Algebraic Attacks and Stream Ciphers

Mikko Kiviharju
Helsinki University of Technology
mkivihar@cc.hut.fi
Overview

• Stream ciphers and the most common attacks
• Algebraic attacks (on LSFR-based ciphers)
• Fast(er) algebraic attacks
• Case: E0
• Conclusion
Stream ciphers

- **Stream cipher**: output stream of symbols, usually bits, is a function of plaintext and key stream symbols.
- Key stream could be anything (i.e., a genuine OTP), but is usually a state machine.

![Diagram showing a state machine with state S_t, key K, plaintext bit p_t, keystream bit z_t, ciphertext bit c_t, and a state transition diagram for self-synchronous ciphers.](attachment:image.png)
Stream ciphers: attacks

- Key reuse (medieval)
- Time-memory tradeoffs (Babbage, 1995)
- Guess-and-determine (Günther, 1988)
- Correlation (Siegenthaler, 1984)
- Algebraic (Shamir et al., 1999)
- Backtracking (Golic, 1997)
- Binary Decision Diagrams (Krause, 2002)
- Side channel (Kocher et al., 1999)
- Resynchronization (Daemen et al. 1993)
- etc.
Stream ciphers: categories

- **Stream ciphers**
 - Synchronous
 - Self-synchronous

- **Pure nonlinear**
 - RC4, RC5
 - Block ciphers used in stream mode (e.g., OFB)

- **LFSR components**
 - Pure LFSR
 - Combiners
 - With memory
 - Simple
 - E0
 - LILI128
 - Toyocrypt

Block ciphers used in stream mode (e.g., OFB)
Stream ciphers: combiners

- Pure LFSR-ciphers trivial to break
 - complexity $O(n^3)$, from $2n$ linear equations
- Add non-linearity (in GF(2^k)-arithmetic)
 - a non-linear function combining some LFSRs => (pure) combiner. Example: LILI-128
- In pure combiners, high correlation immunity implies vulnerability to algebraic attacks
- Make keystream dependent on a (non-linear) state-machine as well
 - Combiner with memory. Example: Bluetooth E0
Stream ciphers: combiners

- LFSR 1
- LFSR 2
- LFSR n

Pure combiner ((n,0)-combiner)

Combiner with memory, ((n,m)-combiner)

Non-linear

\[z_t = f(x_t^i, c_t^k, c_{t+1}^k) \]
Algebraic attacks

- **Principle:**
 - Find equations (on any cipher) with the key bits as unknowns
 - Fill in the known variables and constants
 - Solve the equation

- **Problems:**
 - Non-linear equations (of high degree)
 - Finite field algebras (fast methods from analysis generally not applicable, general Diophantine equations at least as hard as NP-hard)
 - Finding the equations highly dependent on the cipher
 - Inserting the keystream bits turns out to be non-trivial
Algebraic attacks: combiners

• Promising target:
 – Components mainly linear
 – Algebraic degree in real-life combiner ciphers usually of reasonable order (due to recent trends to make them correlation-immune)

• By Kerckhoff’s principle the keystream z_t is known

• General idea: form equations consisting of known constants, z_t (for all t), and secret key bits of the LFSRs as unknowns.

• Combiners with memory: more unknown variables => can be cancelled, but require more known keystream
Algebraic attacks: pure combiners

Why have that \(\forall t : z_t = f\left(x_t^1, \ldots, x_t^n \right) \)? But each \(x_t^i \) is a linear function of the secret key bits (applied \(t \) times), so we have, for all \(t \):

\[
z_t = f\left(L^t \left(k_1, \ldots, k_n \right) \right) = f\left(L^t \left(K \right) \right),
\]

where \(K \) represents the whole secret key and \(L^t \) is the linear function in matrix-form applied \(t \) times (raised to the \(t^{\text{th}} \) power).

Now we have \(f\left(L^t \left(K \right) \right) \oplus z_t = 0 \) for every clock. By Kerckhoff’s principle the attacker knows all \(z_t \) and can collect as many keystream bits as he/she likes without increasing the number of unknown variables.

