T-79.514 Special Course on Cryptology
November 25 ${ }^{\text {th }}, 2004$

Algebraic Attacks and Stream Ciphers

Mikko Kiviharju
Helsinki University of Technology

mkivihar@cc.hut.fi

Overview

- Stream ciphers and the most common attacks
- Algebraic attacks (on LSFR-based ciphers)
- Fast(er) algebraic attacks
- Case: E0
- Conclusion

Stream ciphers

- Stream cipher. output stream of symbols, usually bits, is a function of plaintext and key stream symbols.
- Key stream could be anything (i.e a genuine OTP), but is usually a state machine.

Stream ciphers: attacks

- Key reuse (medieval)
- Time-memory tradeoffs (Babbage, 1995)
- Guess-and-determine (Günther, 1988)
- Correlation (Siegenthaler, 1984)
- Algebraic (Shamir et al., 1999)
- Backtracking (Golic, 1997)
- Binary Decision Diagrams (Krause, 2002)
- Side channel (Kocher et al., 1999)
- Resynchronization (Daemen et al. 1993)
- etc.

Stream ciphers: categories

Stream ciphers: combiners

- Pure LFSR-ciphers trivial to break
- complexity $\mathrm{O}\left(\mathrm{n}^{3}\right)$, from $2 n$ linear equations
- Add non-linearity (in GF(2k)-arithmetic)
- a non-linear function combining some LFSRs => (pure) combiner. Example: LILI-128
- In pure combiners, high correlation immunity implies vulnerability to algebraic attacks
- Make keystream dependent on a (non-linear) state-machine as well
- Combiner with memory. Example: Bluetooth E0

Stream ciphers: combiners

Algebraic attacks

- Principle:
- Find equations (on any cipher) with the key bits as unknowns
- Fill in the known variables and constants
- Solve the equation
- Problems:
- Non-linear equations (of high degree)
- Finite field algebras (fast methods from analysis generally not applicable, general Diophantine equations at least as hard as NP-hard)
- Finding the equations highly dependent on the cipher
- Inserting the keystream bits turns out to be non-trivial

Algebraic attacks: combiners

- Promising target:
- Components mainly linear
- Algebraic degree in real-life combiner ciphers usually of reasonable order (due to recent trends to make them correlationimmune)
- By Kerckhoff's principle the keystream z_{t} is known
- General idea: form equations consisting of known constants, z_{t} (for all t), and secret key bits of the LFSRs as unknowns.
- Combiners with memory: more unknown variables => can be cancelled, but require more known keystream

Algebraic attacks: pure combiners

Why have that $\forall t: z_{t}=f\left(x_{t}^{1}, \ldots, x_{t}^{n}\right)$ But each x_{t}^{i} is a linear function of the secret key bits (applied t times), so we have, for all t : $z_{t}=f\left(L^{t}\left(k_{1}, \ldots, k_{n}\right)\right)=f\left(L^{t}(K)\right)$, where K represents the whole secret key and L^{t} is the linear function in matrix-form applied t times (raised to the th ${ }^{\text {th }}$ power).

Now we have $f\left(L^{t}(K)\right) \oplus z_{t}=0$ for every clock. By Kerckhoff's principle the attacker knows all z_{p}, and can collect as many keystream bits as he/she likes without increasing the number of unknown variables.

Solution?

Algebraic attacks: equation solving (1)

- Task: solve non-linear diophantine system of equations
- Assume: equations are consist of polynomials (not e.g. infinite series). This is valid, since every Boolean function can be representeda as a polynomial over GF(2)
- Methods:
- Gröbner Bases
- Linearization (system needs to be grossly overdefined)
- XL
- XLS
- ...

