
T-79.514 Special Course on Cryptology Mikko Kiviharju
1

Algebraic Attacks and Stream Ciphers

Mikko Kiviharju
Helsinki University of Technology

mkivihar@cc.hut.fi

T-79.514 Special Course on Cryptology

November  25th, 2004



T-79.514 Special Course on Cryptology Mikko Kiviharju
2

Overview

• Stream ciphers and the most common attacks

• Algebraic attacks (on LSFR-based ciphers)

• Fast(er) algebraic attacks

• Case: E0

• Conclusion
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Stream ciphers

• Stream cipher: output stream of symbols, usually 
bits, is a function of plaintext and key stream 
symbols. 

• Key stream could be anything (i.e a genuine 
OTP), but is usually a state machine.

State machine 
with state St

φ
γ η

key, K

keystream bit, zt

plaintext bit, pt

ciphertext bit, ct

(for self-synchronous ciphers only)
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Stream ciphers: attacks

• Key reuse (medieval)
• Time-memory tradeoffs (Babbage, 1995)
• Guess-and-determine (Günther, 1988)
• Correlation (Siegenthaler, 1984)
• Algebraic (Shamir et al., 1999)
• Backtracking (Golic, 1997)
• Binary Decision Diagrams (Krause, 2002)
• Side channel (Kocher et al., 1999)
• Resynchronization (Daemen et al. 1993)
• etc.



T-79.514 Special Course on Cryptology Mikko Kiviharju
5

Stream ciphers: categories

Stream ciphers

Synchronous Self-synchronous

Pure nonlinear LFSR components

RC4, RC5 Pure LFSR Combiners

With memory Simple

E0 LILI128

Toyocrypt

Block ciphers used 
in stream mode(e.g. OFB)
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Stream ciphers: combiners

• Pure LFSR-ciphers trivial to break 
– complexity O(n3), from 2n linear equations

• Add non-linearity (in GF(2k)-arithmetic)
– a non-linear function combining some LFSRs => 

(pure) combiner. Example: LILI-128

• In pure combiners, high correlation immunity 
implies vulnerability to algebraic attacks

• Make keystream dependent on a (non-linear) 
state-machine as well
– Combiner with memory. Example: Bluetooth E0
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Stream ciphers: combiners

LFSR 1

LFSR 2

LFSR n f zt

g
MEM 1

MEM m

Pure combiner ((n,0)-combiner)

Combiner with memory, 
((n,m)-combiner)

Non-linear

i
tx

1
k
tc +

k
tc
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Algebraic attacks

• Principle: 
– Find equations (on any cipher) with the key bits as 

unknowns
– Fill in the known variables and constants
– Solve the equation

• Problems:
– Non-linear equations (of high degree)
– Finite field algebras (fast methods from analysis 

generally not applicable, general Diophantine 
equations at least as hard as NP-hard)

– Finding the equations highly dependent on the cipher
– Inserting the keystream bits turns out to be non-trivial
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Algebraic attacks: combiners

• Promising target: 
– Components mainly linear
– Algebraic degree in real-life combiner ciphers usually of 

reasonable order (due to recent trends to make them correlation-
immune)

• By Kerckhoff’s principle the keystream zt is known
• General idea: form equations consisting of known 

constants, zt (for all t), and secret key bits of the LFSRs 
as unknowns.

• Combiners with memory: more unknown variables => 
can be cancelled, but require more known keystream
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Algebraic attacks: pure combiners

Why have that ( )1: ,..., n
t t tt z f x x∀ =

of the secret key bits (applied t times), so we have, for all t:

i
tx

( )( ) ( )( )1,...,
t t

t nz f L k k f L K= = , where K represents the whole

Now we have                                  for every clock. By Kerckhoff’s

principle the attacker knows all zt, and can collect as many

keystream bits as he/she likes without increasing the number of

unknown variables.

( )( ) 0t
tf L K z⊕ =

Solution?

But each     is a linear function

secret key and Lt is the linear function in matrix-form applied t times

(raised to the tth power).
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Algebraic attacks: equation solving (1)

• Task: solve non-linear diophantine system of equations
• Assume: equations are consist of polynomials (not e.g. 

infinite series). This is valid, since every Boolean 
function can be representeda as a polynomial over 
GF(2)

• Methods:
– Gröbner Bases
– Linearization (system needs to be grossly overdefined)
– XL
– XLS
– …
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Algebraic attacks: equation solving (2)

• Gröbner bases: ”Gaussian for non-linear systems”
– Definition: an subset of an ideal in given polynomials is 

a Gröbner basis, if the ideals generated by the leading 
term of the whole ideal and the leading terms of the 
individual polynomials (in the subset) are identical 

