— Components mainly linear

— Algebraic degree in real-life combiner ciphers usually of
reasonable order (due to recent trends to make them correlation-
iImmune)

» By Kerckhoff’s principle the keystream z, is known

e (General idea: form equations consisting of known
constants, z (for all t), and secret key bits of the LFSRs
as unknowns.

 Combiners with memory: more unknown variables =>
can be cancelled, but require more known keystream
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Algebraic attacks: pure combiners

Why have that" t:z = f (x[l,___, x[”) But each )(tI is a linear function
of the secret key bits (applied t times), so we have, for all t:
z = f (Lt(kl,..., kn)) = f (Lt (K)) , where K represents the whole

secret key and L!is the linear function in matrix-form applied t times

(raised to the tth power).

Now we have f (Lt ( K))A z, =0 for every clock. By Kerckhoff's
principle the attacker knows all z, and can collect as many
keystream bits as he/she likes without increasing the number of

unknown variables.

Solution?
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Algebraic attacks: equation solving (1)

e Task: solve non-linear diophantine system of equations

e Assume: equations are consist of polynomials (not e.g.
Infinite series). This is valid, since every Boolean
function can be representeda as a polynomial over
GF(2)

 Methods:

— Grobner Bases

— Linearization (system needs to be grossly overdefined)
— XL

— XLS
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Algebraic attacks: equation solving (2)

o Grobner bases: "Gaussian for non-linear systems”

— Definition: an subset of an ideal in given polynomials is
a Grobner basis, if the ideals generated by the leading
term of the whole ideal and the leading terms of the
iIndividual polynomials (in the subset) are identical

— Usage:

» Transform the polynomial equations to other types of
polynomials (Grobner basis) using e.g. Buchberger’s algorithm

» A Grobner basis has the property of Gaussian elimination, i.e. it
IS possible to solve one variable at a time (although still
polynomial)

» Solution to the Grébner basis is the same as for the original
equation
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Algebraic attacks: equation solving (3)

e Linearization algorithms (basic, XL, XSL and

variations), principle:
— Use an overdefined equation

— Replace each monomial with a new variable

— Solve as a linear system

xAyA z=0 xAyAz=0
x*AxyA z2=0 L= xy uAtAv=0
yA x?=0 ® u=¥% ® yAu=0 ®
Z?Ax*Ay=0 V= vVAuAy=0
xyA x=0 tAx=0
ZAxyA1=0 vAtA1=0

a0 o
Cy+ G+
¢+ ¢
¢z~ GO~
C, ¢, +
ct+ ¢l+

Cu~ €CG1~+

&5 0

Verification:

t=1=1x= xy
u=1=21°=x°
v=0=0"=7
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Algebraic attacks: linearization

How "over’defined does the system need to be?
(I.e: how many keystream bits are needed?)

Upper bound for monomials of at most degree d In
the equations, with n secret key bits (=unknowns):

M (nd)=4 g% 0()
i=0 4]

(how many different solutions are there for
exponents of a certain monomial adding up to I In
GF(2))

Exponential on the degree => lower the degree
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Algebraic attacks: (n,m)-combiners (1)

In this case "t : Z[—f( WX C e q)

Each X[I Is still a linear function of the key (applied t times), and the memory

bits: " t:z = f (Lt (kl,...,kn),ctl,...,ctm) = f (Lt (K),Et)

where K and Lt are as before.

Now we have f (Lt ( K) ,Et),& Z, = 0, but collecting key bits does not help.

We could substitute all the c, with a function of c,, after all ¢, =g (a) for all t.
(cO can be assumed to be known to the attacker) But: equation degree

would increase exponentially with t.

Solution?
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Algebraic attacks: (n,m)-combiners (2)

e Task: cancelling out the memory-bits from (n,m)-
combiners

e Result by Armknecht and Krause in Crypto
2003:
— there is a boolean function H(* 0) of a degree

at most én(m+1)u and an integer r strictly
¢ 5 ¢
e

larger than the number of memory bits, such that

"t:H(L'(K),Z,7.,..)=0. Here K and L are as before.
— Also: algorithm for finding H, to be ad hoc equations
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Algebraic attacks: ad hoc equations

e Qutline of proof for the upper bound

— Define a set Crit(z) as the set of those secret key values that do
not map to given r consecutive keystream bits for any state of
the memory bits. Accordingly, let NCrit (z) be the complement of
Crit(2).

— Show that the number of degree d polynomials that define the
combiner solely based on the secret key bits equals the null
space of all monomials of degree d w.r.t NCrit.(z)

— Note that the null space has a nontrivial solution iff the number of
all monomials (of degree d) is greater than NCrit (z).

— Size of NCrit (z) is estimated and this result is assigned to the
number of all monomials, which is a function of d.
 Algorithm for finding the polynomial consists of
computing the afore-mentioned null-space.
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Fast algebraic attacks: reducing the
degree (1)

Assume an system of equations of the form
H(L(K).Z,....7,,.,) =0 can be split into two halves:

Hl(Lt(K))A HZ(L (K)’Z[""’Z[+r-1) =0

such that d,=deg(H)=deg(H,), and d,=deg(H.) and d,>d..