Algebraic attacks: equation solving (2)

- Gröbner bases: "Gaussian for non-linear systems"
- Definition: an subset of an ideal in given polynomials is a Gröbner basis, if the ideals generated by the leading term of the whole ideal and the leading terms of the individual polynomials (in the subset) are identical
- Usage:
- Transform the polynomial equations to other types of polynomials (Gröbner basis) using e.g. Buchberger's algorithm
- A Gröbner basis has the property of Gaussian elimination, i.e. it is possible to solve one variable at a time (although still polynomial)
- Solution to the Gröbner basis is the same as for the original equation

Algebraic attacks: equation solving (3)

- Linearization algorithms (basic, XL, XSL and variations), principle:
- Use an overdefined equation
- Replace each monomial with a new variable
- Solve as a linear system

Algebraic attacks: linearization

- How "over"defined does the system need to be? (i.e: how many keystream bits are needed?)
- Upper bound for monomials of at most degree din the equations, with n secret key bits (=unknowns):

$$
M(n, d)=\sum_{i=0}^{d}\binom{n}{i} \approx O\left(n^{d}\right)
$$

- (how many different solutions are there for exponents of a certain monomial adding up to i in GF(2))
- Exponential on the degree => lower the degree

Algebraic attacks: (n,m)-combiners (1)

In this case $\forall t: z_{t}=f\left(x_{t}^{1}, \ldots, x_{t}^{n}, c_{t}^{1}, \ldots, c_{t}^{m}\right)$
Each x_{t}^{i} is still a linear function of the key (applied t times), and the memory bits: $\forall t: z_{t}=f\left(L^{t}\left(k_{1}, \ldots, k_{n}\right), c_{t}^{1}, \ldots, c_{t}^{m}\right)=f\left(L^{t}(K), \overline{c_{t}}\right)$ where K and L^{t} are as before.

Now we have $f\left(L^{t}(K), \overline{c_{t}}\right) \oplus z_{t}=0$, but collecting key bits does not help.
We could substitute all the c_{t} with a function of c_{0}, after all $\overline{c_{t+1}}=g\left(\overline{c_{t}}\right)$ for all t. (c0 can be assumed to be known to the attacker) But: equation degree would increase exponentially with t .

Solution?

Algebraic attacks: (n,m)-combiners (2)

- Task: cancelling out the memory-bits from (n, m)combiners
- Result by Armknecht and Krause in Crypto 2003:
- there is a boolean function $H(\neq 0)$ of a degree at most $[n(m+1)]$ and an integer r strictly
larger than the number of memory bits, such that
$\forall t: H\left(L^{\prime}(K), z_{1}, \ldots, z_{t+r-1}\right)=0$. Here K and L are as before.
- Also: algorithm for finding H, to be ad hoc equations

Algebraic attacks: ad hoc equations

- Outline of proof for the upper bound
- Define a set $\operatorname{Crit}_{c}(z)$ as the set of those secret key values that do not map to given r consecutive keystream bits for any state of the memory bits. Accordingly, let $\mathrm{NCrit}_{c}(z)$ be the complement of $\mathrm{Crit}_{\mathrm{c}}(\mathrm{z})$.
- Show that the number of degree d polynomials that define the combiner solely based on the secret key bits equals the null space of all monomials of degree d w.r.t $\mathrm{NCrit}_{c}(z)$
- Note that the null space has a nontrivial solution iff the number of all monomials (of degree d) is greater than $\mathrm{NCrit}_{\mathrm{c}}(\mathrm{z})$.
- Size of $\operatorname{NCrit}_{c}(z)$ is estimated and this result is assigned to the number of all monomials, which is a function of d.
- Algorithm for finding the polynomial consists of computing the afore-mentioned null-space.