– Usage:
• Transform the polynomial equations to other types of 

polynomials (Gröbner basis) using e.g. Buchberger’s algorithm
• A Gröbner basis has the property of Gaussian elimination, i.e. it 

is possible to solve one variable at a time (although still 
polynomial)

• Solution to the Gröbner basis is the same as for the original 
equation
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Algebraic attacks: equation solving (3)

• Linearization algorithms (basic, XL, XSL and 
variations), principle:
– Use an overdefined equation
– Replace each monomial with a new variable
– Solve as a linear system
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z x y
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Verification:
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Algebraic attacks: linearization

• How ”over”defined does the system need to be? 
(i.e: how many keystream bits are needed?)

• Upper bound for monomials of at most degree d in 
the equations, with n secret key bits (=unknowns):

• (how many different solutions are there for 
exponents of a certain monomial adding up to i in 
GF(2))

• Exponential on the degree => lower the degree

x

( ) ( )
0

,
d

d

i

n
M n d O n

i=

 
= ≈ 

 
∑
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Algebraic attacks: (n,m)-combiners (1)

In this case ( )1 1: ,..., , ,...,n m
t t t t tt z f x x c c∀ =

Each is still a linear function of the key (applied t times), and the memory 
i
tx

( )( ) ( )( )1
1: ,..., , ,..., ,t m t

t n t t tt z f L k k c c f L K c∀ = =
where K and Lt are as before.

Now we have ( )( ), 0t
t tf L K c z⊕ =

Solution?

bits:

, but collecting key bits does not help.

We could substitute all the ct with a function of c0, after all ( )1t tc g c+ = for all t.

(c0 can be assumed to be known to the attacker) But: equation degree

would increase exponentially with t.
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Algebraic attacks: (n,m)-combiners (2)

• Task: cancelling out the memory-bits from (n,m)-
combiners

• Result by Armknecht and Krause in Crypto 
2003: 
– there is a boolean function       of a degree

at most               and an integer r strictly

larger than the number of memory bits, such that
. Here K and L are as before.

– Also: algorithm for finding H, to be ad hoc equations
( )( )1: , ,..., 0t

t t rt H L K z z + −∀ =

( )1
2

n m + 
 
 

( 0)H ≠
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Algebraic attacks: ad hoc equations

• Outline of proof for the upper bound
– Define a set Critc(z) as the set of those secret key values that do 

not map to given r consecutive keystream bits for any state of 
the memory bits. Accordingly, let NCritc(z) be the complement of 
Critc(z).

– Show that the number of degree d polynomials that define the 
combiner solely based on the secret key bits equals the null 
space of all monomials of degree d w.r.t NCritc(z)

– Note that the null space has a nontrivial solution iff the number of 
all monomials (of degree d) is greater than NCritc(z).

– Size of NCritc(z) is estimated and this result is assigned to the 
number of all monomials, which is a function of d.

• Algorithm for finding the polynomial consists of 
computing the afore-mentioned null-space.
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Fast algebraic attacks: reducing the 
degree (1)
Assume an system of equations of the form

can be split into two halves:

such that d1=deg(H)=deg(H1), and d2=deg(H2) and d1>d2.

H1 only dependent on linear function of the secret key bits 
⇒ after ”several” clocks the system of H1:s will be linearly 
dependent. . Here h is 
about     . (Theory of linear recurring sequences)

( )( )1, ,..., 0t
t t rH L K z z + − =

( )( ) ( )( )1 2 1, ,..., 0t t
t t rH L K H L K z z + −⊕ =

( )( )0 1 1
0

,..., : 0
h

t i
h i

i

H L Kα α α +
−

=

⇒ ∃ ⋅ =∑
K

d

 
 
 
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Fast algebraic attacks: reducing the 
degree (2)
Now consider

Degree reduced, but number of needed consecutive 
keystream bits increased (dramatically). Operation known as 
precomputation step.
• Assumption and efficient retrieval of coefficients ai was proven 

correct for most stream ciphers by Armknecht in Oct 2004 at 
SASC, Belgium, by associating the low-degree solutions to low-
degree annihilators of Boolean functions.

• Note that H or H2 could consist only of monomials containing zi, 
in which case the splitting would not be possible.

( )( )1
0

, ,..., 0
h

t i
i t i t i r

i

H L K z zα +
+ + + −

=

⋅ = ⇔∑

( )( )2 1
0

, ,..., 0
h

t i
i t i t i r

i

H L K z zα +
+ + + −

=

⋅ =∑
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Fast algebraic attacks: precomputation 
step
• Coefficients computed from the minimal polynomial of the 

sequence H(K), H(L(K)), H(L2(K)),… (Berlekamp-Massey 
algorithm)

• Problem: polynomials generally not unique, especially not with 
Bluetooth E0

• Refinement (Armknecht, June 2004): form minimal polynomials 
from pairwise coprime components => parallelizable, produces 
unique minimal polynomials.