H, only dependent on linear function of the secret key bits
b after "several” clocks the system of H,:s will be linearly
dependent.p s$a,,..., ah_l;éh_a xH (|_t+' (K)):o. Here his
about;°. (Theory of linedr recurring sequences)
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Fast algebraic attacks: reducing the

degree (2)

Now consider 5§ a xH (Lm (K). 7401, Z[+i+r-1) =00

=0

& |
aa, H, (L (K), 2y Zgrg) =0

=0

Degree reduced, but number of needed consecutive
keystream bits increased (dramatically). Operation known as
precomputation step.

« Assumption and efficient retrieval of coefficients a; was proven
correct for most stream ciphers by Armknecht in Oct 2004 at
SASC, Belgium, by associating the low-degree solutions to low-
degree annihilators of Boolean functions.

* Note that H or H, could consist only of monomials containing z,
In which case the splitting would not be possible.
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Fast algebraic attacks: precomputation

step

Coefficients computed from the minimal polynomial of the
sequence H(K), H(L(K)), H(L%(K)),... (Berlekamp-Massey
algorithm)

Problem: polynomials generally not unique, especially not with
Bluetooth EO

Refinement (Armknecht, June 2004): form minimal polynomials
from pairwise coprime components => parallelizable, produces
unigue minimal polynomials.

Problem: finding pairwise coprime polynomials that are
components of H

Refinement (Armknecht, October 2004): coefficients computed
with the help of Boolean annihilators
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Bluetooth

* Bluetooth: An industry standard for small appliances
connectivity on close range (PAN)

« Bluetooth security has four named algorithms:
— EO: symmetric and synchronous stream cipher
— E1: authentication algorithm on SAFER+
— EZ2: authentication key generation based on SAFER+
— E3: EO key generation, SAFER+

« Bluetooth security has a number of flaws, most severe of
which are not in EO. (i.e key replay attacks, encryption
key length negotiation, PIN enumeration)

* This paper focuses on the encryption algorithm EO only
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Bluetooth: EO structure

Py
LFSR1 (25)
——>—
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(4,4)-combiner: four LFSRs and memory bits (t ot tl_l,tto,ttl) l
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Bluetooth: EO initialization

 Two level operation

— Level 1: Initialisation of the summation generator and the LSFRs
for Level 2

— Level 2: Actual keystream generation

« Level 1 initialises its LFSR block with the key XORed
with nonce and FSM block is reset

e The level 1 — blocks clocked 200 times

 The last 128 output (keystream) bits are fed into a
permutation function

e The output of the permutation forms the initial state of
the level 2 LFSR blocks. Level 2 FSM block is initialised
to the final state of the level 1 FSM block
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Bluetooth: attacks on EO
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Bluetooth: ad hoc equation for EO

* Prediction: degree at most 10, dependency of at most 5
consecutive keystream bits

* Practice: degree 4, dependency of 4 consecutive bits
G(L'(K). 2 2. 20 20a) 2 A 2y A 2, A2 A2 (2 A 2, A 2, A 7,,) Ap,
ApiazAz.,Az,A 7,2 A 2., %,,A 7,2,
Ap; Ap e, (1A Z,,)Apopg,
APt s APL Pl %2, {20 AL A DL 0 %,
APl APl P (1A 2. )A Pis Pl

Ap';l-+3 A pt1+3 >pt1+1 >(1A Z[+1) A pt1+3 >1‘)'[2+1
=0

(where pti is the it elementary symmetric polynomial in the unknown outputs of the four LFSRS)
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Bluetooth: analysis of EO

« Fast algebraic attack: Decomposition into G, and G,, where
G=G,AG, and G, (L™ (K))=pL.Apl.,pi. and deg(G,)=3.

 Armknecht’s results on Boolean annihilators: the size of EQ’s
characteristic function’s "one-set” (the set of arguments which
makes the function-value = 1) is too big to allow annihilators
of degree < 3. => Described attack is of optimal order of
complexity.

o Attack complexity: Number of monomials and solved with
Strassen (e.qg) [ (8280 4280 24280, 282800 st
Bo05 815825 §3 %

. . 28286 .
 Number of successive keystream bits: S 4 gz Infeasible,

given at most 2744 bits per frame and same key.
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Bt: combined algebraic and resync?

 What if: algebraic attack over several frames? Resync?

 Armknecht’s results on combining resynchronisation

attacks with algebraic attacks (SAC '04), but:
— only for pure combiners

« Extendable to combiners with memory, but:
— workload is increased exponentially on the number of memory
bits
e Ad hoc equations ok, but:

— known construction methods do not extend over permutation
(=non-linear) function (the one between EO levels 1 and 2)

e Room for future ideas...
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Conclusion and open guestions

« Algebraic attacks one of the newest and most efficient
forms of cryptanalytic attacks, especially with stream
ciphers

e Correlation attacks less time-consuming, but alg. attack
need less data

« Tools and criteria for providing security against algebraic
attacks evolving (e.g. Meier et al, Eurocrypt 2004)

« Bluetooth EO is "broken”, but only in academic sense.

« Can ad hoc equations be formed for systems with non-
linearity in the input? (Two levels of EO)

* When is it possible to use the idea of fast algebraic attacks
(.e. reduction of the degree of polynomials) iteratively?
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