Solution?
Algebraic attacks: equation solving (1)

- Task: solve non-linear diophantine system of equations
- Assume: equations are consist of polynomials (not e.g. infinite series). This is valid, since every Boolean function can be represented as a polynomial over GF(2)
- Methods:
 - Gröbner Bases
 - Linearization (system needs to be grossly overdefined)
 - XL
 - XLS
 - ...
Algebraic attacks: equation solving (2)

• Gröbner bases: ”Gaussian for non-linear systems”
 – Definition: an subset of an ideal in given polynomials is a Gröbner basis, if the ideals generated by the leading term of the whole ideal and the leading terms of the individual polynomials (in the subset) are identical
 – Usage:
 • Transform the polynomial equations to other types of polynomials (Gröbner basis) using e.g. Buchberger’s algorithm
 • A Gröbner basis has the property of Gaussian elimination, i.e. it is possible to solve one variable at a time (although still polynomial)
 • Solution to the Gröbner basis is the same as for the original equation
Algebraic attacks: equation solving (3)

• Linearization algorithms (basic, XL, XSL and variations), principle:
 – Use an overdefined equation
 – Replace each monomial with a new variable
 – Solve as a linear system

\[
\begin{align*}
x \oplus y \oplus z &= 0 \\
x^2 \oplus xy \oplus z^2 &= 0 \\
y \oplus x^2 &= 0 \\
z^2 \oplus x^2 \oplus y &= 0 \\
x y \oplus x &= 0 \\
z^2 \oplus xy \oplus 1 &= 0
\end{align*}
\]

\[
\begin{align*}
x \oplus y \oplus z &= 0 \\
t &= xy \\
x^2 &= 0 \\
v &= z^2 \\
y \oplus u &= 0 \\
v \oplus u \oplus y &= 0 \\
t \oplus x &= 0 \\
v \oplus t \oplus 1 &= 0
\end{align*}
\]

Verification:
\[
\begin{align*}
t &= 1 = 1 \cdot 1 = xy \\
u &= 1 = 1^2 = x^2 \\
v &= 0 = 0^2 = z^2
\end{align*}
\]
Algebraic attacks: linearization

• How "over" defined does the system need to be? (i.e: how many keystream bits are needed?)
• Upper bound for monomials of at most degree d in the equations, with n secret key bits (=unknowns):
 \[M(n, d) = \sum_{i=0}^{d} \binom{n}{i} \approx O(n^d) \]
• (how many different solutions are there for exponents of a certain monomial adding up to i in GF(2))
• Exponential on the degree => lower the degree
Algebraic attacks: \((n,m)\)-combiners (1)

In this case \(\forall t : z_t = f \left(x_t^1, \ldots, x_t^n, c_t^1, \ldots, c_t^m \right)\)

Each \(x_t^i\) is still a linear function of the key (applied \(t\) times), and the memory bits: \(\forall t : z_t = f \left(L' \left(k_1, \ldots, k_n \right), c_t^1, \ldots, c_t^m \right) = f \left(L' \left(K \right), c_t \right)\)

where \(K\) and \(L'\) are as before.

Now we have \(f \left(L' \left(K \right), c_t \right) \oplus z_t = 0\), but collecting key bits does not help.

We could substitute all the \(c_t\) with a function of \(c_0\), after all \(\overline{c_{t+1}} = g \left(\overline{c_t} \right)\) for all \(t\).

\((c0\) can be assumed to be known to the attacker\) But: equation degree would increase exponentially with \(t\).

Solution?
Algebraic attacks: \((n,m)\)-combiners (2)

- Task: cancelling out the memory-bits from \((n,m)\)-combiners
- Result by Armknecht and Krause in Crypto 2003:
 - There is a boolean function \(H(\neq 0)\) of a degree at most \(\left\lfloor \frac{n(m+1)}{2} \right\rfloor\) and an integer \(r\) strictly larger than the number of memory bits, such that
 \[\forall t : H \left(L^t(K), z_t, \ldots, z_{t+r-1} \right) = 0.\]
 Here \(K\) and \(L\) are as before.
 - Also: algorithm for finding \(H\), to be ad hoc equations
Algebraic attacks: ad hoc equations

• Outline of proof for the upper bound
 – Define a set $\text{Crit}_c(z)$ as the set of those secret key values that do not map to given r consecutive keystream bits for any state of the memory bits. Accordingly, let $\text{NCrit}_c(z)$ be the complement of $\text{Crit}_c(z)$.
 – Show that the number of degree d polynomials that define the combiner solely based on the secret key bits equals the null space of all monomials of degree d w.r.t $\text{NCrit}_c(z)$
 – Note that the null space has a nontrivial solution iff the number of all monomials (of degree d) is greater than $\text{NCrit}_c(z)$.
 – Size of $\text{NCrit}_c(z)$ is estimated and this result is assigned to the number of all monomials, which is a function of d.