• Problem: finding pairwise coprime polynomials that are 
components of H

• Refinement (Armknecht, October 2004): coefficients computed 
with the help of Boolean annihilators
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Bluetooth

• Bluetooth: An industry standard for small appliances 
connectivity on close range (PAN)

• Bluetooth security has four named algorithms:
– E0: symmetric and synchronous stream cipher
– E1: authentication algorithm on SAFER+
– E2: authentication key generation based on SAFER+
– E3: E0 key generation, SAFER+

• Bluetooth security has a number of flaws, most severe of 
which are not in E0. (i.e key replay attacks, encryption 
key length negotiation, PIN enumeration)

• This paper focuses on the encryption algorithm E0 only
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Bluetooth: E0 structure

s24 s0s5s13s17

1
tx

LFSR1 (25)

s30 s0s7s15s19

2
tx

LFSR2 (31)

s32 s0s5s9s29

3
tx

LFSR3 (33)
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4
tx

LFSR4 (39)

zt
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ct

0
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(4,4)-combiner: four LFSRs and memory bits ( )0 1 0 1
1 1, , ,t t t tτ τ τ τ− −

∑
∑
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Bluetooth: E0 initialization

• Two level operation
– Level 1: Initialisation of the summation generator and the LSFRs

for Level 2
– Level 2: Actual keystream generation

• Level 1 initialises its LFSR block with the key XORed 
with nonce and FSM block is reset

• The level 1 – blocks clocked 200 times 
• The last 128 output (keystream) bits are fed into a 

permutation function
• The output of the permutation forms the initial state of 

the level 2 LFSR blocks. Level 2 FSM block is initialised 
to the final state of the level 1 FSM block
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Bluetooth: attacks on E0
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Note: required amount of 
keystream is practically 
prohibitive in all attacks of 
”reasonable” time-complexity
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Bluetooth: ad hoc equation for E0

• Prediction: degree at most 10, dependency of at most 5 
consecutive keystream bits

• Practice: degree 4, dependency of 4 consecutive bits 
( )( ) ( )

( )
( )
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2 4
1 2 3 1 2 3 1 1 2 3 1
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1 1 1

1 1 1 1 2
2 2 2 1 2 1 2 1 2

, , , ,

1

1

t
t t t t t t t t t t t t t t

t t t t t t t t t t

t t t t t t
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Bluetooth: analysis of E0

• Fast algebraic attack: Decomposition into G1 and G2, where              
and and deg(G2)=3.

• Armknecht’s results on Boolean annihilators: the size of E0’s 
characteristic function’s ”one-set” (the set of arguments which 
makes the function-value = 1) is too big to allow annihilators 
of degree < 3. => Described attack is of optimal order of 
complexity.

• Attack complexity: Number of monomials and solved with 
Strassen (e.g)

• Number of successive keystream bits:            . Infeasible,
given at most 2744 bits per frame and same key.

1 2G G G= ⊕ ( )( ) 4 2 2
1 1 2 1

t i
t i t i t iG L K π π π+
+ + + + + += ⊕ ⋅

2log 7

54,51128 128 128 128
7 2

0 1 2 3
        

⋅ + + + ≈        
        

23128
2

4
 

≈ 
 
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Bt: combined algebraic and resync?

• What if: algebraic attack over several frames? Resync?
• Armknecht’s results on combining resynchronisation 

attacks with algebraic attacks (SAC ’04), but:
– only for pure combiners

• Extendable to combiners with memory, but: 
– workload is increased exponentially on the number of memory 

bits

• Ad hoc equations ok, but:
– known construction methods do not extend over permutation 

(=non-linear) function (the one between E0 levels 1 and 2)

• Room for future ideas…
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Conclusion and open questions

• Algebraic attacks one of the newest and most efficient 
forms of cryptanalytic attacks, especially with stream 
ciphers

• Correlation attacks less time-consuming, but alg. attack 
need less data

• Tools and criteria for providing security against algebraic 
attacks evolving (e.g. Meier et al, Eurocrypt 2004)

• Bluetooth E0 is ”broken”, but only in academic sense.

• Can ad hoc equations be formed for systems with non-
linearity in the input? (Two levels of E0)

• When is it possible to use the idea of fast algebraic attacks 
(i.e. reduction of the degree of polynomials) iteratively?