Fast algebraic attacks: reducing the degree (1)

Assume an system of equations of the form $H\left(L^{t}(K), z_{t}, \ldots, z_{t+r-1}\right)=0$ can be split into two halves:
$H_{1}\left(L^{t}(K)\right) \oplus H_{2}\left(L^{t}(K), z_{t}, \ldots, z_{t+r-1}\right)=0$
such that $d_{1}=\operatorname{deg}(H)=\operatorname{deg}\left(H_{1}\right)$, and $d_{2}=\operatorname{deg}\left(H_{2}\right)$ and $d_{1}>d_{2}$.
H_{1} only dependent on linear function of the secret key bits \Rightarrow after "several" clocks the system of H_{1} :s will be linearly dependent. $\Rightarrow \exists \alpha_{0}, \ldots, \alpha_{h-1}: \sum^{h} \alpha_{i} \cdot H_{1}\left(L^{t+i}(K)\right)=0$. Here h is about $\binom{[K]}{d}$. (Theory of lineầr recurring sequences)

Fast algebraic attacks: reducing the

degree (2)

Now consider $\sum_{i=0}^{h} \alpha_{i} \cdot H\left(L^{t+i}(K), z_{t+i}, \ldots, z_{t+i+r-1}\right)=0 \Leftrightarrow$

$$
\sum_{i=0}^{h} \alpha_{i} \cdot H_{2}\left(L^{t+i}(K), z_{t+i}, \ldots, z_{t+i+r-1}\right)=0
$$

Degree reduced, but number of needed consecutive keystream bits increased (dramatically). Operation known as precomputation step.

- Assumption and efficient retrieval of coefficients a_{j} was proven correct for most stream ciphers by Armknecht in Oct 2004 at SASC, Belgium, by associating the low-degree solutions to lowdegree annihilators of Boolean functions.
- Note that H or H_{2} could consist only of monomials containing z_{i}, in which case the splitting would not be possible.

Fast algebraic attacks: precomputation

step

- Coefficients computed from the minimal polynomial of the sequence $H(K), H(L(K)), H\left(L^{2}(K)\right), \ldots$ (Berlekamp-Massey algorithm)
- Problem: polynomials generally not unique, especially not with Bluetooth E0
- Refinement (Armknecht, June 2004): form minimal polynomials from pairwise coprime components => parallelizable, produces unique minimal polynomials.
- Problem: finding pairwise coprime polynomials that are components of H
- Refinement (Armknecht, October 2004): coefficients computed with the help of Boolean annihilators

Bluetooth

- Bluetooth: An industry standard for small appliances connectivity on close range (PAN)
- Bluetooth security has four named algorithms:
- EO: symmetric and synchronous stream cipher
- E1: authentication algorithm on SAFER+
- E2: authentication key generation based on SAFER+
- E3: E0 key generation, SAFER+
- Bluetooth security has a number of flaws, most severe of which are not in E0. (i.e key replay attacks, encryption key length negotiation, PIN enumeration)
- This paper focuses on the encryption algorithm E0 only

Bluetooth: E0 structure

LFSR1 (25)

LFSR2 (31)

LFSR3 (33)

LFSR4 (39)

WS」 / גоłeләuә6 uo!!emuns
(4,4)-combiner: four LFSRs and memory bits $\left(\tau_{t-1}^{0}, \tau_{t-1}^{1}, \tau_{t}^{0}, \tau_{t}^{1}\right)$

Bluetooth: E0 initialization

- Two level operation
- Level 1: Initialisation of the summation generator and the LSFRs for Level 2
- Level 2: Actual keystream generation
- Level 1 initialises its LFSR block with the key XORed with nonce and FSM block is reset
- The level 1 - blocks clocked 200 times
- The last 128 output (keystream) bits are fed into a permutation function
- The output of the permutation forms the initial state of the level 2 LFSR blocks. Level 2 FSM block is initialised to the final state of the level 1 FSM block