• Algorithm for finding the polynomial consists of computing the afore-mentioned null-space.
Fast algebraic attacks: reducing the degree (1)

Assume an system of equations of the form

\[H(L'(K), z_t, ..., z_{t+r-1}) = 0 \]

can be split into two halves:

\[H_1(L'(K)) \oplus H_2(L'(K), z_t, ..., z_{t+r-1}) = 0 \]

such that \(d_1 = \deg(H) = \deg(H_1) \), and \(d_2 = \deg(H_2) \) and \(d_1 > d_2 \).

\(H_1 \) only dependent on linear function of the secret key bits

⇒ after ”several” clocks the system of \(H_1 \):s will be linearly dependent.

⇒ \(\exists \alpha_0, ..., \alpha_{h-1} : \sum_{i=0}^{h} \alpha_i \cdot H_1(L'^i(K)) = 0 \). Here \(h \) is about \(\left(\frac{K}{d} \right) \). (Theory of linear recurring sequences)
Fast algebraic attacks: reducing the degree (2)

Now consider

$$\sum_{i=0}^{h} \alpha_i \cdot H\left(L^{t+i} (K), z_{t+i}, \ldots, z_{t+i+r-1}\right) = 0 \iff$$

$$\sum_{i=0}^{h} \alpha_i \cdot H_2\left(L^{t+i} (K), z_{t+i}, \ldots, z_{t+i+r-1}\right) = 0$$

Degree reduced, but number of needed consecutive keystream bits increased (dramatically). Operation known as precomputation step.

- Assumption and efficient retrieval of coefficients a_i was proven correct for most stream ciphers by Armknecht in Oct 2004 at SASC, Belgium, by associating the low-degree solutions to low-degree annihilators of Boolean functions.
- Note that H or H_2 could consist only of monomials containing z_i, in which case the splitting would not be possible.
Fast algebraic attacks: precomputation step

- Coefficients computed from the minimal polynomial of the sequence $H(K)$, $H(L(K))$, $H(L^2(K))$, … (Berlekamp-Massey algorithm)
- **Problem**: polynomials generally not unique, especially not with Bluetooth E0
- **Refinement** (Armknecht, June 2004): form minimal polynomials from pairwise coprime components => parallelizable, produces unique minimal polynomials.
- **Problem**: finding pairwise coprime polynomials that are components of H
- Refinement (Armknecht, October 2004): coefficients computed with the help of Boolean annihilators
Bluetooth

- **Bluetooth**: An industry standard for small appliances connectivity on close range (PAN)
- Bluetooth security has four named algorithms:
 - $E0$: symmetric and synchronous stream cipher
 - $E1$: authentication algorithm on SAFER+
 - $E2$: authentication key generation based on SAFER+
 - $E3$: E0 key generation, SAFER+
- Bluetooth security has a number of flaws, most severe of which are not in E0. (i.e key replay attacks, encryption key length negotiation, PIN enumeration)
- This paper focuses on the encryption algorithm E0 only
Bluetooth: E0 structure

(4,4)-combiner: four LFSRs and memory bits \((\tau_{t-1}^0, \tau_{t-1}^1, \tau_t^0, \tau_t^1)\)
Bluetooth: E0 initialization

- Two level operation
 - Level 1: Initialisation of the summation generator and the LSFRs for Level 2
 - Level 2: Actual keystream generation
- Level 1 initialises its LFSR block with the key XORed with nonce and FSM block is reset
- The level 1 – blocks clocked 200 times
- The last 128 output (keystream) bits are fed into a permutation function
- The output of the permutation forms the initial state of the level 2 LFSR blocks. Level 2 FSM block is initialised to the final state of the level 1 FSM block
Bluetooth: attacks on E0

Note: required amount of keystream is practically prohibitive in all attacks of "reasonable" time-complexity.
Bluetooth: ad hoc equation for E0

- Prediction: degree at most 10, dependency of at most 5 consecutive keystream bits
- Practice: degree 4, dependency of 4 consecutive bits

\[G\left(L'(K), z_t, z_{t+1}, z_{t+2}, z_{t+3} \right) = z_t \oplus z_{t+1} \oplus z_{t+2} \oplus z_{t+3} \oplus \pi_{t+1}^2 \cdot \left(z_t \oplus z_{t+1} \oplus z_{t+2} \oplus z_{t+3} \right) \oplus \pi_{t+1}^4 \]

\[\oplus \pi_{t+1}^1 \cdot \left(z_t \oplus z_{t+2} \oplus z_{t+3} \oplus z_{t+1} \cdot z_t \oplus z_{t+1} \cdot z_{t+2} \oplus z_{t+1} \cdot z_{t+3} \right) \]

\[\oplus \pi_t^1 \cdot \pi_{t+1}^1 \cdot (1 \oplus z_{t+1}) \oplus \pi_t^1 \cdot \pi_{t+1}^2 \]

\[\oplus \pi_{t+2}^1 \cdot z_{t+2} \oplus \pi_{t+2}^1 \cdot \pi_{t+2}^1 \cdot z_{t+2} \cdot \left(z_{t+1} \oplus 1 \right) \oplus \pi_{t+2}^1 \cdot \pi_{t+2}^2 \cdot z_{t+2} \]

\[\oplus \pi_{t+2}^2 \oplus \pi_{t+2}^2 \cdot \pi_{t+2}^1 \cdot (1 \oplus z_{t+1}) \oplus \pi_{t+2}^2 \cdot \pi_{t+1}^2 \]

\[\oplus \pi_{t+3}^1 \oplus \pi_{t+3}^1 \cdot \pi_{t+1}^1 \cdot (1 \oplus z_{t+1}) \oplus \pi_{t+3}^1 \cdot \pi_{t+1}^2 \]

\[= 0 \]

(where \(\pi_t^i \) is the \(i \)th elementary symmetric polynomial in the unknown outputs of the four LFSRs)
Bluetooth: analysis of E0

- Fast algebraic attack: Decomposition into \(G_1 \) and \(G_2 \), where \(G = G_1 \oplus G_2 \) and \(G_1(L^{t+i}(K)) = \pi_{t+i+1}^4 \oplus \pi_{t+i+2}^2 \cdot \pi_{t+i+1}^2 \) and \(\deg(G_2) = 3 \).

- Armknecht’s results on Boolean annihilators: the size of E0’s characteristic function’s ”one-set” (the set of arguments which makes the function-value = 1) is too big to allow annihilators of degree < 3. => Described attack is of optimal order of complexity.

- Attack complexity: Number of monomials and solved with Strassen (e.g.)

\[
7 \cdot \left[\begin{array}{c}
128 \\
0 \\
128 \\
1 \\
2 \\
3
\end{array} \right] \approx 2^{54.51}
\]

- Number of successive keystream bits: \(\begin{pmatrix} 128 \\ 4 \end{pmatrix} \approx 2^{23} \). Infeasible, given at most 2744 bits per frame and same key.
Bt: combined algebraic and resync?

- What if: algebraic attack over several frames? Resync?
- Armknecht’s results on combining resynchronisation attacks with algebraic attacks (SAC ’04), but:
 - only for pure combiners
- Extendable to combiners with memory, but:
 - workload is increased exponentially on the number of memory bits
- Ad hoc equations ok, but:
 - known construction methods do not extend over permutation (=non-linear) function (the one between E0 levels 1 and 2)
- Room for future ideas…
Conclusion and open questions

- Algebraic attacks one of the newest and most efficient forms of cryptanalytic attacks, especially with stream ciphers
- Correlation attacks less time-consuming, but alg. attack need less data
- Tools and criteria for providing security against algebraic attacks evolving (e.g. Meier et al, Eurocrypt 2004)
- Bluetooth E0 is "broken", but only in academic sense.

- Can ad hoc equations be formed for systems with non-linearity in the input? (Two levels of E0)
- When is it possible to use the idea of fast algebraic attacks (i.e. reduction of the degree of polynomials) iteratively?