Bluetooth: attacks on E0

Bluetooth: ad hoc equation for EO

- Prediction: degree at most 10, dependency of at most 5 consecutive keystream bits
- Practice: degree 4, dependency of 4 consecutive bits

$$
\begin{aligned}
G\left(L^{t}(K), z_{t}, z_{t+1}, z_{t+2}, z_{t+3}\right) & =z_{t} \oplus z_{t+1} \oplus z_{t+2} \oplus z_{t+3} \oplus \pi_{t+1}^{2} \cdot\left(z_{t} \oplus z_{t+1} \oplus z_{t+2} \oplus z_{t+3}\right) \oplus \pi_{t+1}^{4} \\
& \oplus \pi_{t+1}^{1} \cdot\left(z_{t} \oplus z_{t+2} \oplus z_{t+3} \oplus \not z_{t+1} \cdot z_{t} \oplus z_{t+1} \cdot z_{t+2} \oplus z_{t+1} \cdot z_{t+3}\right) \\
& \oplus \pi_{t}^{1} \oplus \pi_{t}^{1} \cdot \pi_{t+1}^{1} \cdot \cdot\left(1 \oplus z_{t+1}\right) \oplus \pi_{\cdot}^{1} \cdot \pi_{t+1}^{2} \\
& \oplus \pi_{t+2}^{1} \cdot z_{t+2} \oplus \pi_{t+2}^{1} \cdot \pi_{t+1}^{1} \cdot z_{t+2} \cdot\left(z_{t+1} \oplus 1\right) \oplus \pi_{t+2}^{1} \cdot \pi_{t+1}^{2} \cdot z_{t+2} \\
& \oplus \pi_{t+2}^{2} \oplus \pi_{t+2}^{2} \cdot \pi_{t+1}^{1} \cdot\left(1 \oplus z_{t+1}\right) \oplus \pi_{t+1}^{2} \cdot \pi_{t+1}^{2} \\
& \oplus \pi_{t+3}^{1} \oplus \pi_{t+3}^{1} \cdot \pi_{t+1}^{1} \cdot\left(1 \oplus z_{t+1}\right) \oplus \pi_{t+3}^{1} \cdot \pi_{t+1}^{2} \\
& =0
\end{aligned}
$$

(where π_{t}^{i} is the ith $^{\text {elementary symmetric polynomial in the unknown outputs of the four LFSRs) }}$

Bluetooth: analysis of EO

- Fast algebraic attack: Decomposition into G_{1} and G_{2}, where $G=G_{1} \oplus G_{2}$ and $G_{1}\left(L^{t+i}(K)\right)=\pi_{t+i+1}^{4} \oplus \pi_{t++2 \cdot}^{2} \cdot \pi_{t+i+1}^{2}$ and $\operatorname{deg}\left(G_{2}\right)=3$.
- Armknecht's results on Boolean annihilators: the size of E0's characteristic function's "one-set" (the set of arguments which makes the function-value $=1$) is too big to allow annihilators of degree < 3. => Described attack is of optimal order of complexity.
- Attack complexity: Number of monomials and solved with Strassen (e.g)

$$
7 \cdot\left[\binom{128}{0}+\binom{128}{1}+\binom{128}{2}+\binom{128}{3}\right]^{\log _{2} 7} \approx 2^{54,51}
$$

- Number of successive keystream bits: $\binom{128}{4} \approx 2^{23}$. Infeasible, given at most 2744 bits per frame and same key.

Bt: combined algebraic and resync?

- What if: algebraic attack over several frames? Resync?
- Armknecht's results on combining resynchronisation attacks with algebraic attacks (SAC '04), but:
- only for pure combiners
- Extendable to combiners with memory, but:
- workload is increased exponentially on the number of memory bits
- Ad hoc equations ok, but:
- known construction methods do not extend over permutation (=non-linear) function (the one between E0 levels 1 and 2)
- Room for future ideas...

Conclusion and open questions

- Algebraic attacks one of the newest and most efficient forms of cryptanalytic attacks, especially with stream ciphers
- Correlation attacks less time-consuming, but alg. attack need less data
- Tools and criteria for providing security against algebraic attacks evolving (e.g. Meier et al, Eurocrypt 2004)
- Bluetooth E0 is "broken", but only in academic sense.
- Can ad hoc equations be formed for systems with nonlinearity in the input? (Two levels of E0)
- When is it possible to use the idea of fast algebraic attacks (i.e. reduction of the degree of polynomials) iteratively?

